%% -*- mode: prolog-*- %% vim: set softtabstop=4 shiftwidth=4 tabstop=4 expandtab: /** * * polimani.pl * * Assignment 1 - Polynomial Manipulator * Programming in Logic - DCC-FCUP * * Diogo Peralta Cordeiro * up201705417@fc.up.pt * * Hugo David Cordeiro Sales * up201704178@fc.up.pt * ********************************************* * Follows 'Coding guidelines for Prolog' * * https://doi.org/10.1017/S1471068411000391 * *********************************************/ /* * Import the Constraint Logic Programming over Finite Domains library * Essentially, this library improves the way Prolog deals with integers, * allowing more predicates to be reversible. * For instance, number(N) is always false, which prevents the * reversing of a predicate. */ :- use_module(library(clpfd)). /* * Import Constraint Logic Programming for Reals library, which is somewhat * similar to clpfd, but for real numbers */ :- use_module(library(clpr)). /******************************* * USER INTERFACE * *******************************/ /* poly2list/2 transforms a list representing a polynomial (second argument) into a polynomial represented as an expression (first argument) and vice-versa. */ poly2list(P, L) :- is_polynomial_valid_in_predicate(P, "poly2list"), polynomial_to_list(P, L), !. /* simpolylist/2 simplifies a polynomial represented as a list into another polynomial as a list. */ simpoly_list(L, S) :- is_polynomial_as_list_valid_in_predicate(L, "simpoly_list"), simplify_polynomial_as_list(L, S), !. /* simpoly/2 simplifies a polynomial represented as an expression as another polynomial as an expression. */ simpoly(P, S) :- is_polynomial_valid_in_predicate(P, "simpoly"), simplify_polynomial(P, S), !. /* scalepoly/3 multiplies a polynomial represented as an expression by a scalar resulting in a second polynomial. The two first arguments are assumed to be ground. The polynomial resulting from the sum is in simplified form. */ scalepoly(P1, C, S) :- is_polynomial_valid_in_predicate(P1, "scalepoly"), is_number_in_predicate(C, "scalepoly"), scale_polynomial(P1, C, S), !. %% Tests: %% ?- scalepoly(3*x*z+2*z, 4, S). %@ S = 12*x*z+8*z. %% ?- scalepoly(3*x*z+2*z, 2, S). %@ S = 6*x*z+4*z. /* addpoly/3 adds two polynomials as expressions resulting in a third one. The two first arguments are assumed to be ground. The polynomial resulting from the sum is in simplified form. */ addpoly(P1, P2, S) :- is_polynomial_valid_in_predicate(P1, "addpoly"), is_polynomial_valid_in_predicate(P2, "addpoly"), add_polynomial(P1, P2, S), !. %% Tests: %% ?- addpoly(3 + x, 3 - x, S). %@ S = 6. %% is_polynomial_valid_in_predicate(+T, +F) is det % % Returns true if valid polynomial, fails with UI message otherwise. % The failure message reports which polynomial is invalid and in which % predicate the problem ocurred. % is_polynomial_valid_in_predicate(P, _) :- %% If P is a valid polynomial, return true polynomial(P), !. is_polynomial_valid_in_predicate(P, F) :- %% Otherwise, write the polynomial and fails write("Invalid polynomial in "), write(F), write(": "), write(P), fail. %% Tests: %% ?- is_polynomial_valid_in_predicate(1-x, "Test"). %@ true. %% ?- is_polynomial_valid_in_predicate(a*4-0*x, "Test"). %@ Invalid polynomial in Test: a*4-0*x %@ false. %% is_polynomial_as_list_valid_in_predicate(+L, +F) is det % % Returns true if the polynomial represented as list is valid, % fails with UI message otherwise. % The failure message reports which polynomial is invalid and % in which predicate the problem ocurred. % is_polynomial_as_list_valid_in_predicate(L, F) :- %% If L is a valid polynomial, return true list_to_polynomial(L, P), is_polynomial_valid_in_predicate(P, F). %% Tests: %% ?