Merge branch 'master' into add_polynomial
This commit is contained in:
commit
de103aee27
421
polimani.pl
421
polimani.pl
@ -1,15 +1,81 @@
|
|||||||
%% -*- mode: prolog-*-
|
%% -*- mode: prolog-*-
|
||||||
%% vim: set softtabstop=4 shiftwidth=4 tabstop=4 expandtab:
|
%% vim: set softtabstop=4 shiftwidth=4 tabstop=4 expandtab:
|
||||||
%% Follows 'Coding guidelines for Prolog' - Theory and Practice of Logic Programming
|
|
||||||
%% https://doi.org/10.1017/S1471068411000391
|
|
||||||
|
|
||||||
%% Import the Constraint Logic Programming over Finite Domains lybrary
|
/**
|
||||||
%% Essentially, this library improves the way Prolog deals with integers,
|
*
|
||||||
%% allowing more predicates to be reversible.
|
* polimani.pl
|
||||||
%% For instance, number(N) is always false, which prevents the
|
*
|
||||||
%% reversing of a predicate.
|
* Assignment 1 - Polynomial Manipulator
|
||||||
|
* Programming in Logic - DCC-FCUP
|
||||||
|
*
|
||||||
|
* Diogo Peralta Cordeiro
|
||||||
|
* up201705417@fc.up.pt
|
||||||
|
*
|
||||||
|
* Hugo David Cordeiro Sales
|
||||||
|
* up201704178@fc.up.pt
|
||||||
|
*
|
||||||
|
|
||||||
|
*********************************************
|
||||||
|
* Follows 'Coding guidelines for Prolog' *
|
||||||
|
* https://doi.org/10.1017/S1471068411000391 *
|
||||||
|
*********************************************
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Import the Constraint Logic Programming over Finite Domains lybrary
|
||||||
|
* Essentially, this library improves the way Prolog deals with integers,
|
||||||
|
* allowing more predicates to be reversible.
|
||||||
|
* For instance, number(N) is always false, which prevents the
|
||||||
|
* reversing of a predicate.
|
||||||
|
*/
|
||||||
:- use_module(library(clpfd)).
|
:- use_module(library(clpfd)).
|
||||||
|
|
||||||
|
|
||||||
|
/*******************************
|
||||||
|
* USER INTERFACE *
|
||||||
|
*******************************/
|
||||||
|
/*
|
||||||
|
poly2list/2 transforms a list representing a polynomial (second
|
||||||
|
argument) into a polynomial represented as an expression (first argu-
|
||||||
|
ment) and vice-versa.
|
||||||
|
*/
|
||||||
|
poly2list(P, L) :-
|
||||||
|
polynomial_to_list(P, L).
|
||||||
|
|
||||||
|
/*
|
||||||
|
simpolylist/2 simplifies a polynomial represented as a list into
|
||||||
|
another polynomial as a list.
|
||||||
|
*/
|
||||||
|
simpoly_list(L, S) :-
|
||||||
|
simplify_polynomial_list(L, S).
|
||||||
|
|
||||||
|
/*
|
||||||
|
simpoly/2 simplifies a polynomial represented as an expression
|
||||||
|
as another polynomial as an expression.
|
||||||
|
*/
|
||||||
|
simpoly(P, S) :-
|
||||||
|
simplify_polynomial(P, S).
|
||||||
|
|
||||||
|
/*
|
||||||
|
scalepoly/3 multiplies a polynomial represented as an expression by a scalar
|
||||||
|
resulting in a second polynomial. The two first arguments are assumed to
|
||||||
|
be ground. The polynomial resulting from the sum is in simplified form.
|
||||||
|
*/
|
||||||
|
scalepoly(P1, P2, S) :-
|
||||||
|
scale_polynomial(P1, P2, S).
|
||||||
|
|
||||||
|
/*
|
||||||
|
addpoly/3 adds two polynomials as expressions resulting in a
|
||||||
|
third one. The two first arguments are assumed to be ground.
|
||||||
|
The polynomial resulting from the sum is in simplified form.
|
||||||
|
*/
|
||||||
|
addpoly(P1, P2, S) :-
|
||||||
|
add_polynomial(P1, P2, S).
