

Pleroma API based GNU social frontend
and Pleroma API

Name: Susanna Di Vita

E-mail: susanna.divita.2@gmail.com

Location: Genova, Italy (GMT+2 Rome Timezone)

Website: github.com/SusannaDiV

IRC & XMPP: susannadiv

Project Name: New Frontend Modern + API

Designs: notabug.org/susdiv/designs-gnusocialv3

Proof of Competence: notabug.org/susdiv/gnusocial.network

Summary

This project aims at developing full-stack Pleroma API plugins that will replace Qvit-
ter in GNU social v3.

GNU social is a communication software used in federated social networks. GNU
social’s current UI has been implemented on top of the Qvitter API and is currently
undergoing a revamp from v2 to v3. Due to Qvitter API’s lack of documentation and
hard-coded nature, support will be discontinued in v3. This project aims at com-
pletely replacing Qvitter API code with the highly customizable and well supported
Pleroma API by taking advantage of Pleroma’s compatibility with both GNU social’s
formerly employed open protocols - OAuth2 and ActivityPub.

This will be achieved by implementing 3 plugins:

- a Pleroma API based GNU social frontend

- the Pleroma API

- a Chat system for direct messaging

The first part of the project aims at developing a GNU social UI with an improved
UX by reducing user friction. Clean lines, lots of space, and well-defined elements
will visually indicate to users how to move through your UI, eliminating the need
for cluttering annotations. The resulting UI will be more user friendly – both aes-
thetically and functionally – and will fix some of the minor and major bugs present
in the v2 frontend, such as markup issues and non-strictly necessary UI features that
might mislead newcomers and interrupt user flow.

The second part of the project aims both at implementing admin-specific actions
through the development of relevant existing Pleroma API endpoints and at devel-
oping user-side authorization request handling. This will be achieved in accordance
with both industries’ best practices for REST API development and Pleroma’s spec-
ifications, meticulously studied though endpoint analysis. The resulting Pleroma
plugin, completed with the user-facing frontend, will be fully compatible with the
pre-existent software.

As for the last part, this project aims at developing a Chat system plugin. This will
allow users to communicate through direct messages within GNU social, offering
an alternative to IM protocols.

Creation of all UI’s components will be completed following Object Oriented Anal-
ysis and Design principles (Analysis and Design, Implementation, Testing and De-
ployment). Testing stage can be carried out using Exploration testing as it leads to
a frontend-optimized final unit. To promote accessibility, each design change will
encompass thoughtful CUD accessibility testing through the Coblis filter.

Completion of every further improvement will be followed by its documentation.
The latter contains explanations of the implementation approach and testing pro-
cess in addition to the responsive design mockups and wireframes – for the
frontend – or the automated unit test sections – for the backend. The goal is to
keep an optimized balance between documentation/reports – carried out with re-
gards to the GNU Contribution Guidelines - and actual feature implementation and
testing.

Benefits

Such improvements will be greatly beneficial to GNU Social, the fediverse and, ob-
viously, the whole community involved. Indeed:

• Improved user experience will gratify former fediverse users

• A catchier design will make a great first impression and attract newcomers

• Increased portability thanks to Pleroma API’s low system requirements will
permit the installation of new instances on dated hardware

• Improved accessibility will help both spreading the word of Free Software
and making it more attractive to those familiar to traditional mainstream so-
cial network platforms

• The addition of a chat plugin will allow users to communicate through direct
messages – thus enabling stronger interactions among users

• Mobile-friendly frontend will allow users to access their accounts’ direct mes-
sages on the go, thus increasing contact

Implementation plan and Relevant Research

Frontend UI Design and Implementation for improved UX and User Inter-
action

The original Qvitter FE has an indistinctive, non-content-centered design that fo-
cuses more on customizable tweaks than on post readability and user interaction.