- is_polynomial_as_list_valid_in_predicate([1], "Test"). %@ true. %% ?- is_polynomial_as_list_valid_in_predicate([0*x, a*4], "Test"). %@ Invalid polynomial in Test: a*4+0*x %@ false. %% is_number_in_predicate(+C:number, +F:string) is det % % Validates that C is a number or prints F and it then it % is_number_in_predicate(C, _) :- number(C), !. is_number_in_predicate(C, F) :- %% Writes the argument and fails write("Invalid number in "), write(F), write(": "), write(C), fail. /******************************* * BACKEND * *******************************/ %% polynomial_variable_list(-List) is det % % List of possible polynomial variables % polynomial_variable_list([x, y, z]). %% polynomial_variable(?X:atom) is semidet % % Returns true if X is a polynomial variable, false otherwise. % polynomial_variable(X) :- polynomial_variable_list(V), member(X, V). %% Tests: %% ?- polynomial_variable(x). %@ true . %% ?- polynomial_variable(a). %@ false. %% power(+X:atom) is semidet % % Returns true if X is a power term, false otherwise. % power(P^N) :- %% CLPFD comparison. Reversible N #>= 1, polynomial_variable(P). power(X) :- polynomial_variable(X). %% Tests: %% ?- power(x). %@ true . %% ?- power(a). %@ false. %% ?- power(x^1). %@ true . %% ?- power(x^3). %@ true . %% ?- power(x^(-3)). %@ false. %% ?- power(-x). %@ false. %% ?- power(X). %@ X = x^_462546, %@ _462546 in 1..sup ; %@ X = y^_462546, %@ _462546 in 1..sup ; %@ X = z^_462546, %@ _462546 in 1..sup ; %@ X = x ; %@ X = y ; %@ X = z. %% term(+N:atom) is semidet % % Returns true if N is a term, false otherwise. % term(N) :- % If N is not a free variable nonvar(N), % Assert it as a number number(N). term(N) :- % If N is a free variable and not compound not(compound(N)), var(N), % Assert it must be between negative and positive infinity % This uses the CLPR library, which makes this reversible, % whereas `number(N)` is always false, since it only succeeds % if the argument is bound (to a integer or float) {N >= 0; N < 0}. term(X) :- power(X). term(-X) :- power(X). term(L * R) :- term(L), term(R). %% Tests: %% ?- term(2*x^3). %@ true . %% ?- term(x^(-3)). %@ false. %% ?- term(a). %@ false. %% ?- term(-1*x). %@ true . %% ?- term(-x). %@ true . %% ?- term((-3)*x^2). %@ true . %% ?- term(3.2*x). %@ true . %% ?- term(-x*(-z)). %@ true . %% ?- term(X). %@ {X>=0.0} ; %@ {X<0.0} ; %@ X = x^_111514, %@ _111514 in 1..sup ; %@ X = y^_111514, %@ _111514 in 1..sup ; %@ X = z^_111514, %@ _111514 in 1..sup ; %@ X = x ; %@ X = y ; %@ X = z ; %@ X = -x^_111522, %@ _111522 in 1..sup ; %@ X = -y^_111522, %@ _111522 in 1..sup ; %@ X = -z^_111522, %@ _111522 in 1..sup ; %@ X = -x ; %@ X = -y ; %@ X = -z ; %% polynomial(+M:atom) is semidet % % Returns true if polynomial, false otherwise. % polynomial(M) :- %% A polynomial is either a term term(M). polynomial(L + R) :- %% Or a sum of terms polynomial(L), term(R). polynomial(L - R) :- %% Or a subtraction of terms polynomial(L), term(R). %% Tests: %% ?- polynomial(x). %@ true . %% ?- polynomial(x^3). %@ true . %% ?- polynomial(3*x^7). %@ true . %% ?- polynomial(2 + 3*x + 4*x*y^3). %@ true . %% ?- polynomial(2 - 3*x + 4*x*y^3). %@ true . %% ?- polynomial(a). %@ false. %% ?- polynomial(x^(-3)). %@ false. %% ?- polynomial(-x + 3). %@ true . %% ?