|
||||||
|
|
||||||
|
|
||||||
|
/*******************************
|
||||||
|
* BACKEND *
|
||||||
|
*******************************/
|
||||||
|
|
||||||
%% polynomial_variable_list(-List) is det
|
%% polynomial_variable_list(-List) is det
|
||||||
%
|
%
|
||||||
% List of possible polynomial variables
|
% List of possible polynomial variables
|
||||||
@ -84,6 +150,8 @@ term(L * R) :-
|
|||||||
%@ false.
|
%@ false.
|
||||||
%% ?- term(a).
|
%% ?- term(a).
|
||||||
%@ false.
|
%@ false.
|
||||||
|
%% ?- term(-1*x).
|
||||||
|
%@ true .
|
||||||
%% ?- term((-3)*x^2).
|
%% ?- term((-3)*x^2).
|
||||||
%@ true .
|
%@ true .
|
||||||
%% ?- term(3.2*x).
|
%% ?- term(3.2*x).
|
||||||
@ -178,8 +246,17 @@ term_to_list(P, [P2]) :-
|
|||||||
%% Tests:
|
%% Tests:
|
||||||
%% ?- term_to_list(1, X).
|
%% ?- term_to_list(1, X).
|
||||||
%@ X = [1] .
|
%@ X = [1] .
|
||||||
|
%% ?- term_to_list(-1, X).
|
||||||
|
%@ X = [-1] .
|
||||||
%% ?- term_to_list(1*2*y*z*23*x*y*x^3*x, X).
|
%% ?- term_to_list(1*2*y*z*23*x*y*x^3*x, X).
|
||||||
%@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2, 1] .
|
%@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2, 1] .
|
||||||
|
%% ?- term_to_list(X, [-1]).
|
||||||
|
%@ X = -1 .
|
||||||
|
%% ?- term_to_list(X, [x^1, -1]).
|
||||||
|
%@ X = -1*x .
|
||||||
|
%% ?- term_to_list(X, [- 1, x^1]).
|
||||||
|
%@ false.
|
||||||
|
%@ X = x* -1 .
|
||||||
%% ?- term_to_list(X, [y^1, x^1]).
|
%% ?- term_to_list(X, [y^1, x^1]).
|
||||||
%@ X = x*y .
|
%@ X = x*y .
|
||||||
%% ?- term_to_list(X, [x^4]).
|
%% ?- term_to_list(X, [x^4]).
|
||||||
@ -203,7 +280,7 @@ simplify_term(Term_In, Term_Out) :-
|
|||||||
Term_Out = Term_In
|
Term_Out = Term_In
|
||||||
);
|
);
|
||||||
exclude(==(1), L2, L3),
|
exclude(==(1), L2, L3),
|
||||||
join_like_terms(L3, L4),
|
join_similar_parts_of_term(L3, L4),
|
||||||
sort(0, @>=, L4, L5),
|
sort(0, @>=, L4, L5),
|
||||||
term_to_list(Term_Out, L5)
|
term_to_list(Term_Out, L5)
|
||||||
),
|
),
|
||||||
@ -227,112 +304,218 @@ simplify_term(Term_In, Term_Out) :-
|
|||||||
%% ?- simplify_term(x^(-3), X).
|
%% ?- simplify_term(x^(-3), X).
|
||||||
%@ false.
|
%@ false.
|
||||||
|
|
||||||
%% join_like_terms(+List, -List)
|
%% join_similar_parts_of_term(+List, -List)
|
||||||
%
|
%
|
||||||
% Combine powers of the same variable in the given list
|
% Combine powers of the same variable in the given list
|
||||||
%
|
%
|
||||||
join_like_terms([P1, P2 | L], [B^N | L2]) :-
|
join_similar_parts_of_term([P1, P2 | L], L2) :-
|
||||||
power(P1),
|
power(P1),
|
||||||
power(P2),
|
power(P2),
|
||||||
B^N1 = P1,
|
B^N1 = P1,
|
||||||
B^N2 = P2,
|
B^N2 = P2,
|
||||||
N is N1 + N2,
|
N is N1 + N2,
|
||||||
join_like_terms(L, L2).
|
join_similar_parts_of_term([B^N | L], L2).
|
||||||
join_like_terms([N1, N2 | L], [N | L2]) :-
|
join_similar_parts_of_term([N1, N2 | L], L2) :-
|
||||||
number(N1),
|
number(N1),
|
||||||
number(N2),
|
number(N2),
|
||||||
N is N1 * N2,
|
N is N1 * N2,
|
||||||
join_like_terms(L, L2).
