Merge branch 'master' into negatives_in_polynomials
This commit is contained in:
commit
c05ba00425
163
polimani.pl
163
polimani.pl
@ -1,15 +1,81 @@
|
|||||||
%% -*- mode: prolog-*-
|
%% -*- mode: prolog-*-
|
||||||
%% vim: set softtabstop=4 shiftwidth=4 tabstop=4 expandtab:
|
%% vim: set softtabstop=4 shiftwidth=4 tabstop=4 expandtab:
|
||||||
%% Follows 'Coding guidelines for Prolog' - Theory and Practice of Logic Programming
|
|
||||||
%% https://doi.org/10.1017/S1471068411000391
|
|
||||||
|
|
||||||
%% Import the Constraint Logic Programming over Finite Domains lybrary
|
/**
|
||||||
%% Essentially, this library improves the way Prolog deals with integers,
|
*
|
||||||
%% allowing more predicates to be reversible.
|
* polimani.pl
|
||||||
%% For instance, number(N) is always false, which prevents the
|
*
|
||||||
%% reversing of a predicate.
|
* Assignment 1 - Polynomial Manipulator
|
||||||
|
* Programming in Logic - DCC-FCUP
|
||||||
|
*
|
||||||
|
* Diogo Peralta Cordeiro
|
||||||
|
* up201705417@fc.up.pt
|
||||||
|
*
|
||||||
|
* Hugo David Cordeiro Sales
|
||||||
|
* up201704178@fc.up.pt
|
||||||
|
*
|
||||||
|
|
||||||
|
*********************************************
|
||||||
|
* Follows 'Coding guidelines for Prolog' *
|
||||||
|
* https://doi.org/10.1017/S1471068411000391 *
|
||||||
|
*********************************************
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Import the Constraint Logic Programming over Finite Domains lybrary
|
||||||
|
* Essentially, this library improves the way Prolog deals with integers,
|
||||||
|
* allowing more predicates to be reversible.
|
||||||
|
* For instance, number(N) is always false, which prevents the
|
||||||
|
* reversing of a predicate.
|
||||||
|
*/
|
||||||
:- use_module(library(clpfd)).
|
:- use_module(library(clpfd)).
|
||||||
|
|
||||||
|
|
||||||
|
/*******************************
|
||||||
|
* USER INTERFACE *
|
||||||
|
*******************************/
|
||||||
|
/*
|
||||||
|
poly2list/2 transforms a list representing a polynomial (second
|
||||||
|
argument) into a polynomial represented as an expression (first argu-
|
||||||
|
ment) and vice-versa.
|
||||||
|
*/
|
||||||
|
poly2list(P, L) :-
|
||||||
|
polynomial_to_list(P, L).
|
||||||
|
|
||||||
|
/*
|
||||||
|
simpolylist/2 simplifies a polynomial represented as a list into
|
||||||
|
another polynomial as a list.
|
||||||
|
*/
|
||||||
|
simpoly_list(L, S) :-
|
||||||
|
simplify_polynomial_list(L, S).
|
||||||
|
|
||||||
|
/*
|
||||||
|
simpoly/2 simplifies a polynomial represented as an expression
|
||||||
|
as another polynomial as an expression.
|
||||||
|
*/
|
||||||
|
simpoly(P, S) :-
|
||||||
|
simplify_polynomial(P, S).
|
||||||
|
|
||||||
|
/*
|
||||||
|
scalepoly/3 multiplies a polynomial represented as an expression by a scalar
|
||||||
|
resulting in a second polynomial. The two first arguments are assumed to
|
||||||
|
be ground. The polynomial resulting from the sum is in simplified form.
|
||||||
|
*/
|
||||||
|
scalepoly(P1, P2, S) :-
|
||||||
|
scale_polynomial(P1, P2, S).
|
||||||
|
|
||||||
|
/*
|
||||||
|
addpoly/3 adds two polynomials as expressions resulting in a
|
||||||
|
third one. The two first arguments are assumed to be ground.
|
||||||
|
The polynomial resulting from the sum is in simplified form.
|
||||||
|
*/
|
||||||
|
addpoly(P1, P2, S) :-
|
||||||
|
add_polynomial(P1, P2, S).
|
||||||
|
|
||||||
|
|
||||||
|
/*******************************
|
||||||
|
* BACKEND *
|
||||||
|
*******************************/
|
||||||
|
|
||||||
%% polynomial_variable_list(-List) is det
|
%% polynomial_variable_list(-List) is det
|
||||||
%
|
%
|
||||||
% List of possible polynomial variables
|
% List of possible polynomial variables
|
||||||
@ -388,12 +454,14 @@ add_terms([NL | TL], [NR | TR], [N2 | TL2]) :-
|
|||||||
%% ?- add_terms([2, x^3], [3, x^3], R).
|
%% ?- add_terms([2, x^3], [3, x^3], R).
|
||||||
%@ R = [5, x^3].
|
%@ R = [5, x^3].