The offered UI results in a bubble-tiled, old-timey two-column structure; the left
side is cluttered with less than relevant, non-user specific sections that could be
easily omitted in most of the timelines (namely the Home, Public, Popular and Net-
work), while the timeline’s main content is relegated to the admittedly less attention
grabbing column. This layout goes against all UI visual hierarchy best practices, and
therefore will be completely replaced by the content-centric three-column design.

Moreover, in order to comply with the F-pattern reading techniques unconscionably
followed by most left-to-right user readers and therefore ameliorating the overall
UX, all call-to-action elements like the Profile and Timeline Navigation tiles will be
placed at the top left and right margins of the screen, instead than being regrouped
in a single clump as the previous implementation did.

Additionally, in order to bring a sense of prioritized order within the elements them-
selves, the background will be neutrally-colored and separated from the user’s sight
within the framework. This will provide a blank canvas on which to arrange the sec-
tions, now perceived as easily-recognizable and eye-catching instead of too-heavily
loaded.

Finally, Qvitter UI’s suboptimal placement of call-to-action elements like buttons
and drop-down menus will be corrected as follows in accordance with the Z-pattern
design standard - in order to redirect the user’s focus on the timeline’s main content
after the first-contact horizontal-search scanning phase.

• Adding a completely new Navigation Bar – containing the Home, Profile,
Messages fields and the unified Favorites/Replies Notification drop-down
menu. The presence of a navbar will help streamline the interface by creating
a starter point for user’s browsing, thanks to newly introduced universally
recognizable icons.

Moreover, space management will be improved as such addition would elim-
inate the need for the user-specific section in the left column, making the
following Popular Tags and Feed sectors more visible.

• Tag cloud redesign – obtained through CUD-friendly redundant color/dark-
ness/saturation coding. Such distinct and colorful gradient separation of
Popular Tags will result in a more space efficient relevance-ranking system.

The currently employed dimension-importance ratio technique clogs a good
portion of the right column making the Popular Notices section less visible
in the Home, Public and Network timelines.

Not to mention, in the current v2 implementation the purpose of a Re-
cent/Popular Tags cloud gets defied by making users scroll to see the ending
tags in the list.

• UI Timeline redesign

In order to lead users down the content page organically, this project will
implement an efficient strategy for elemental hierarchy; essential navigation
page elements will be stored in the left column, with different grayscale
shades to highlight their level of importance; the former Recent Tags section,
now renamed Trends for improved readability, will follow and so will the
Feed timeline menu.

The right column will store the Personal Profile section instead, followed by
different sectors., according to the Timeline’s content (Active/Popular
Groups list, User Statistics or Popular Notices). This new separation tech-
nique will also bring out the heavily text-based content of the Popular No-
tices section.

• User Directory and Group Directory Redesign – in order both to maintain
consistency throughout the design and to reduce first-approach fatigue, the
standard unordered list common to both the Users and Group Directory will
be replaced with an easily readable and catchier tile design, which us-
ers/groups information will be listed in right after their avatar instead of be-
ing half-hidden under the User’s Profile section (as frequently occurs due to
lack of proper CSS nesting).

Additionally, the new User Directory alphabetical index & search bar will be
compressed together as to avoid wasting user-focusing space (currently they
occupy more than half of the page), that shall be assigned instead to the
main content.

• Button Redesign with more recognizable icons and text descriptions to raise
the UI’s recognition potential and to minimize recall fatigue on the user’s
end. The added color-coded contrast helps action buttons to stand out and
have their function immediately recognized by users – while breaking the
content’s grey scale monotones and allowing a catchier design implementa-
tion.

• Added hover background focus and improved general responsiveness of the
UI - for a modernized, accessible look. This will provide users with immediate
feedback on their actions, while also allowing for device-optimized layout
changes thanks to the extensively documented CSS Grid usage. Mobile-
friendly features - such as horizontal-scrolling avoidance, consistent zoom-
free text readability and adequate spacing for tap targets - will be implicitly
implemented.