|
join_similar_parts_of_term([N | L], L2).
|
||||||
join_like_terms([X | L], [X | L2]) :-
|
join_similar_parts_of_term([X | L], [X | L2]) :-
|
||||||
join_like_terms(L, L2).
|
join_similar_parts_of_term(L, L2).
|
||||||
join_like_terms([], []).
|
join_similar_parts_of_term([], []).
|
||||||
%% Tests:
|
%% Tests:
|
||||||
%% ?- join_like_terms([2, 3, x^1, x^2], T).
|
%% ?- join_similar_parts_of_term([3], T).
|
||||||
|
%@ T = [3].
|
||||||
|
%% ?- join_similar_parts_of_term([x^2], T).
|
||||||
|
%@ T = [x^2].
|
||||||
|
%% ?- join_similar_parts_of_term([x^1, x^1, x^1, x^1], T).
|
||||||
|
%@ T = [x^4] .
|
||||||
|
%% ?- join_similar_parts_of_term([2, 3, x^1, x^2], T).
|
||||||
%@ T = [6, x^3] .
|
%@ T = [6, x^3] .
|
||||||
%% ?- join_like_terms([2, 3, x^1, x^2, y^1, y^6], T).
|
%% ?- join_similar_parts_of_term([2, 3, x^1, x^2, y^1, y^6], T).
|
||||||
%@ T = [6, x^3, y^7] .
|
%@ T = [6, x^3, y^7] .
|
||||||
|
|
||||||
%% simplify_polynomial(+P:atom, -P2:atom) is det
|
%% simplify_polynomial(+P:atom, -P2:atom) is det
|
||||||
%
|
%
|
||||||
% Simplifies a polynomial.
|
% Simplifies a polynomial.
|
||||||
% TODO: not everything is a +, there are -
|
|
||||||
%
|
%
|
||||||
simplify_polynomial(M, M2) :-
|
simplify_polynomial(0, 0) :-
|
||||||
%% Are we dealing with a valid term?
|
|
||||||
%is_term_valid_in_predicate(M, "simplify_polynomial(M, M2)"),
|
|
||||||
%% term(M),
|
|
||||||
%% If so, simplify it.
|
|
||||||
simplify_term(M, M2),
|
|
||||||
!.
|
!.
|
||||||
simplify_polynomial(P + 0, P) :-
|
simplify_polynomial(P, P2) :-
|
||||||
%% Ensure valid term
|
polynomial_to_list(P, L),
|
||||||
%is_term_valid_in_predicate(P, "simplify_polynomial(P + 0, P)"),
|
maplist(term_to_list, L, L2),
|
||||||
term(P),
|
maplist(sort(0, @>=), L2, L3),
|
||||||
|
sort(0, @>=, L3, L4),
|
||||||
|
maplist(join_similar_parts_of_term, L4, L5),
|
||||||
|
maplist(sort(0, @=<), L5, L6),
|
||||||
|
join_similar_terms(L6, L7),
|
||||||
|
maplist(reverse, L7, L8),
|
||||||
|
maplist(term_to_list, L9, L8),
|
||||||
|
delete(L9, 0, L10),
|
||||||
|
sort(0, @=<, L10, L11),
|
||||||
|
list_to_polynomial(L11, P2),
|
||||||
!.
|
!.
|
||||||
simplify_polynomial(0 + P, P) :-
|
|
||||||
%% Ensure valid term
|
|
||||||
%is_term_valid_in_predicate(P, "simplify_polynomial(0 + P, P)"),
|
|
||||||
term(P),
|
|
||||||
!.
|
|
||||||
simplify_polynomial(P + M, P2 + M2) :-
|
|
||||||
simplify_polynomial(P, P2),
|
|
||||||
simplify_term(M, M2).
|
|
||||||
simplify_polynomial(P + M, P2 + M3) :-
|
|
||||||
monomial_parts(M, _, XExp),
|
|
||||||
delete_monomial(P, XExp, M2, P2),
|
|
||||||
!,
|
|
||||||
add_monomial(M, M2, M3).
|
|
||||||
simplify_polynomial(P + M, P2 + M2) :-
|
|
||||||
simplify_polynomial(P, P2),
|
|
||||||
simplify_term(M, M2).