- polynomial(-x - -z). %@ true . %% power_to_canon(+T:atom, -T^N:atom) is semidet % % Returns a canon power term. % power_to_canon(T^N, T^N) :- polynomial_variable(T), % CLP(FD) operator to ensure N is different from 1, % in a reversible way N #\= 1. power_to_canon(T, T^1) :- polynomial_variable(T). %% Tests: %% ?- power_to_canon(x, X). %@ X = x^1 . %% ?- power_to_canon(-x, X). %@ false. %@ X = -1*x^1 . %% ?- power_to_canon(X, x^1). %@ X = x . %% ?- power_to_canon(X, x^4). %@ X = x^4 . %% ?- power_to_canon(X, a^1). %@ false. %% ?- power_to_canon(X, x^(-3)). %@ X = x^ -3 . %% ?- power_to_canon(X, -1*x^1). %@ X = -x . %% term_to_list(?T, ?List) is semidet % % Converts a term to a list of its monomials and vice versa. % Can verify if term and monomials list are compatible. % term_to_list(L * N, [N | TS]) :- number(N), term_to_list(L, TS). term_to_list(L * P, [P2 | TS]) :- power(P), power_to_canon(P, P2), term_to_list(L, TS). term_to_list(L * -P, [-P2 | TS]) :- power(P), power_to_canon(P, P2), term_to_list(L, TS). term_to_list(N, [N]) :- number(N). term_to_list(P, [P2]) :- power(P), power_to_canon(P, P2). term_to_list(-P, [-P2]) :- power(P), power_to_canon(P, P2). %% Tests: %% ?- term_to_list(1, X). %@ X = [1] . %% ?- term_to_list(-1, X). %@ X = [-1] . %% ?- term_to_list(x, X). %@ X = [x^1] . %% ?- term_to_list(-x, X). %@ X = [-x^1] . %% ?- term_to_list(2 * 3, X). %@ X = [3, 2] . %% ?- term_to_list(1*2*y*z*23*x*y*x^3*x, X). %@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2, 1] . %% ?- term_to_list(1*2*y*z*23*x*y*(-1), X). %@ X = [-1, y^1, x^1, 23, z^1, y^1, 2, 1] . %% ?- term_to_list(X, [-1]). %@ X = -1 . %% ?- term_to_list(X, [x^1, -1]). %@ X = -1*x . %% ?- term_to_list(X, [-x^1]). %@ X = -x . %% ?- term_to_list(X, [y^1, x^1]). %@ X = x*y . %% ?- term_to_list(X, [x^4]). %@ X = x^4 . %% ?- term_to_list(X, [y^6, z^2, x^4]). %@ X = x^4*z^2*y^6 . %% ?- term_to_list(X, [y^6, z^2, x^4, -2]). %@ X = -2*x^4*z^2*y^6 . %% ?- term_to_list(X, [x^1, 0]). %@ X = 0*x . %% ?- term_to_list(X, [y^1, -2]). %@ X = -2*y . %% simplify_term(+Term_In:term, ?Term_Out:term) is det % % Simplifies a given term. % This function can also be be used to verify if % a term is simplified. % simplify_term(Term_In, Term_Out) :- term_to_list(Term_In, L), %% Sort the list of numbers and power to group them, %% simplifying the job of `join_similar_parts_of_term` sort(0, @=<, L, L2), ( %% If there's a 0 in the list, then the whole term is 0 member(0, L2), Term_Out = 0 ; %% Otherwise ( %% If there's only one element, then the term was already simplified %% This is done so that the `exclude` following doesn't remove all ones length(L2, 1), Term_Out = Term_In ; %% Remove all remaining ones exclude(==(1), L2, L3), join_similar_parts_of_term(L3, L4), %% Reverse the list, since the following call gives the result in the %% reverse order otherwise reverse(L4, L5), term_to_list(Term_Out, L5) ) ), % First result is always the most simplified form. !. %% Tests: %% ?- simplify_term(1, X). %@ X = 1. %% ?- simplify_term(x, X). %@ X = x. %% ?- simplify_term(2*y*z*x^3*x, X). %@ X = 2*x^4*y*z. %% ?- simplify_term(1*y*z*x^3*x, X). %@ X = x^4*y*z. %% ?- simplify_term(0*y*z*x^3*x, X). %@ X = 0. %% ?- simplify_term(6*y*z*7*x*y*x^3*x, X). %@ X = 42*x^5*y^2*z. %% ?- simplify_term(-x, X). %@ X = -x. %% ?- simplify_term(-x*y*(-z)*3, X). %@ X = 3* -x* -z*y. %% ?- simplify_term(a, X). %@ false. %% ?