• Added profile and group shortcut in the Timeline navigation section – to
optimize interaction flow and to endorse user-side exploration. The aim is to
improve design immediacy and to make both content and features available
for discovery; (in turn) this will help avoiding disengagement once a user has
begun working with maximum efficiency. Integrating the Subscribe To form
within the People and Groups fields helps achieving both a UI free from fric-
tion-inducing clutter and a better free space management in the right col-
umn.

• Drop-down Notices Menu implementation – it will contain notifications
coming both from the Favorites and from the Replies Timelines. Having all
notifications stored in one place will improve time responses to other user’s
action and therefore increase user interaction. users will be directed to the
corresponding timeline by clicking on the above notifications. A second drop
down menu will be present in the ride side of the navbar for Account-related
options – namely, the Settings and Logout buttons.

• Login page implementation – the current login and registration can only be
accessed through a barely visible, non-intuitively placed all-in-one button.
This not only makes it difficult for new users to locate the starting point of
their registration process, but it also takes them to an unmodified, old-fash-
ioned timeline layout. I intend to develop a separate Login and Registration
page, complete with a more directly approachable form containing all login
options.

• Introduce a simplified settings page by regrouping related sectors. The Av-
atar and URL fields will be integrated as subsections of the Profile main set-
tings page, while access-related Email, OpenID and Password fields will be
stored under the Security and Login section. Finally, both the Themes and
Connections will be clustered in a Personal section.

Pleroma REST API Plugin backend Design and Implementation

This part of the project aims at implementing the Pleroma API to be offered bun-
dled with its newly created frontend as a full-stack plugin in GNU social’s v3. In
order to completely eradicate the need of employing Qvitter API.

Request’s Authorization Handling

The authorization framework currently employed in both GNU social and in Ple-
roma’s server-side backend is OAuth2. Therefore, all authentication requests will be
handled with OAuth2 tokens.

Requests that require authentication are:

- Account-related - like the ones regarding the deletion/disabling of a user’s
account or changing their email

- Notification-related - like marking of notifications as read, subscribing and
unsubscribing to all statutes coming from a given user or updating of noti-
fication settings

- Conversation-related - like obtaining the timeline for a given conversation,
updating its recipients, marking it as read or acquiring a conversation by the
given status.

In addition to the above, all Admin-privileged actions regarding GNU social’s users,
groups and singular accounts will require authentication tokens to prove their Ad-
min status. I will implement an easily maintainable authentication token structure
by adding an OAuth2 admin scope requirement toggle. If set to true, admin actions
will explicitly demand admin OAuth2 scope presence within the authentication to-
ken. If set to false, access to admin-specific actions will be granted only in presence
of the is_admin flag.

Following Pleroma’s specifications, request parameters will be passed via query
strings and files will instead be uploaded as multipart/form-data. All attached files
will have an additional string field mime_type under the pleroma object, defining
the file’s MIME type.

Pleroma’s endpoints are divided in two categories, Pleroma API and Admin API. The
prior contains the endpoints related to user-permitted requests, while the latter
collects all admin-specific actions.

Pleroma API
Relevant available Pleroma API user-side endpoints - to be implemented inside the
GNU social Plugin - are:

Timeline endpoints

Adding the parameter with_muted=true to all timeline queries will also return activi-
ties by muted (not by blocked) users. This will be employed in the Public, Popular
and Network Timelines, as they contain conversations from a wide range of in-
stances – both local and remote - not directly connected to the user that might still
be of interest.

Adding the parameter exclude_visibilities to the timeline queries will instead exclude
the statuses with the given visibility types specified in the input array. This will be
employed in all but the Home and Profile Timelines, as to exclude private and direct
conversations the user’s not part of (e.g. exclude_visibilities[]=direct&exclude_visibili-
ties[]=private).

• /api/v1/pleroma/accounts/:id/favorites – returns the content of the Fa-
vorites timeline of any user. The optional parameter “limit” will not be spec-
ified as a loading animation will be encompassed at the end of the first re-
sults page.

