Merge branch 'master' into scale_polynomial
This commit is contained in:
commit
fb49c34ae4
131
polimani.pl
131
polimani.pl
@ -3,11 +3,17 @@
|
||||
%% Follows 'Coding guidelines for Prolog' - Theory and Practice of Logic Programming
|
||||
%% https://doi.org/10.1017/S1471068411000391
|
||||
|
||||
%% polynomial_variable_list(-List:atom) is det
|
||||
%% Import the Constraint Logic Programming over Finite Domains lybrary
|
||||
%% Essentially, this library improves the way Prolog deals with integers,
|
||||
%% allowing more predicates to be reversible.
|
||||
%% For instance, number(N) is always false, which prevents the
|
||||
%% reversing of a predicate.
|
||||
:- use_module(library(clpfd)).
|
||||
|
||||
%% polynomial_variable_list(-List) is det
|
||||
%
|
||||
% List of possible polynomial variables
|
||||
%
|
||||
|
||||
polynomial_variable_list([x, y, z]).
|
||||
|
||||
%% polynomial_variable(?X:atom) is det
|
||||
@ -17,28 +23,38 @@ polynomial_variable_list([x, y, z]).
|
||||
polynomial_variable(X) :-
|
||||
polynomial_variable_list(V),
|
||||
member(X, V).
|
||||
polynomial_variable(P) :-
|
||||
polynomial_variable_list(V),
|
||||
member(X, V),
|
||||
P = X^_.
|
||||
%% Tests:
|
||||
%% ?- term_to_list(X, [x^4]).
|
||||
%@ X = x^4 .
|
||||
%% ?- polynomial_variable(x).
|
||||
%@ true .
|
||||
%% ?- polynomial_variable(a).
|
||||
%@ false.
|
||||
|
||||
%% power(+X:atom) is det
|
||||
%% power(+X:atom) is semidet
|
||||
%
|
||||
% Returns true if X is a power term, false otherwise.
|
||||
%
|
||||
power(P^N) :-
|
||||
(
|
||||
zcompare((<), 0, N),
|
||||
polynomial_variable(P)
|
||||
;
|
||||
fail
|
||||
).
|
||||
power(X) :-
|
||||
polynomial_variable(X).
|
||||
power(X^N) :-
|
||||
polynomial_variable(X),
|
||||
integer(N),
|
||||
N >= 1.
|
||||
%% Tests:
|
||||
%% ?- power(x).
|
||||
%@ true .
|
||||
%% ?- power(x^1).
|
||||
%@ true .
|
||||
|
||||
%% ?- power(x^3).
|
||||
%@ true .
|
||||
%% ?- power(x^(-3)).
|
||||
%@ error.
|
||||
%% ?- power(X).
|
||||
%@ X = x ;
|
||||
%@ X = y ;
|
||||
%@ X = z.
|
||||
|
||||
%% term(+N:atom) is det
|
||||
%
|
||||
@ -50,10 +66,14 @@ term(X) :-
|
||||
power(X).
|
||||
term(L * R) :-
|
||||
term(L),
|
||||
term(R),
|
||||
!.
|
||||
term(R).
|
||||
%% Tests:
|
||||
%% TODO
|
||||
%% ?- term(2*x^3).
|
||||
%@ true .
|
||||
%% ?- term(x^(-3)).
|
||||
%@ false.
|
||||
%% ?- term((-3)*x^2).
|
||||
%@ true .
|
||||
|
||||
%% is_term_valid_in_predicate(+T, +F) is det
|
||||
%
|
||||
@ -72,7 +92,8 @@ is_term_valid_in_predicate(T, F) :-
|
||||
fail
|
||||
).
|
||||
%% Tests:
|
||||
%% ?- is_term_valid_in_predicate().
|
||||
%% ?- is_term_valid_in_predicate(1, "Chuck Norris").
|
||||
%@ true .
|
||||
|
||||
%% polynomial(+M:atom) is det
|
||||
%
|
||||
@ -84,22 +105,37 @@ polynomial(L + R) :-
|
||||
polynomial(L),
|
||||
term(R).
|
||||
%% Tests:
|
||||
%% TODO
|
||||
%% ?- polynomial(x).
|
||||
%@ true .
|
||||
%% ?- polynomial(x^3).
|
||||
%@ true .
|
||||
%% ?- polynomial(3*x^7).
|
||||
%@ true .
|
||||
%% ?- polynomial(2 + 3*x + 4*x*y^3).
|
||||
%@ true .
|
||||
|
||||
%% power_to_canon(+T:atom, -T^N:atom) is det
|
||||
%
|
||||
% Returns a canon power term.
|
||||
%
|
||||
power_to_canon(T^N, T^N) :-
|
||||
polynomial_variable(T).