- simplify_term(x^(-3), X). %@ false. %% join_similar_parts_of_term(+List, -List) is det % % Combine powers of the same variable in the given list. % Requires that the list be sorted. % join_similar_parts_of_term([P1, P2 | L], L2) :- %% If both symbols are powers power(P1), power(P2), %% Decompose them into their parts B^N1 = P1, B^N2 = P2, %% Sum the exponent N is N1 + N2, join_similar_parts_of_term([B^N | L], L2), % First result is always the most simplified form. !. join_similar_parts_of_term([N1, N2 | L], L2) :- %% If they are both numbers number(N1), number(N2), %% Multiply them N is N1 * N2, join_similar_parts_of_term([N | L], L2), % First result is always the most simplified form. !. join_similar_parts_of_term([X | L], [X | L2]) :- %% Otherwise consume one element and recurse join_similar_parts_of_term(L, L2), % First result is always the most simplified form. !. join_similar_parts_of_term([], []). %% Tests: %% ?- join_similar_parts_of_term([3], T). %@ T = [3]. %% ?- join_similar_parts_of_term([x^2], T). %@ T = [x^2]. %% ?- join_similar_parts_of_term([x^1, x^1, x^1, x^1], T). %@ T = [x^4]. %% ?- join_similar_parts_of_term([2, 3, x^1, x^2], T). %@ T = [6, x^3]. %% ?- join_similar_parts_of_term([2, 3, x^1, x^2, y^1, y^6], T). %@ T = [6, x^3, y^7]. %% ?- join_similar_parts_of_term([2, 3, -x^1, -x^2], T). %@ T = [6, -x^1, -x^2]. %% simplify_polynomial(+P:atom, -P2:atom) is det % % Simplifies a polynomial. % simplify_polynomial(0, 0) :- % 0 is already fully simplified. This is an % exception to the following algorithm !. simplify_polynomial(P, P2) :- polynomial_to_list(P, L), simplify_polynomial_as_list(L, L2), list_to_polynomial(L2, P2), %% The first result is the most simplified one !. %% Tests: %% ?- simplify_polynomial(1, X). %@ X = 1. %% ?- simplify_polynomial(0, X). %@ X = 0. %% ?- simplify_polynomial(x, X). %@ X = x. %% ?- simplify_polynomial(x*x, X). %@ X = x^2. %% ?- simplify_polynomial(2 + 2, X). %@ X = 2*2. %% ?- simplify_polynomial(x + x, X). %@ X = 2*x. %% ?- simplify_polynomial(0 + x*x, X). %@ X = x^2. %% ?- simplify_polynomial(x^2*x + 3*x^3, X). %@ X = 4*x^3. %% ?- simplify_polynomial(x^2*x + 3*x^3 + x^3 + x*x*x, X). %@ X = 6*x^3. %% ?- simplify_polynomial(x^2*x + 3*x^3 + x^3 + x*x*4 + z, X). %@ X = 5*x^3+4*x^2+z. %% ?- simplify_polynomial(x^2*x + 3*x^3 - x^3 - x*x*4 + z, X). %@ X = 3*x^3-4*x^2+z. %% ?- simplify_polynomial(x + 1 + x, X). %@ X = 2*x+1. %% ?- simplify_polynomial(x + 1 + x + 1 + x + 1 + x, X). %@ X = 4*x+3. %% simplify_polynomial_as_list(+L1:List,-L3:List) is det % % Simplifies a polynomial represented as a list. % simplify_polynomial_as_list(L, L13) :- %% Convert each term to a list maplist(term_to_list, L, L2), %% Sort each sublist; done so the next %% sort gives the correct results maplist(sort(0, @>=), L2, L3), %% Sort the outer list sort(0, @>=, L3, L4), %% For each of the parts of the terms, join them maplist(join_similar_parts_of_term, L4, L5), %% Sort each of the sublists %% Done so the next call simplifies has less work maplist(sort(0, @=<), L5, L6), join_similar_terms(L6, L7), %% Exclude any sublist that includes a 0 (such as the %% equivalent to the term 0*x) exclude(member(0), L7, L8), %% Reverse each sublist, because the next call %% reverses the result maplist(reverse, L8, L9), maplist(term_to_list, L10, L9), %% Delete any 0 from the list delete(L10, 0, L11), %% Sort list converting back gives the result in the correct order sort(0, @=<, L11, L12), ( %% If the list is empty, the result is a list with 0 L12 = [], L13 = [0] ; %% Otherwise, this is the result L13 = L12 ). %% Tests: %% ?- simplify_polynomial_as_list([x, 1, x^2, x*y, 3*x^2, 4*x], L). %@ L = [1, 4*x^2, 5*x, x*y] . %% ?- simplify_polynomial_as_list([1, x^2, x*y, 3*x^2, -4, -1*x], L). %@ L = [-3, -1*x, 4*x^2, x*y] . %% ?