Conversations

• GET /api/v1/pleroma/conversations/:id – returns the conversation with the given
ID. As Pleroma Conversations statuses can be requested by their Conversation id,
this endpoint will be employed for the “See conversation” button functionality.

• GET /api/v1/pleroma/conversations/:id/statuses – returns the retrieved timeline
for a given conversation. This request accepts the additional “in_reply_to_conversa-
tion_id” parameter which, when set, will change the visibility to direct and address
only the users who are the recipients of that Conversation.

• PATCH /api/v1/pleroma/conversations/:id – updates a conversation by chang-
ing the list of user ids able to receive messages in the conversation, specified in the
parameter “recipients” under the “pleroma” key. Such list will be updated by replac-
ing the current parameter’s content the full list in the newly updated set of recipi-
ents. As the owner of the owner of the conversation will always be part of the re-
sulting set of recipients, it will not be necessary to implement safeguards in the
development process to avoid accidentally exclude the original poster from any
possible replies. Moreover, adding or removing elements will be allowed only if
explicitly changed by the user though this request.

• GET /api/v1/pleroma/conversations/read – marks all user’s conversations as
read. The returning JSON file contains the list of conversations entities that were
marked as read (200 healthily, 503 unhealthily).

User Actions

Notifications

In addition to the user’s id parameter, I am also going to specify two additional parameters:
exclude_visibilities and include_types. The prior excludes the notifications for activities
with the visibilities present in the input array (which may contain one or more of the fol-
lowing options: public, private and direct). This parameter will be set accordingly, whether
it will be used in the chat’s direct message implementation or in the Profile Timeline (which
contains both public and private mentions).

Usage example: GET /api/v1/notifications?exclude_visibilities[]=direct&exclude_vis-
ibilities[]=private.

The latter, instead, includes the notifications for activities with the types reckoned by the
input array (which may contain one or more from the following: mention, follow, reply and
favorite). I will set this parameter accordingly to the Timeline I will be implementing (Fa-
vorite or Replies) and to the type of notices that will be displayed in the navbar drop-down.

Usage example: GET /api/v1/notifications?include_types[]=mention&include_types[]
=reblog.

• GET /api/v1/notifications – used to retrieve a user’s notifications which will be dis-
played both in the navbar Notices drop-down and in the respective Favorite and Re-
plies Timelines.

• /api/v1/pleroma/accounts/:id/subscribe – employed to subscribe to receive no-
tification for all statues posted by a user. It requires the id of the account to sub-
scribe to as the only parameter; the JSON response contains a relationship object
on success, {"error": "error_msg"} otherwise.

• /api/v1/pleroma/accounts/:id/unsubscribe – employed to unsubscribe to stop
receiving notifications from user statuses. Parameters and response types are in
common with the above.

• /api/v1/pleroma/notifications/read – marks notification as read. The response
will contain the notification entity – or the array of notification entities - that were
read.

• /api/pleroma/notification_settings - used to update user notification settings.
This endpoint will be employed in the “Settings” page, with the following boolean
fields as parameters:

o followers - user receives notifications from followers

o follows - user receives notifications from people the user follows

This request returns JSON {"status": "success"} if the update was successful, oth-
erwise returns {"error": "error_msg"}.

Profile/Account

• PATCH /api/v1/pleroma/accounts/update_avatar - used to Set/clear user avatar
image

• POST /api/pleroma/delete_account & POST /api/pleroma/disable_account –
used for deleting and disabling an account, respectively. They require the user’s
password as the only parameter. They both return JSON responses; {"status": "suc-
cess"} if the account was successfully deleted/disabled, {"error": "[error mes-
sage]"} otherwise.

• /api/pleroma/captcha – returns a new captcha. It requires no parameters and the
response is a provider specific JSON, in which the only guaranteed parameter is
type.