|
|
||||||
%% Tests:
|
%% Tests:
|
||||||
%% ?- simplify_polynomial(1, X).
|
%% ?- simplify_polynomial(1, X).
|
||||||
%@ false.
|
%@ X = 1.
|
||||||
%@ false.
|
%% ?- simplify_polynomial(0, X).
|
||||||
%@ Invalid term in simplify_polynomial(M, M2): 1
|
%@ X = 0.
|
||||||
%@ false.
|
%% ?- simplify_polynomial(x, X).
|
||||||
|
%@ X = x.
|
||||||
|
%% ?- simplify_polynomial(x*x, X).
|
||||||
|
%@ X = x^2.
|
||||||
|
%% ?- simplify_polynomial(2 + 2, X).
|
||||||
|
%@ X = 2*2.
|
||||||
|
%% ?- simplify_polynomial(x + x, X).
|
||||||
|
%@ X = 2*x.
|
||||||
|
%% ?- simplify_polynomial(0 + x*x, X).
|
||||||
|
%@ X = x^2.
|
||||||
|
%% ?- simplify_polynomial(x^2*x + 3*x^3, X).
|
||||||
|
%@ X = 4*x^3.
|
||||||
|
%% ?- simplify_polynomial(x^2*x + 3*x^3 + x^3 + x*x*x, X).
|
||||||
|
%@ X = 6*x^3.
|
||||||
|
%% ?- simplify_polynomial(x^2*x + 3*x^3 + x^3 + x*x*4 + z, X).
|
||||||
|
%@ X = 5*x^3+4*x^2+z.
|
||||||
|
%% ?- simplify_polynomial(x + 1 + x, X).
|
||||||
|
%@ X = 2*x+1.
|
||||||
|
%% ?- simplify_polynomial(x + 1 + x + 1 + x + 1 + x, X).
|
||||||
|
%@ X = 4*x+3*1.
|
||||||
|
|
||||||
|
%% join_similar_terms(+P:ListList, -P2:ListList) is det
|
||||||
%% simplify_polynomial_list(+L1,-L3) is det
|
|
||||||
%
|
%
|
||||||
% Simplifies a list of polynomials
|
% Joins similar sublists representing terms by using
|
||||||
|
% `add_terms` to check if they can be merged and perform
|
||||||
|
% the addition. Requires the list of list be sorted with
|
||||||
|
% `maplist(sort(0, @>=), L, L2),
|
||||||
|
% sort(0, @>=, L2, L3)`
|
||||||
|
% and that the sublists to be sorted with
|
||||||
|
% `sort(0, @=<)` since that is inherited from `add_terms`
|
||||||
%
|
%
|
||||||
simplify_polynomial_list([L1], L3) :-
|
join_similar_terms([TL, TR | L], L2) :-
|
||||||
simplify_polynomial(L1, L2),
|
%% Check if terms can be added and add them
|
||||||
L3 = [L2].
|
add_terms(TL, TR, T2),
|
||||||
simplify_polynomial_list([L1|L2],L3) :-
|
%% Recurse, accumulation on the first element
|
||||||
simplify_polynomial(L1, P1),
|
join_similar_terms([T2 | L], L2),
|
||||||
simplify_polynomial_list(L2, P2),
|
%% Give only first result. Red cut
|
||||||
L3 = [P1|P2],
|
|
||||||
% There is nothing further to compute at this point
|
|
||||||
!.
|
!.
|
||||||
|
join_similar_terms([X | L], [X | L2]) :-
|
||||||
|
%% If a pair of elements can't be added, skip one
|
||||||
|
%% and recurse
|
||||||
|
join_similar_terms(L, L2),
|
||||||
|
%% Give only first result. Red cut
|
||||||
|
!.
|
||||||
|
join_similar_terms([], []).
|
||||||
|
%% Tests:
|
||||||
|
%% ?- join_similar_terms([[2, x^3], [3, x^3], [x^3]], L).
|
||||||
|
%@ L = [[6, x^3]].
