JavaAlgorithms/SegmentTree.java

319 lines
10 KiB
Java

/******************************************************************************
*
* A segment tree data structure.
*
******************************************************************************/
import java.util.Arrays;
/**
* The {@code SegmentTree} class is a structure for efficient search of cumulative data.
* It performs Range Min, Max, Sum and Multiplication Queries in O(log(n)) time.
* <p>
* Also it has been develop with {@code LazyPropagation} for range updates, which means
* when you perform update operations over a range, the update process affects the least nodes as possible
* so that the bigger the range you want to update the less time it consumes to update it. Eventually those changes will be propagated
* to the children and the whole array will be up to date.
* <p>
* Example:
* <p>
* SegmentTreeHeap st = new SegmentTreeHeap(new Integer[]{1,3,4,2,1, -2, 4});
* st.update(0,3, 1)
* In the above case only the node that represents the range [0,3] will be updated (and not their children) so in this case
* the update task will be less than n*log(n)
* <p>
* Memory usage: O(n)
*
* @author Ricardo Pacheco (base code)
* @author Diogo Cordeiro (implemented range max and multiplication queries, plus other minor changes)
* @link https://algs4.cs.princeton.edu/99misc/SegmentTree.java.html
*/
public class SegmentTree {
private final STNode[] heap;
private final int[] array;
/**
* Time-Complexity: O(n*log(n))
*
* @param array the Initialization array
*/
public SegmentTree(int[] array) {
this.array = Arrays.copyOf(array, array.length);
// The max size of this array is about 2 * 2 ^ log2(n) + 1
int size = (int) (2 * Math.pow(2.0, Math.floor((Math.log(array.length) / Math.log(2.0)) + 1)));
heap = new STNode[size];
build(1, 0, array.length);
}
public int size() {
return array.length;
}
// Initialize the Nodes of the Segment tree
private void build(int v, int from, int size) {
heap[v] = new STNode();
heap[v].from = from;
heap[v].to = from + size - 1;
if (size == 1) {
heap[v].sum = array[from];
heap[v].mul = array[from];
heap[v].min = array[from];
heap[v].max = array[from];
} else {
// Build childs
build(2 * v, from, size / 2);
build(2 * v + 1, from + size / 2, size - size / 2);
heap[v].sum = heap[2 * v].sum + heap[2 * v + 1].sum;
heap[v].mul = heap[2 * v].mul * heap[2 * v + 1].mul;
// min = min of the children
heap[v].min = Math.min(heap[2 * v].min, heap[2 * v + 1].min);
// max = max of the children
heap[v].max = Math.max(heap[2 * v].max, heap[2 * v + 1].max);
}
}
/**
* Range Sum Query
* <p>
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @return sum
*/
public int rsq(int from, int to) {
return rsq(1, from, to);
}
private int rsq(int v, int from, int to) {
STNode n = heap[v];
// If you did a range update that contained this node, you can infer the Sum without going down the tree
if (n.pendingVal != null && contains(n.from, n.to, from, to)) {
return (to - from + 1) * n.pendingVal;
}
if (contains(from, to, n.from, n.to)) {
return heap[v].sum;
}
if (intersects(from, to, n.from, n.to)) {
propagate(v);
int leftSum = rsq(2 * v, from, to);
int rightSum = rsq(2 * v + 1, from, to);
return leftSum + rightSum;
}
return 0;
}
/**
* Range Multiplication Query
* <p>
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @author Diogo Peralta Cordeiro <diogo@fc.up.pt>
* @return multiplication
*/
public int rmq(int from, int to) {
return rmq(1, from, to);
}
private int rmq(int v, int from, int to) {
STNode n = heap[v];
// If you did a range update that contained this node, you can infer the Product without going down the tree
if (n.pendingVal != null && contains(n.from, n.to, from, to)) {
return (to - from + 1) * n.pendingVal;
}
if (contains(from, to, n.from, n.to)) {
return heap[v].mul;
}
if (intersects(from, to, n.from, n.to)) {
propagate(v);
int leftMul = rmq(2 * v, from, to);
int rightMul = rmq(2 * v + 1, from, to);
return leftMul * rightMul;
}
return 1; // neutral element
}
/**
* Range Min Query
* <p>
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @return min
*/
public int rMinQ(int from, int to) {