Admin API

User

• GET /api/pleroma/admin/users – returns the list of all users in a JSON file. The op-
tional parameters will be added in this project are:

o Query – string search term containing the nickname, domain, or nick-
name@domain of the users we want to list.

o Filters – comma-separated strings of filters to list only local, external, active,
deactivated users. Moreover, the addition of the is_admin and is_moderator
filter makes lists users with and admin or moderator roles.

o Tags – string containing the tags list

• POST, DELETE /api/pleroma/admin/users – used to create and delete a specific
user, respectively. User creation requires as users: [{ nickname, email, password }
] only parameter and returns the user’s nickname. User deletion only requires the
target’s nickname and returns an array containing the user nicknames left.

• PATCH /api/pleroma/admin/users/activate & PATCH /api/pleroma/admin/us-
ers/deactivate – utilized to activate and deactivate given users passed though a nick-
names array, respectively. The JSON response contains a list of the newly added/de-
leted users as objects.

• POST /api/pleroma/admin/users/follow & POST /api/pleroma/admin/users/un-
follow – employed to make a user follow/unfollow a specific user, respectively. Re-
quested parameters are the nicknames of both the follower and the followed, con-
tained in the homonymous parameters.

• PUT /api/pleroma/admin/users/tag & DELETE /api/pleroma/admin/users/tag –
used to respectively tag and un-tag a list of users from a “nicknames” array.

Profile

• GET /api/pleroma/admin/users/:nickname_or_id – retrieves the details of a user.
Such user can be identified by either the id or nickname parameter. The response
is the JSON file of the user if the request was successful, “Not found” otherwise.

• GET /api/pleroma/admin/users/:nickname_or_id/statuses – returns the user’s last
statuses. Other than the id/nickname fields for unequivocal user identification, the
additional boolean “godmode” parameter will be set as true in order to allow pri-
vate-message timeline showing after login. This endpoint is necessary for the user’s
Home and Profile Timeline implementation, where the latest statutes (max 100, fol-
lowing Pleroma’s specifications) contained in the returned JSON array will be dis-
played.

• GET /api/v1/statuses – similarly to the above, this endpoint will be implemented to
return multiple statutes in a status array; this however will be achieved by passing an
array of activity ids instead of a user’s id. This endpoint is necessary for retrieving sta-
tuses from permalinks. Usage example: GET /api/v1/statuses/?ids[]=1&ids[]=2 –
retrieves as array with the activities 1 and 2

• GET /api/pleroma/admin/statuses – retrieves the instance’s latest statuses. This
endpoint will be employed for the Network Timeline implementation (with the god-
mode value set to false). On success, this request returns the JSON array of in-
stance’s latest statuses; on failure, “Not found”.

Group

• GET /api/pleroma/admin/users/:nickname/permission_group – retrieves user
permission group membership, does not require parameters. This endpoint will be
employed to check if a given user has moderator or admin permission before ac-
cessing privileged operations.

• POST /api/pleroma/admin/users/permission_group/:permission_group – adds
users to the permission group; requires an array of nicknames as sole parameter. Re-
turns the JSON of the user if the request was successful, {"error": "…"} otherwise.

• DELETE../api/pleroma/admin/users/:nickname/permission_group/:permis-
sion_group – removes an user from the permission group. Both the parameter and
the response follow the same format as above; however, admins cannot revoke their
own admin status.

• GET /api/pleroma/admin/moderation_log – employed to get the modera-
tion log in a JSON response. This endpoint’s optional parameters I will imple-
ment hold date, user and search filtering properties regarding log display. In
particular:

o start_date, end_date – filter logs by creation date, starting from
start_date and ending by end_date. All datetime values will be in ISO
8601 format (YYYY-MM-DDThh:mm:ss) in order to follow Pleroma’s
specifications.

o User_id - filter logs by user’s id (integer format).

o Search – post-filtered search logs by their log message (string for-
mat).

