Added some documentation, fixed some bugs and partial negative polynomial support
This commit is contained in:
parent
5b4b38e0f9
commit
200eec49ef
177
polimani.pl
177
polimani.pl
@ -84,6 +84,8 @@ term(L * R) :-
|
||||
%@ false.
|
||||
%% ?- term(a).
|
||||
%@ false.
|
||||
%% ?- term(-1*x).
|
||||
%@ true .
|
||||
%% ?- term((-3)*x^2).
|
||||
%@ true .
|
||||
%% ?- term(3.2*x).
|
||||
@ -178,8 +180,17 @@ term_to_list(P, [P2]) :-
|
||||
%% Tests:
|
||||
%% ?- term_to_list(1, X).
|
||||
%@ X = [1] .
|
||||
%% ?- term_to_list(-1, X).
|
||||
%@ X = [-1] .
|
||||
%% ?- term_to_list(1*2*y*z*23*x*y*x^3*x, X).
|
||||
%@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2, 1] .
|
||||
%% ?- term_to_list(X, [-1]).
|
||||
%@ X = -1 .
|
||||
%% ?- term_to_list(X, [x^1, -1]).
|
||||
%@ X = -1*x .
|
||||
%% ?- term_to_list(X, [- 1, x^1]).
|
||||
%@ false.
|
||||
%@ X = x* -1 .
|
||||
%% ?- term_to_list(X, [y^1, x^1]).
|
||||
%@ X = x*y .
|
||||
%% ?- term_to_list(X, [x^4]).
|
||||
@ -268,13 +279,16 @@ simplify_polynomial(0, 0) :-
|
||||
simplify_polynomial(P, P2) :-
|
||||
polynomial_to_list(P, L),
|
||||
maplist(term_to_list, L, L2),
|
||||
maplist(join_similar_parts_of_term, L2, L3),
|
||||
maplist(sort(0, @=<), L3, L4),
|
||||
join_similar_terms(L4, L5),
|
||||
transform_list(sort(0, @>=), L5, L6),
|
||||
transform_list(term_to_list, L7, L6),
|
||||
delete(L7, 0, L8),
|
||||
polynomial_to_list(P2, L8),
|
||||
maplist(sort(0, @>=), L2, L3),
|
||||
sort(0, @>=, L3, L4),
|
||||
maplist(join_similar_parts_of_term, L4, L5),
|
||||
maplist(sort(0, @=<), L5, L6),
|
||||
join_similar_terms(L6, L7),
|
||||
maplist(reverse, L7, L8),
|
||||
maplist(term_to_list, L9, L8),
|
||||
delete(L9, 0, L10),
|
||||
sort(0, @=<, L10, L11),
|
||||
polynomial_to_list(P2, L11),
|
||||
!.
|
||||
%% Tests:
|
||||
%% ?- simplify_polynomial(1, X).
|
||||
@ -285,19 +299,43 @@ simplify_polynomial(P, P2) :-
|
||||
%@ X = x.
|
||||
%% ?- simplify_polynomial(x*x, X).
|
||||
%@ X = x^2.
|
||||
%% ?- simplify_polynomial(2 + 2, X).
|
||||
%@ X = 2*2.
|
||||
%% ?- simplify_polynomial(x + x, X).
|
||||
%@ X = 2*x.
|
||||
%% ?- simplify_polynomial(0 + x*x, X).
|
||||
%@ X = x^2.
|
||||
%% ?- simplify_polynomial(x^2*x + 3*x^3, X).
|
||||
%@ X = 4*x^3.
|
||||
%% ?- simplify_polynomial(x^2*x + 3*x^3 + x^3 + x*x*x, X).
|
||||
%@ X = 6*x^3.
|
||||
%% ?- simplify_polynomial(x^2*x + 3*x^3 + x^3 + x*x*4 + z, X).
|
||||
%@ X = 5*x^3+4*x^2+z.
|
||||
%% ?- simplify_polynomial(x + 1 + x, X).
|
||||
%@ X = 2*x+1.
|
||||
%% ?- simplify_polynomial(x + 1 + x + 1 + x + 1 + x, X).
|
||||
%@ X = 4*x+3*1.
|
||||
|
||||
%% join_similar_terms(+P:ListList, -P2:ListList) is det
|
||||
%
|
||||
% Joins similar sublists representing terms by using
|
||||
% `add_terms` to check if they can be merged and perform
|
||||
% the addition. Requires the list of list be sorted with
|
||||
% `maplist(sort(0, @>=), L, L2),
|
||||
% sort(0, @>=, L2, L3)`
|
||||
% and that the sublists to be sorted with
|
||||
% `sort(0, @=<)` since that is inherited from `add_terms`
|
||||
%
|
||||
join_similar_terms([TL, TR | L], L2) :-
|
||||
%% Check if terms can be added and add them
|
||||
add_terms(TL, TR, T2),
|
||||
%% Recurse, accumulation on the first element
|
||||
join_similar_terms([T2 | L], L2),
|
||||
%% Give only first result. Red cut
|
||||
!.