|
||||||
|
|
||||||
|
%% term_to_canon(+T:List, -T2:List) is det
|
||||||
|
%
|
||||||
|
% Adds a 1 if there's no number in the list
|
||||||
|
% Requires the list to be sorted such that the
|
||||||
|
% numbers come first. For instance with
|
||||||
|
% `sort(0, @=<)`
|
||||||
|
%
|
||||||
|
term_to_canon([T | TS], [1, T | TS]) :-
|
||||||
|
%% Since the list is sorted, if the first element
|
||||||
|
%% is not a number, then we need to add the 1
|
||||||
|
not(number(T)),
|
||||||
|
%% Give only first result. Red cut
|
||||||
|
!.
|
||||||
|
term_to_canon(L, L).
|
||||||
|
%% Tests:
|
||||||
|
%% ?- term_to_canon([2], T).
|
||||||
|
%@ T = [2].
|
||||||
|
%% ?- term_to_canon([x^3], T).
|
||||||
|
%@ T = [1, x^3].
|
||||||
|
%% ?- term_to_canon([x^3, z], T).
|
||||||
|
%@ T = [1, x^3, z].
|
||||||
|
%% ?- term_to_canon([2, x^3], T).
|
||||||
|
%@ T = [2, x^3].
|
||||||
|
|
||||||
|
%% add_terms(+L:List, +R:List, -Result:List) is det
|
||||||
|
%
|
||||||
|
% Adds two terms represented as list by adding
|
||||||
|
% the coeficients if the power is the same.
|
||||||
|
% Requires the list of terms to be simplified.
|
||||||
|
%
|
||||||
|
add_terms([NL | TL], [NR | TR], [N2 | TL2]) :-
|
||||||
|
term_to_canon([NL | TL], [NL2 | TL2]),
|
||||||
|
term_to_canon([NR | TR], [NR2 | TR2]),
|
||||||
|
TL2 == TR2,
|
||||||
|
N2 is NL2 + NR2.
|
||||||
|
%% Tests
|
||||||
|
%% ?- add_terms([1], [1], R).
|
||||||
|
%@ R = [2].
|
||||||
|
%% ?- add_terms([x], [x], R).
|
||||||
|
%@ R = [2, x].
|
||||||
|
%% ?- add_terms([2, x^3], [x^3], R).
|
||||||
|
%@ R = [3, x^3].
|
||||||
|
%% ?- add_terms([2, x^3], [3, x^3], R).
|
||||||
|
%@ R = [5, x^3].
|
||||||
|
|
||||||
|
%% simplify_polynomial_list(+L:list, -S:list) is det
|
||||||
|
%
|
||||||
|
% Simplifies a polynomial represented as a list
|
||||||
|
%
|
||||||
|
simplify_polynomial_list(L, S) :-
|
||||||
|
polynomial_to_list(P1, L),
|
||||||
|
simplify_polynomial(P1, P2),
|
||||||
|
polynomial_to_list(P2, S).
|
||||||
|
|
||||||
%% polynomial_to_list(+P:polynomial, -L:List)
|
%% polynomial_to_list(+P:polynomial, -L:List)
|
||||||
%
|
%
|
||||||
% Converts a polynomial in a list.
|
% Converts a polynomial in a list.
|
||||||
% TODO: not everything is a +, there are -
|
|
||||||
%
|
%
|
||||||
polynomial_to_list(T1 + T2, L) :-
|
polynomial_to_list(L - T, [T2 | LS]) :-
|
||||||
polynomial_to_list(T1, L1),
|
term(T),
|
||||||
L = [T2|L1],
|
negate_term(T, T2),
|
||||||
% The others computations are semantically meaningless
|
polynomial_to_list(L, LS).
|
||||||
!.
|
polynomial_to_list(L + T, [T | LS]) :-
|
||||||
polynomial_to_list(P, L) :-
|
term(T),
|
||||||
L = [P].
|
polynomial_to_list(L, LS).
|
||||||
|
polynomial_to_list(T, [T]) :-
|
||||||
|
term(T).
|
||||||
%% Tests:
|
%% Tests:
|
||||||
%%?- polynomial_to_list(2*x^2+5+y*2, S).
|
%% ?- polynomial_to_list(2, S).
|
||||||
%@S = [y*2, 5, 2*x^2].
|
%@ S = [2] .
|
||||||
|
%% ?- polynomial_to_list(x^2, S).
|
||||||
|
%@ S = [x^2] .
|
||||||
|
%% ?- polynomial_to_list(x^2 + x^2, S).