|
||||||
|
|
||||||
%% simplify_polynomial_list(+L1,-L3) is det
|
%% simplify_polynomial_list(+L:list, -S:list) is det
|
||||||
%
|
%
|
||||||
% Simplifies a list of polynomials
|
% Simplifies a polynomial represented as a list
|
||||||
%
|
%
|
||||||
simplify_polynomial_list(L, L2) :-
|
simplify_polynomial_list(L, S) :-
|
||||||
maplist(simplify_polynomial, L, L2).
|
polynomial_to_list(P1, L),
|
||||||
|
simplify_polynomial(P1, P2),
|
||||||
|
polynomial_to_list(P2, S).
|
||||||
|
|
||||||
%% polynomial_to_list(+P:polynomial, -L:List)
|
%% polynomial_to_list(+P:polynomial, -L:List)
|
||||||
%
|
%
|
||||||
@ -509,76 +577,9 @@ append_two_atoms_with_star(V1, V2, R) :-
|
|||||||
scale_polynomial(P, C, S) :-
|
scale_polynomial(P, C, S) :-
|
||||||
polynomial_to_list(P, L),
|
polynomial_to_list(P, L),
|
||||||
maplist(append_two_atoms_with_star(C), L, L2),
|
maplist(append_two_atoms_with_star(C), L, L2),
|
||||||
list_to_polynomial(L2, S).
|
polynomial_to_list(S, L2),
|
||||||
%simplify_polynomial(S1, S).
|
simplify_polynomial(S, S1),
|
||||||
|
!.
|
||||||
%% Tests:
|
%% Tests:
|
||||||
%% ?- scale_polynomial(3*x^2, 2, S).
|
%% ?- scale_polynomial(3*x^2, 2, S).
|
||||||
%@ S = 2*3*x^2.
|
%@ S = 2*3*x^2.
|
||||||
%@ S = 2*(3*x^2).
|
|
||||||
|
|
||||||
%% monomial_parts(X, Y, Z)
|
|
||||||
%
|
|
||||||
% TODO Maybe remove
|
|
||||||
% Separate monomial into it's parts. Given K*X^N, gives K and N
|
|
||||||
%
|
|
||||||
monomial_parts(X, 1, X) :-
|
|
||||||
power(X),
|
|
||||||
!.
|
|
||||||
monomial_parts(X^N, 1, X^N) :-
|
|
||||||
power(X^N),
|
|
||||||
!.
|
|
||||||
monomial_parts(K * M, K, M) :-
|
|
||||||
number(K),
|
|
||||||
!.
|
|
||||||
monomial_parts(K, K, indep) :-
|
|
||||||
number(K),
|
|
||||||
!.
|
|
||||||
|
|
||||||
|
|
||||||
delete_monomial(M, X, M, 0) :-
|
|
||||||
term(M),
|
|
||||||
monomial_parts(M, _, X),
|
|
||||||
!.
|
|
||||||
delete_monomial(M + M2, X, M, M2) :-
|
|
||||||
term(M2),
|
|
||||||
term(M),
|
|
||||||
monomial_parts(M, _, X),
|
|
||||||
!.
|
|
||||||
delete_monomial(P + M, X, M, P) :-
|
|
||||||
term(M),
|
|
||||||
monomial_parts(M, _, X),
|
|
||||||
!.
|
|
||||||
delete_monomial(P + M2, X, M, P2 + M2) :-
|
|
||||||
delete_monomial(P, X, M, P2).
|
|
||||||
|
|
||||||
add_monomial(K1, K2, K3) :-
|
|
||||||
number(K1),
|
|
||||||
number(K2), !,
|
|
||||||
K3 is K1 + K2.
|
|
||||||
add_monomial(M1, M2, M3) :-
|
|
||||||
monomial_parts(M1, K1, XExp),
|
|
||||||
monomial_parts(M2, K2, XExp),
|
|
||||||
K3 is K1 + K2,
|
|
||||||
p_aux_add_monomial(K3, XExp, M3).
|
|
||||||
|
|
||||||
p_aux_add_monomial(K, indep, K) :-
|
|
||||||
!.
|
|
||||||
p_aux_add_monomial(0, _, 0) :-
|
|
||||||
!.
|
|
||||||
p_aux_add_monomial(1, XExp, XExp) :-
|
|
||||||
!.
|
|
||||||
p_aux_add_monomial(K, XExp, K * XExp).
|
|
||||||
|
|
||||||
closure_simplify_polynomial(P, P) :-
|
|
||||||
simplify_polynomial(P, P2),
|
|
||||||
P==P2,
|
|
||||||
!.
|
|
||||||
closure_simplify_polynomial(P, P3) :-
|
|
||||||
simplify_polynomial(P, P2),
|
|
||||||
closure_simplify_polynomial(P2, P3),
|
|
||||||
!.
|
|
||||||
|
|
||||||
list_to_term([N | NS], N * L) :-
|
|
||||||
number(N),
|
|
||||||
term_to_list(L, NS).
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user