return rMinQ(1, from, to);
}
private int rMinQ(int v, int from, int to) {
STNode n = heap[v];
// If you did a range update that contained this node, you can infer the Min value without going down the tree
if (n.pendingVal != null && contains(n.from, n.to, from, to)) {
return n.pendingVal;
}
if (contains(from, to, n.from, n.to)) {
return heap[v].min;
}
if (intersects(from, to, n.from, n.to)) {
propagate(v);
int leftMin = rMinQ(2 * v, from, to);
int rightMin = rMinQ(2 * v + 1, from, to);
return Math.min(leftMin, rightMin);
}
return 1000000000; // 1e9 to avoid overflow
}
/**
* Range Max Query
* <p>
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @author Diogo Peralta Cordeiro <diogo@fc.up.pt>
* @return max
*/
public int rMaxQ(int from, int to) {
return rMaxQ(1, from, to);
}
private int rMaxQ(int v, int from, int to) {
STNode n = heap[v];
// If you did a range update that contained this node, you can infer the Max value without going down the tree
if (n.pendingVal != null && contains(n.from, n.to, from, to))
return n.pendingVal;
if (contains(from, to, n.from, n.to))
return heap[v].max;
if (intersects(from, to, n.from, n.to)) {
propagate(v);
int leftMax = rMaxQ(2 * v, from, to);
int rightMax = rMaxQ(2 * v + 1, from, to);
return Math.max(leftMax, rightMax);
}
return -1000000000; // 1e9 to avoid overflow
}
/**
* Range Update Operation.
* With this operation you can update either one position or a range of positions with a given number.
* The update operations will update the less it can to update the whole range (Lazy Propagation).
* The values will be propagated lazily from top to bottom of the segment tree.
* This behavior is really useful for updates on portions of the array
* <p>
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @param value value
*/
public void update(int from, int to, int value) {
update(1, from, to, value);
}
private void update(int v, int from, int to, int value) {
// The Node of the heap tree represents a range of the array with bounds: [n.from, n.to]
STNode n = heap[v];
/**
* If the updating-range contains the portion of the current Node We lazily update it.
* This means We do NOT update each position of the vector, but update only some temporal
* values into the Node; such values into the Node will be propagated down to its children only when they need to.
*/
if (contains(from, to, n.from, n.to)) {
change(n, value);
}
if (n.size() == 1) return;
if (intersects(from, to, n.from, n.to)) {
/**
* Before keeping going down to the tree We need to propagate the
* the values that have been temporally/lazily saved into this Node to its children
* So that when We visit them the values are properly updated
*/
propagate(v);
update(2 * v, from, to, value);
update(2 * v + 1, from, to, value);
n.sum = heap[2 * v].sum + heap[2 * v + 1].sum;
n.mul = heap[2 * v].mul * heap[2 * v + 1].mul;
n.min = Math.min(heap[2 * v].min, heap[2 * v + 1].min);
n.max = Math.max(heap[2 * v].max, heap[2 * v + 1].max);
}
}
// Propagate temporal values to children
private void propagate(int v) {
STNode n = heap[v];
if (n.pendingVal != null) {
change(heap[2 * v], n.pendingVal);
change(heap[2 * v + 1], n.pendingVal);
n.pendingVal = null; //unset the pending propagation value
}
}
// Save the temporal values that will be propagated lazily
private void change(STNode n, int value) {
n.pendingVal = value;
n.sum = n.size() * value;
n.mul = n.size() * value;
n.min = value;
n.max = value;
array[n.from] = value;
}
// Test if the range1 contains range2
private boolean contains(int from1, int to1, int from2, int to2) {
return from2 >= from1 && to2 <= to1;
}
// check inclusive intersection, test if range1[from1, to1] intersects range2[from2, to2]
private boolean intersects(int from1, int to1, int from2, int to2) {
return from1 <= from2 && to1 >= from2 // (.[..)..] or (.[...]..)
|| from1 >= from2 && from1 <= to2; // [.(..]..) or [..(..)..
}
// The Node class represents a partition range of the array.
static class STNode {
int sum, mul;
int min, max;
// Here we store the value that will be propagated lazily
Integer pendingVal = null;
int from;
int to;
int size() {
return to - from + 1;
}
}
}