|
||||
join_similar_terms([X | L], [X | L2]) :-
|
||||
%% If a pair of elements can't be added, skip one
|
||||
%% and recurse
|
||||
join_similar_terms(L, L2),
|
||||
%% Give only first result. Red cut
|
||||
!.
|
||||
@ -306,107 +344,118 @@ join_similar_terms([], []).
|
||||
%% ?- join_similar_terms([[2, x^3], [3, x^3], [x^3]], L).
|
||||
%@ L = [[6, x^3]].
|
||||
|
||||
term_to_canon([T], [1, T]) :-
|
||||
%% term_to_canon(+T:List, -T2:List) is det
|
||||
%
|
||||
% Adds a 1 if there's no number in the list
|
||||
% Requires the list to be sorted such that the
|
||||
% numbers come first. For instance with
|
||||
% `sort(0, @=<)`
|
||||
%
|
||||
term_to_canon([T | TS], [1, T | TS]) :-
|
||||
%% Since the list is sorted, if the first element
|
||||
%% is not a number, then we need to add the 1
|
||||
not(number(T)),
|
||||
%% Give only first result. Red cut
|
||||
!.
|
||||
term_to_canon(L, L).
|
||||
%% Tests:
|
||||
%% ?- term_to_canon([2], T).
|
||||
%@ T = [2].
|
||||
%% ?- term_to_canon([x^3], T).
|
||||
%@ T = [1, x^3].
|
||||
%% ?- term_to_canon([x^3, z], T).
|
||||
%@ T = [1, x^3, z].
|
||||
%% ?- term_to_canon([2, x^3], T).
|
||||
%@ T = [2, x^3].
|
||||
|
||||
%% add_terms(+L:List, +R:List, -Result:List) is det
|
||||
%
|
||||
% Adds two terms represented as list by adding
|
||||
% the coeficients if the power is the same.
|
||||
% Requires the list of terms to be simplified.
|
||||
%
|
||||
add_terms([NL | TL], [NR | TR], [N2 | TL2]) :-
|
||||
term_to_canon([NL | TL], [NL2 | TL2]),
|
||||
term_to_canon([NR | TR], [NR2 | TR2]),
|
||||
TL2 == TR2,
|
||||
number(NL2),
|
||||
number(NR2),
|
||||
N2 is NL2 + NR2.
|
||||
%% Tests
|
||||
%% ?- add_terms([1], [1], R).
|
||||
%@ R = [2].
|
||||
%% ?- add_terms([x], [x], R).
|
||||
%@ R = [2, x].
|
||||
%% ?- add_terms([2, x^3], [x^3], R).
|
||||
%@ R = [3, x^3].
|
||||
%% ?- add_terms([2, x^3], [3, x^3], R).
|
||||
%@ R = [5, x^3].
|
||||
|
||||
%% transform_list(+Pred, +L, -R) is det
|
||||
%
|
||||
% Apply predicate to each of the elements of L, producing R
|
||||
%
|
||||
transform_list(_, [], []).
|
||||
transform_list(Pred, [L | LS], [R | RS]) :-
|
||||
call(Pred, L, R),
|
||||
transform_list(Pred, LS, RS),
|
||||
!.
|
||||
%% Tests:
|
||||
%% ?- transform_list(term_to_list, [x, 2], L).
|
||||
%@ L = [[x^1], [2]].
|
||||
%% ?- transform_list(term_to_list, [x, x, 2], L).
|
||||
%@ L = [[x^1], [x^1], [2]].
|
||||
%% ?- transform_list(term_to_list, L, [[x^1], [x^1], [2]]).
|
||||
%@ L = [x, x, 2].
|
||||
|
||||
%% simplify_polynomial_list(+L1,-L3) is det
|
||||
%
|
||||
% Simplifies a list of polynomials
|
||||
%
|
||||
simplify_polynomial_list([L1], L3) :-
|
||||
simplify_polynomial(L1, L2),
|
||||
L3 = [L2].
|
||||
simplify_polynomial_list([L1|L2],L3) :-
|
||||
simplify_polynomial(L1, P1),
|
||||
simplify_polynomial_list(L2, P2),
|
||||
L3 = [P1|P2],
|
||||
% There is nothing further to compute at this point
|
||||
!.