|
||||||
|
%@ S = [x^2, x^2] .
|
||||||
|
%% ?- polynomial_to_list(2*x^2+5+y*2, S).
|
||||||
|
%@ S = [y*2, 5, 2*x^2] .
|
||||||
|
%% ?- polynomial_to_list(2*x^2+5-y*2, S).
|
||||||
|
%@ S = [-2*y, 5, 2*x^2] .
|
||||||
|
%% ?- polynomial_to_list(2*x^2-5-y*2, S).
|
||||||
|
%@ S = [-2*y, -5, 2*x^2] .
|
||||||
|
%% ?- polynomial_to_list(P, [2]).
|
||||||
|
%@ P = 2 .
|
||||||
|
%% ?- polynomial_to_list(P, [x]).
|
||||||
|
%@ P = x .
|
||||||
|
%% ?- polynomial_to_list(P, [x^2, x, 2.3]).
|
||||||
|
%@ Action (h for help) ? abort
|
||||||
|
%@ % Execution Aborted
|
||||||
|
%@ P = -2.3+x+x^2 .
|
||||||
|
|
||||||
%% list_to_polynomial(+P:polynomial, -L:List)
|
%% list_to_polynomial(+P:polynomial, -L:List)
|
||||||
%
|
%
|
||||||
% Converts a list in a polynomial.
|
% Converts a list in a polynomial.
|
||||||
% TODO: not everything is a +, there are -
|
|
||||||
%
|
%
|
||||||
list_to_polynomial([T1|T2], P) :-
|
list_to_polynomial([T1|T2], P) :-
|
||||||
list_to_polynomial(T2, L1),
|
list_to_polynomial(T2, L1),
|
||||||
(
|
(
|
||||||
not(L1 = []),
|
not(L1 = []),
|
||||||
P = L1+T1
|
(
|
||||||
|
term_string(T1, S1),
|
||||||
|
string_chars(S1, [First|_]),
|
||||||
|
First = -,
|
||||||
|
term_string(L1, S2),
|
||||||
|
string_concat(S2,S1,S3),
|
||||||
|
term_string(P, S3)
|
||||||
|
;
|
||||||
|
P = L1+T1
|
||||||
|
)
|
||||||
;
|
;
|
||||||
P = T1
|
P = T1
|
||||||
),
|
),
|
||||||
@ -343,6 +526,31 @@ list_to_polynomial(T, P) :-
|
|||||||
%% Tests:
|
%% Tests:
|
||||||
%% TODO
|
%% TODO
|
||||||
|
|
||||||
|
%% negate_term(T, T2) is det
|
||||||
|
%
|
||||||
|
% Negate the coeficient of a term and return the negated term
|
||||||
|
%
|
||||||
|
negate_term(T, T2) :-
|
||||||
|
term_to_list(T, L),
|
||||||
|
sort(0, @=<, L, L2),
|
||||||
|
term_to_canon(L2, L3),
|
||||||
|
[N | R] = L3,
|
||||||
|
%% (-)/1 is an operator, needs to be evaluated, otherwise
|
||||||
|
%% it gives a symbolic result, which messes with further processing
|
||||||
|
N2 is -N,
|
||||||
|
reverse([N2 | R], L4),
|
||||||
|
term_to_list(T2, L4),
|
||||||
|
!.
|
||||||
|
%% Tests:
|
||||||
|
%% ?- negate_term(1, R).
|
||||||
|
%@ R = -1.
|
||||||
|
%% ?- negate_term(x, R).
|
||||||
|
%@ R = -1*x.
|
||||||
|
%% ?- negate_term(x^2, R).
|
||||||
|
%@ R = -1*x^2.
|
||||||
|
%% ?- negate_term(3*x*y^2, R).
|
||||||
|
%@ R = -3*x*y^2.
|
||||||
|
|
||||||
%% append_two_atoms_with_star(+V1, +V2, -R) is det
|
%% append_two_atoms_with_star(+V1, +V2, -R) is det
|
||||||
%
|
%
|
||||||
% Returns R = V1 * V2
|
% Returns R = V1 * V2
|
||||||
@ -370,11 +578,9 @@ scale_polynomial(P, C, S) :-
|
|||||||
polynomial_to_list(P, L),
|
polynomial_to_list(P, L),
|
||||||
maplist(append_two_atoms_with_star(C), L, L2),
|
maplist(append_two_atoms_with_star(C), L, L2),
|
||||||
list_to_polynomial(L2, S).