|
||||
polynomial_variable(T),
|
||||
%% N \= 1.
|
||||
(
|
||||
zcompare(=, 1, N)
|
||||
;
|
||||
true
|
||||
).
|
||||
power_to_canon(T, T^1) :-
|
||||
polynomial_variable(T).
|
||||
%% Tests:
|
||||
%% ?- power_to_canon(x, X).
|
||||
%@ X = x^1.
|
||||
%% ?- power_to_canon(X, X^1).
|
||||
%@ X = x^1 .
|
||||
%% ?- power_to_canon(X, x^1).
|
||||
%@ X = x .
|
||||
%@ X = x.
|
||||
%@ X = x .
|
||||
%% ?- power_to_canon(X, x^4).
|
||||
%@ X = x^4 .
|
||||
|
||||
%% term_to_list(?T, ?List) is det
|
||||
%
|
||||
@ -119,38 +155,44 @@ term_to_list(P, [P2]) :-
|
||||
power(P),
|
||||
power_to_canon(P, P2).
|
||||
%% Tests:
|
||||
%% ?- term_to_list(2*y*z*23*x*y*x^3*x, X).
|
||||
%@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2] .
|
||||
%% ?- term_to_list(1*2*y*z*23*x*y*x^3*x, X).
|
||||
%@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2, 1] .
|
||||
%% ?- term_to_list(X, [y^1, x^1]).
|
||||
%@ X = x*y .
|
||||
%% ?- term_to_list(X, [x^4]).
|
||||
%@ X = x^4 .
|
||||
%@ false.
|
||||
%@ false.
|
||||
%@ X = x^4 .
|
||||
%% ?- term_to_list(X, [y^6, z^2, x^4]).
|
||||
%@ X = x^4*z^2*y^6 .
|
||||
|
||||
%% simplify_term(+T:atom, -P) is det
|
||||
%% simplify_term(+Term_In:term, ?Term_Out:term) is det
|
||||
%
|
||||
% Simplifies a term.
|
||||
%
|
||||
simplify_term(1 * P, P).
|
||||
simplify_term(0 * _, 0).
|
||||
simplify_term(T, T2) :-
|
||||
term_to_list(T, L),
|
||||
simplify_term(Term_In, Term_Out) :-
|
||||
term_to_list(Term_In, L),
|
||||
sort(0, @=<, L, L2),
|
||||
join_like_terms(L2, L3),
|
||||
list_to_term(L3, T2). % Responsible for parenthesis
|
||||
%% sort(0, @>=, L3, L4),
|
||||
%% term_to_list(T2, L4).
|
||||
(
|
||||
member(0, L2),
|
||||
Term_Out = 0
|
||||
;
|
||||
exclude(==(1), L2, L3),
|
||||
join_like_terms(L3, L4),
|
||||
sort(0, @>=, L4, L5),
|
||||
term_to_list(Term_Out, L5)
|
||||
),
|
||||
% First result is always the most simplified form.
|
||||
!.
|
||||
%% Tests:
|
||||
%% ?- simplify_term(2*y*z*x^3*x, X).
|
||||
%@ X = 2*(x^4*(y*z)).
|
||||
%@ X = z*(y*(x^4*2)).
|
||||
%% ?- simplify_term(2*y*z*23*x*y*x^3*x, X).
|
||||
%@ X = 46*(x^2*(x^3*(y^2*z))).
|
||||
%@ X = z*(y^2*(x^3*(x^2*46))).
|
||||
%@ X = [2, 23, x^1, x^3, y^1, z^1].
|
||||
%@ X = [46, x^4, y^1, z^1].
|
||||
%@ X = 2*x^4*y*z.
|
||||
%% ?- simplify_term(1*y*z*x^3*x, X).
|
||||
%@ X = x^4*y*z.
|
||||
%% ?- simplify_term(0*y*z*x^3*x, X).
|
||||
%@ X = 0.
|
||||
%% ?- simplify_term(6*y*z*7*x*y*x^3*x, X).
|
||||
%@ X = 42*x^2*x^3*y^2*z.
|
||||
|
||||
%% join_like_terms(+List, -List)
|
||||
%
|
||||
@ -214,7 +256,10 @@ simplify_polynomial(P + M, P2 + M2) :-
|
||||
simplify_polynomial(P, P2),
|
||||
simplify_term(M, M2).
|
||||
%% Tests:
|
||||
%% TODO
|
||||
%% ?- simplify_polynomial(1, 1).
|
||||
%@ Invalid term in simplify_polynomial(M, M2): 1
|
||||
%@ false.
|
||||
|
||||
|
||||
%% simplify_polynomial_list(+L1,-L3) is det
|
||||
%
|
||||
|
Reference in New Issue
Block a user