|
||||
simplify_polynomial_list(L, L2) :-
|
||||
maplist(simplify_polynomial, L, L2).
|
||||
|
||||
%% polynomial_to_list(+P:polynomial, -L:List)
|
||||
%
|
||||
% Converts a polynomial in a list.
|
||||
% TODO: not everything is a +, there are -
|
||||
%
|
||||
polynomial_to_list(L - T, [T2 | LS]) :-
|
||||
term(T),
|
||||
negate_term(T, T2),
|
||||
polynomial_to_list(L, LS).
|
||||
polynomial_to_list(L + T, [T | LS]) :-
|
||||
term(T),
|
||||
polynomial_to_list(L, LS).
|
||||
% The others computations are semantically meaningless
|
||||
%% !.
|
||||
polynomial_to_list(T, [T]) :-
|
||||
term(T).
|
||||
%% Tests:
|
||||
%%?- polynomial_to_list(2, S).
|
||||
%% ?- polynomial_to_list(2, S).
|
||||
%@ S = [2] .
|
||||
%%?- polynomial_to_list(x^2, S).
|
||||
%% ?- polynomial_to_list(x^2, S).
|
||||
%@ S = [x^2] .
|
||||
%%?- polynomial_to_list(x^2 + x^2, S).
|
||||
%% ?- polynomial_to_list(x^2 + x^2, S).
|
||||
%@ S = [x^2, x^2] .
|
||||
%%?- polynomial_to_list(2*x^2+5+y*2, S).
|
||||
%% ?- polynomial_to_list(2*x^2+5+y*2, S).
|
||||
%@ S = [y*2, 5, 2*x^2] .
|
||||
%%?- polynomial_to_list(P, [2]).
|
||||
%% ?- polynomial_to_list(2*x^2+5-y*2, S).
|
||||
%@ S = [-2*y, 5, 2*x^2] .
|
||||
%% ?- polynomial_to_list(2*x^2-5-y*2, S).
|
||||
%@ S = [-2*y, -5, 2*x^2] .
|
||||
%% ?- polynomial_to_list(P, [2]).
|
||||
%@ P = 2 .
|
||||
%%?- polynomial_to_list(P, [x]).
|
||||
%% ?- polynomial_to_list(P, [x]).
|
||||
%@ P = x .
|
||||
%%?- polynomial_to_list(P, [x^2, x, -2.3]).
|
||||
%% ?- polynomial_to_list(P, [x^2, x, 2.3]).
|
||||
%@ Action (h for help) ? abort
|
||||
%@ % Execution Aborted
|
||||
%@ P = -2.3+x+x^2 .
|
||||
|
||||
%% %% list_to_polynomial(+P:polynomial, -L:List)
|
||||
%% %
|
||||
%% % Converts a list in a polynomial.
|
||||
%% % TODO: not everything is a +, there are -
|
||||
%% %
|
||||
%% list_to_polynomial([T1|T2], P) :-
|
||||
%% list_to_polynomial(T2, L1),
|
||||
%% (
|
||||
%% not(L1 = []),
|
||||
%% P = L1+T1
|
||||
%% ;
|
||||
%% P = T1
|
||||
%% ),
|
||||
%% % The others computations are semantically meaningless
|
||||
%% !.
|
||||
%% list_to_polynomial(T, P) :-
|
||||
%% P = T.
|
||||
%% %% Tests:
|
||||
%% %% TODO
|
||||
%% negate_term(T, T2) is det
|
||||
%
|
||||
% Negate the coeficient of a term and return the negated term
|
||||
%
|
||||
negate_term(T, T2) :-
|
||||
term_to_list(T, L),
|
||||
sort(0, @=<, L, L2),
|
||||
term_to_canon(L2, L3),
|
||||
[N | R] = L3,
|
||||
%% (-)/1 is an operator, needs to be evaluated, otherwise
|
||||
%% it gives a symbolic result, which messes with further processing
|
||||
N2 is -N,
|
||||
reverse([N2 | R], L4),
|
||||
term_to_list(T2, L4),
|
||||
!.
|
||||
%% Tests:
|
||||
%% ?- negate_term(1, R).
|
||||
%@ R = -1.
|
||||
%% ?- negate_term(x, R).
|
||||
%@ R = -1*x.
|
||||
%% ?- negate_term(x^2, R).
|
||||
%@ R = -1*x^2.
|
||||
%% ?- negate_term(3*x*y^2, R).
|
||||
%@ R = -3*x*y^2.
|
||||
|
||||
%% append_two_atoms_with_star(+V1, +V2, -R) is det
|
||||
%
|
||||
|
Reference in New Issue
Block a user