|
list_to_polynomial(L2, S).
|
||||||
%simplify_polynomial(S1, S).
|
|
||||||
%% Tests:
|
%% Tests:
|
||||||
%% ?- scale_polynomial(3*x^2, 2, S).
|
%% ?- scale_polynomial(3*x^2, 2, S).
|
||||||
%@ S = 2*3*x^2.
|
%@ S = 2*3*x^2.
|
||||||
%@ S = 2*(3*x^2).
|
|
||||||
|
|
||||||
%% add_polynomial(+P1:polynomial,+P2:polynomial,-S:polynomial) is det
|
%% add_polynomial(+P1:polynomial,+P2:polynomial,-S:polynomial) is det
|
||||||
%
|
%
|
||||||
@ -389,70 +595,3 @@ add_polynomial(P1, P2, S) :-
|
|||||||
simplify_polynomial(P, S).
|
simplify_polynomial(P, S).
|
||||||
%% Tests:
|
%% Tests:
|
||||||
%
|
%
|
||||||
|
|
||||||
%% monomial_parts(X, Y, Z)
|
|
||||||
%
|
|
||||||
% TODO Maybe remove
|
|
||||||
% Separate monomial into it's parts. Given K*X^N, gives K and N
|
|
||||||
%
|
|
||||||
monomial_parts(X, 1, X) :-
|
|
||||||
power(X),
|
|
||||||
!.
|
|
||||||
monomial_parts(X^N, 1, X^N) :-
|
|
||||||
power(X^N),
|
|
||||||
!.
|
|
||||||
monomial_parts(K * M, K, M) :-
|
|
||||||
number(K),
|
|
||||||
!.
|
|
||||||
monomial_parts(K, K, indep) :-
|
|
||||||
number(K),
|
|
||||||
!.
|
|
||||||
|
|
||||||
|
|
||||||
delete_monomial(M, X, M, 0) :-
|
|
||||||
term(M),
|
|
||||||
monomial_parts(M, _, X),
|
|
||||||
!.
|
|
||||||
delete_monomial(M + M2, X, M, M2) :-
|
|
||||||
term(M2),
|
|
||||||
term(M),
|
|
||||||
monomial_parts(M, _, X),
|
|
||||||
!.
|
|
||||||
delete_monomial(P + M, X, M, P) :-
|
|
||||||
term(M),
|
|
||||||
monomial_parts(M, _, X),
|
|
||||||
!.
|
|
||||||
delete_monomial(P + M2, X, M, P2 + M2) :-
|
|
||||||
delete_monomial(P, X, M, P2).
|
|
||||||
|
|
||||||
add_monomial(K1, K2, K3) :-
|
|
||||||
number(K1),
|
|
||||||
number(K2), !,
|
|
||||||
K3 is K1 + K2.
|
|
||||||
add_monomial(M1, M2, M3) :-
|
|
||||||
monomial_parts(M1, K1, XExp),
|
|
||||||
monomial_parts(M2, K2, XExp),
|
|
||||||
K3 is K1 + K2,
|
|
||||||
p_aux_add_monomial(K3, XExp, M3).
|
|
||||||
|
|
||||||
p_aux_add_monomial(K, indep, K) :-
|
|
||||||
!.
|
|
||||||
p_aux_add_monomial(0, _, 0) :-
|
|
||||||
!.
|
|
||||||
p_aux_add_monomial(1, XExp, XExp) :-
|
|
||||||
!.
|
|
||||||
p_aux_add_monomial(K, XExp, K * XExp).
|
|
||||||
|
|
||||||
closure_simplify_polynomial(P, P) :-
|
|
||||||
simplify_polynomial(P, P2),
|
|
||||||
P==P2,
|
|
||||||
!.
|
|
||||||
closure_simplify_polynomial(P, P3) :-
|
|
||||||
simplify_polynomial(P, P2),
|
|
||||||
closure_simplify_polynomial(P2, P3),
|
|
||||||
!.
|
|
||||||
|
|
||||||
list_to_term([N | NS], N * L) :-
|
|
||||||
number(N),
|
|
||||||
term_to_list(L, NS).
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user