Improved list_to_polynomial and finished documentation.

This commit is contained in:
Diogo Cordeiro 2018-11-24 16:10:44 +00:00
parent 3357cbaa7e
commit adf2dc7f32

View File

@ -289,7 +289,7 @@ power_to_canon(T, T^1) :-
%
% Converts a term to a list and vice versa.
% A term is multiplication of a number or a power
% and another term
% and another term.
% Can verify if term and list are compatible.
%
term_to_list(L * N, [N | TS]) :-
@ -330,7 +330,9 @@ term_to_list(P, [P2]) :-
%% simplify_term(+Term_In:term, ?Term_Out:term) is det
%
% Simplifies a term.
% Simplifies a given term.
% This function can also be be used to verify if
% a term is simplified.
%
simplify_term(Term_In, Term_Out) :-
term_to_list(Term_In, L),
@ -380,7 +382,7 @@ simplify_term(Term_In, Term_Out) :-
%% join_similar_parts_of_term(+List, -List) is det
%
% Combine powers of the same variable in the given list
% Combine powers of the same variable in the given list.
%
join_similar_parts_of_term([P1, P2 | L], L2) :-
%% If both symbols are powers
@ -464,7 +466,7 @@ simplify_polynomial(P, P2) :-
%% simplify_polynomial_as_list(+L1:List,-L3:List) is det
%
% Simplifies a polynomial represented as a list
% Simplifies a polynomial represented as a list.
%
simplify_polynomial_as_list(L, L11) :-
%% Convert each term to a list
@ -502,7 +504,7 @@ simplify_polynomial_as_list(L, L11) :-
% `maplist(sort(0, @>=), L, L2),
% sort(0, @>=, L2, L3)`
% and that the sublists to be sorted with
% `sort(0, @=<)` since that is inherited from `add_terms`
% `sort(0, @=<)` since that is inherited from `add_terms`.
%
join_similar_terms([TL, TR | L], L2) :-
%% Check if terms can be added and add them
@ -524,10 +526,10 @@ join_similar_terms([], []).
%% term_to_canon(+T:List, -T2:List) is det
%
% Adds a 1 if there's no number in the list
% Adds a 1 if there's no number in the list.
% Requires the list to be sorted such that the
% numbers come first. For instance with
% `sort(0, @=<)`
% numbers come first.
% For instance with `sort(0, @=<)`.
%
term_to_canon([T | TS], [1, T | TS]) :-
%% Since the list is sorted, if the first element
@ -610,38 +612,39 @@ polynomial_to_list(T, [T]) :-
%% ?- polynomial_to_list(2*x^2+3*x+5*x^17-7*x^21+3*x^3-23*x^4+25*x^5-4.3, S).
%@ S = [-4.3, 25*x^5, -23*x^4, 3*x^3, -7*x^21, 5*x^17, 3*x, 2* ... ^ ...].
%% list_to_polynomial(+P:polynomial, -L:List) is det
%% list_to_polynomial(+L:List, -P:Polynomial) is det
%
% Converts a list in a polynomial.
% An empty list will return false.
%
list_to_polynomial([T1|T2], P) :-
% Start recursive calls until we are in the
% end of the list. We know that the `-` will
% always be at the left of a term.
list_to_polynomial(T2, L1),
(
not(L1 = []),
(
term_string(T1, S1),
string_chars(S1, [First|_]),
First = -,
term_string(L1, S2),
string_concat(S2,S1,S3),
term_string(P, S3)
;
P = L1+T1
)
% If this is a negative term
term_string(T1, S1),
string_chars(S1, [First|_]),
First = -,
% Concat them
term_string(L1, S2),
string_concat(S2,S1,S3),
term_string(P, S3)
;
P = T1
% Otherwise sum them
P = L1+T1
),
% The others computations are semantically meaningless
!.
list_to_polynomial(T, P) :-
P = T.
list_to_polynomial([T], T).
%% Tests:
%% ?- list_to_polynomial([1, x, x^2], P).
%@ P = x^2+x+1.
%% negate_term(T, T2) is det
%
% Negate the coeficient of a term and return the negated term
% Negate the coeficient of a term and return the negated term.
%
negate_term(T, T2) :-
term_to_list(T, L),
@ -668,9 +671,9 @@ negate_term(T, T2) :-
%% ?- negate_term(3*x*y^2, R).
%@ R = -3*x*y^2.
%% scale_polynomial(+P:polynomial,+C:constant,-S:polynomial) is det
%% scale_polynomial(+P:Polynomial,+C:Constant,-S:Polynomial) is det
%
% Multiplies a polynomial by a scalar
% Multiplies a polynomial by a scalar.
%
scale_polynomial(P, C, S) :-
polynomial_to_list(P, L),
@ -690,13 +693,13 @@ scale_polynomial(P, C, S) :-
%% cons(+C:atom, +L:List, -L2:List) is det
%
% Add an atom C to the head of a list L
% Add an atom C to the head of a list L.
%
cons(C, L, [C | L]).
%% add_polynomial(+P1:polynomial,+P2:polynomial,-S:polynomial) is det
%
% S = P1 + P2
% S = P1 + P2.
%
add_polynomial(P1, P2, S) :-
%% Convert both polynomials to lists