Registration

• POST /api/pleroma/admin/users/invite_token & POST /api/pleroma/ad-
min/users/revoke_invite – used to create and revoke an account registra-
tion invite token, respectively. The former requires the date string “ex-
pires_at” parameter, the latter just the name of token. Both requests return a
JSON response.

• POST /api/pleroma/admin/users/email_invite – employed to send a regis-
tration invite via e-mail. This plugin’s implementation requires just the email
parameter.

• PATCH /api/pleroma/admin/users/confirm_email – utilized to send the
account confirmation email to the users specified in the nickname’s param-
eter; return an array containing the nicknames of said users.

• PATCH /api/pleroma/admin/users/resend_confirmation_email - em-
ployed to resend the confirmation email to the users specified in the nick-
names parameter. The response will contain the array of users nicknames
whom the confirmation email has been re-sent.

• GET /api/pleroma/admin/users/:nickname/password_reset – utilized to
get a base-64 password reset token for a given name.

Settings

• GET /api/pleroma/admin/users/:nickname/credentials - Gets the user's
email, password, display and settings-related fields as a JSON response; re-
quires only the nickname as parameter.

• PATCH /api/pleroma/admin/users/:nickname/credentials – required for
changing the user’s email, password, display and setting-related fields. The
number of parameters to be added to the JSON body depends on the
amount of changes requested by the admin; this plugin’s available parame-
ters will be email, password, bio and avatar.

https://docs-develop.pleroma.social/backend/API/admin_api/#patch-apipleromaadminusersresend_confirmation_email

Implementation of Chat System Plugin

I propose the introduction of a new plugin – the Chat plugin – to allow direct mes-
sages between users. The current Message layout employed in GNU social has an
inbox/outbox non-user-regrouped structure, which makes it difficult for users to
communicate as messages are displayed in chronological order while neither keep-
ing track of responses nor categorizing user-specificities. Both Qvitter and Pleroma
implement private messages by integrating them in the timelines and setting them
to be recipient-exclusive. However, this implementation is wildly considered as
over-complicated and riddled with compatibility issues.

In order to provide users with a seamless IM-like direct chatting experience, while
simultaneously keeping things simple on the implementation end to ease compat-
ibility, this project will employ ActivityPub’s plugin in order to implement a chat
plugin compatible with the Pleroma API. Implementation of the private message
notification system straightforwardly invokes WebSockets.

• Creation of a minimizable Chat widget – The aim is to improve user contact
via private conversations and to highlight notifications which decrease user
response time. Furthermore, the UX browsing won’t be affected: users will
not have to quit their content viewing/writing activities as the chat function-
ality would be accessible from any page.

• Message page design – with users’ conversation indexed on the left and chat
bubbles appearing on the right. This chat will be completely responsive and
will feature a site-wide accessible emoji pack.

• Backend chat implementation – Pleroma API’s Emoji endpoints and Pleroma
Conversation’s key parameter will allow me to develop the chat’s backend:

1. Conversation IDs can be found (and therefore implemented) in direct
messages thanks to the pleroma.direct_conversation_id key.

2. Mix.Tasks.Pleroma.Emoji will be used for importing pre-existent
emoji packs; site-wide customized ones will be adapted thanks to

the GET /api/pleroma/emoji, PUT-DELETE /api/ple-
roma/emoji/packs/:name and POST /api/ple-
roma/emoji/packs/:name/update_file endpoints - which list, create,
update and delete custom site-wide emoji packs, respectively.

3. Notifications will be displayed as read when clicked on thanks to the
additional field is_seen under the “pleroma” object.

Tentative Timeline
May 4 – June 1

• Familiarize with the community

• Familiarize with the code, with further insights in:

1. Pre-existent JavaScript for better migration technique planning

2. Timeline Notices Handling

• Familiarize with both documentation, development and test system used

• Familiarize with the Pleroma API

1. Pleroma FE options

2. Chat employable backend API Endpoints

• Create additional flow state diagrams for UI path indexing

• Keep on conducting user tests for quality-of-life issues fixing in the original
UI

June 1 – June 29
June 1-7

Frontend UI Design and Implementation for improved UX and User Interac-
tion

• Work on 1.1 and 1.2

1. Adding a completely new Navigation Bar

2. Tag cloud redesign

• Work on 1.3 and 1.4

1. UI Timeline redesign

2. Button Redesign with more recognizable icons and text descriptions

• Work on 1.5 and 1.6

1. User Directory and Group Directory Redesign

2. Added hover background focus and improved general
responsiveness of the UI

June 8-14

• Work on 1.7 and 1.8

1. Drop-down Notices Menu implementation

2. Added profile and group shortcut in the Timeline navigation section

• Work on 1.9 and 1.10

1. Introduce a simplified settings page

2. Footer redesign

• Work on 1.11 and 1.12

1. Login page implementation

2. Bug Fixing and JavaScript code factorization

• Exploration Testing + Interactive Documentation

June 15 - 21

Pleroma REST API Plugin backend Design and Implementation

• Implementation of user-side Pleroma API backend – Profile/Account end-
points related to the Settings page implementation

1. Setting/clearing user avatar image

2. Deleting/disabling an account

3. Obtaining a new captcha

• Implementation of admin-side Pleroma API backend – admin-specific Set-
tings endpoints employed in the Settings page implementation

1. Acquiring user’s email, password, display and privacy-related settings

2. Changing user’s email, password, display and privacy-related settings

June 22 – 28

• Implementation of user-side Pleroma API backend – Timeline (specifically
Conversation-related) endpoints utilized for both the Favorite, Public, Home,
Popular and Network timelines and the status’ conversation structure devel-
opment

1. Favorite user-specific statuses retrieval

2. Conversation recovery based on a status id

3. Timeline recovery based on a given conversation

• Write automated unit tests – in accordance with industry’s best practices -
to verify functionality of the API implementation up to this point

• Review and test all API actions that require authentication to ensure their
functionality

• Buffer time + documentation - in the newly implemented GNU social’s
landing page Doc section

July 3 - July 27

July 3 – 10

• Implementation of user-side Pleroma API backend – continuation of Time-
line (specifically Conversation-related) endpoints development related to:

1. Updating a conversation by changing its recipients

2. Marking user-specific conversations as read

• Implementation of user-side Pleroma API backend – User Actions
(specifically Notifications-related endpoints) utilized for both the drop-down
list of recent Notices and the Favorite & Replies timeline development

1. Acquire the user’s notification list

2. Subscribe & unsubscribe to receive notifications for all statutes
posted by a given user

3. Mark clicked-on notifications as read

4. Update the user’s notification setting (this endpoint will be employed
in the Settings page implementation as well as in the Notices section)

July 11 – 18

• Implementation of admin-side Pleroma API backend – User Settings end-
points employed both in the pre-existent admin dashboard page and in the
User Directory page implementations

1. Acquire the list of all known users and instances in GNU social – with
applicable query and tag filters

2. Create/delete a specific user given their id/nickname

3. Activate/deactivate a specific user given their id/nickname

4. Make the requesting user follow/unfollow another specific user

5. Add/delete user-chosen tags

• Unit testing + buffer time for documentation writing and eventual bug-fixing

July 19 – 27

• Implementation of admin-side Pleroma API backend – Profile tweaking end-
points employed in both the Home & Profile and in the Popular & Network
timeline implementations

1. Acquire all profile and setting related information from the user’s
id/nickname

2. Return last 100 statuses from any given user on GNU social – (this
endpoint will be heavily employed in this plugin’s implementation; it
will therefore require occupy much of the testing-allocated timeframe
before the Second Evaluation)

3. Retrieve multiple activity-identified statuses from a specified user

4. Obtain the current instance’s latest statuses (this endpoint will be also
extensively tested as it is vital for displaying conversations with a
fediverse-wide scope of visibility)

• Implementation of admin-side Pleroma API backend – Group handling end-
points employed in both the Groups Timeline and the Group Directory page
development

1. Acquire user permission status for group membership

2. Add/Remove a given user to the permission group

3. Obtain group-specific moderation log – with filtered results according
to date, user id or search-related parameters

• Review and test thoroughly all timeline, user, profile and group related API
actions

• Buffer time + documentation writing

July 31 - August 24

July 31 – August 7

• Implementation of admin-side Pleroma API backend – Registration enabling
endpoints employed for internal configuration. In the current version, ac-
count registration can only be finalized through invitation tokens; I am going
to develop the following while following code reusability best practices in
order to ease any possible future readjustments.

1. Create/revoke an account registration invite token

2. Send a registration invite via e-mail

3. Send the account confirmation e-mail to the newly created user

4. Resend the account confirmation e-mail

5. Acquire a base64 password reset token

August 8 – 15

Chat System Plugin Implementation

• Implementation of Direct Message system – independent from the timeline
backend implementation - through WebSockets

• Message page UI design

1. Main Message page front end implementation

2. Minimizable Chat widget development

• Direct conversation-related endpoint backend implementation – with al-
ready-seen message marking

• Site-wide emoji packages

1. Imported from Pleroma’s server default list

2. GNU social specific (facultative – only if the time permits it)

August 16 – 23

At this stage I should have completed all the proposed work. This part of the month
will therefore be assigned as a buffer time in which I’ll be completing additional
testing and documentation writing - or previously assigned tasks in case I’ll miss
something from the previous months.

August 24 – 31

• General review, documentation and testing

• Tech-report write up

• Final merge and evaluation

Deliverables

• Fully functioning GNU social full-stack Pleroma plugin compatible with pre-existent
software

o GNU social UI for Pleroma API compatible with LibreJS

o Pleroma API backend implementation with OAuth2 protocol

• Code refactoring and API endpoints addition

• Fixing of areas with unexpected behavior in GNU social’s codebase

• Addition of a Chat plugin for direct messages (+ documentation)

• JavaScript codebase refactoring

• Mobile optimized UI with Chat widget

• Documentation and testing

Communication

The GNU social’s IRC will be used to communicate with the community and the
mentors (I can use whichever channel is more convenient). I will regularly submit
my progress to both mentors and community members for UI-related feedback.

I’ll be dynamically adapting my academic workload in order to maintain the mo-
mentum through the entire summer, while communicating any possible timeline
changes or communication hours to Daniel and Diogo. Both my project’s additions
code and all relevant changes to the existing code will be hosted on a fork of Di-
ogo’s fork. This is to prevent accidental commits, as a significant part of the com-
munity has switched to Diogo’s repository.

Qualification and Relevant experience

I'm currently a second-year BSc Computer Science 4.0 GPA student at the University
of Genova (UNIGE), Italy. I am also a member of the IANUA-ISSUGE Excellence Ac-
ademic Program (admission requires a perfect GPA score). In addition to the above,
I also have 4 autonomous JavaScript, Bootstrap, HTML5, CSS3, Node.js, Vue.Js, Re-
act, GraphQL, Express.Js and Angular frontend projects on my GitHub account – one
of which secured my team first place in the Innovation 4.0 SMAU Award for a re-
sponsive React Native & JS mobile app for flood alert display.

The inspiration to code for the Federated Social Network came from the words of
Richard Stallman himself, whom I had the honor of meeting during a conference on
the importance of Free Software at my University – the idea of offering a privacy-
focused alternative to mainstream social media platforms immediately resonated
with me. I started to get involved in the movement first through contact with the
community and then through taking interest in the software that powered such
federation.

For working in GNU social, I will have to keep learning more about the project itself
in order to get comfortable with the Pleroma API and freshen up my JavaScript
skills.