- simplify_polynomial_as_list([0*x, 0], L). %@ L = [0] . %% join_similar_terms(+P:ListList, -P2:ListList) is det % % Joins similar sublists representing terms by using % `add_terms` to check if they can be merged and perform % the addition. Requires the list of list be sorted with % `maplist(sort(0, @>=), L, L2), % sort(0, @>=, L2, L3)` % and that the sublists to be sorted with % `sort(0, @=<)` since that is inherited from `add_terms`. % join_similar_terms([TL, TR | L], L2) :- %% Check if terms can be added and add them add_terms(TL, TR, T2), %% Recurse, accumulation on the first element join_similar_terms([T2 | L], L2), %% Give only first result. Red cut !. join_similar_terms([X | L], [X | L2]) :- %% If a pair of elements can't be added, skip one %% and recurse join_similar_terms(L, L2), %% Give only first result. Red cut !. join_similar_terms([], []). %% Tests: %% ?- join_similar_terms([[2, x^3], [3, x^3], [x^3]], L). %@ L = [[6, x^3]]. %% term_to_canon(+T:List, -T2:List) is det % % Adds the coefficient of the term as the first element of the list % %% Special cases to make this predicate reversible term_to_canon([1], [1]) :- !. term_to_canon(L2, [1 | L]) :- nonvar(L), L2 = L, !. term_to_canon([-1], [-1]) :- !. term_to_canon([-P | L2], [-1, P | L]) :- nonvar(L), L2 = L, !. term_to_canon([N2 | L], [N | L]) :- number(N), N2 = N, !. %% Normal case term_to_canon(L, [N | L2]) :- term_to_canon_with_coefficient(N, L, L2), !. %% Tests: %% ?- term_to_canon([2], T). %@ T = [2]. %% ?- term_to_canon([-x], T). %@ T = [-1, x]. %% ?- term_to_canon([-x^3], T). %@ T = [-1, x^3]. %% ?- term_to_canon([x^1], T). %@ T = [1, x^1]. %% ?- term_to_canon([x^3], T). %@ T = [1, x^3]. %% ?- term_to_canon([x^3, z], T). %@ T = [1, x^3, z]. %% ?- term_to_canon([2, x^3], T). %@ T = [2, x^3]. %% ?- term_to_canon([2, -x^3], T). %@ T = [-2, x^3]. %% ?- term_to_canon([2, -x^3, -z], T). %@ T = [2, x^3, z]. %% ?- term_to_canon(L, [-1]). %@ L = [-1]. %% ?- term_to_canon(L, [1]). %@ L = [1]. %% ?- term_to_canon(L, [-2]). %@ L = [-2]. %% ?- term_to_canon(L, [-2, x]). %@ L = [-2, x]. %% ?- term_to_canon(L, [1, x]). %@ L = [x]. %% ?- term_to_canon(L, [-1, x]). %@ L = [-x]. %% ?- term_to_canon(L, [1, x, z, y]). %@ L = [x, z, y]. %% ?- term_to_canon(L, [-1, x, z, y]). %@ L = [-x, z, y]. %% term_to_canon_with_coefficient(-N:number, +L:List, -L2:List) is semidet % % Calculates the coefficient of the term and removes negations of powers, % accumulating the results in N % term_to_canon_with_coefficient(N, [N2 | TS], TS2) :- number(N2), term_to_canon_with_coefficient(N3, TS, TS2), N is N2 * N3, !. term_to_canon_with_coefficient(N, [P | TS], [P2 | TS2]) :- sign_of_power(P, N2 * P2), term_to_canon_with_coefficient(N3, TS, TS2), N is N2 * N3, !. term_to_canon_with_coefficient(N, [], []) :- nonvar(N); N = 1. %% Tests: %% ?- term_to_canon_with_coefficient(N, [x], L). %@ N = 1, %@ L = [x]. %% ?- term_to_canon_with_coefficient(N, [x, x^2, 2], L). %@ N = 2, %@ L = [x^1, x^2]. %% ?- term_to_canon_with_coefficient(N, [x, x^2, 2, 4, z], L). %@ N = 8, %@ L = [x, x^2, z]. %% ?- term_to_canon_with_coefficient(N, [x, x^2, 2, 4, -z], L). %@ N = -8, %@ L = [x, x^2, z]. %% ?- term_to_canon_with_coefficient(N, [x, -x^2, 2, 4, -z], L). %@ N = 8, %@ L = [x, x^2, z]. %% ?- term_to_canon_with_coefficient(N, L, [x]). %@ N = 1, %@ L = [x]. %% ?- term_to_canon_with_coefficient(N, L, [1]). %@ N = 1, %@ L = [1]. %% ?- term_to_canon_with_coefficient(N, L, [2]). %@ N = 1, %@ L = [2]. %% sign_of_power(P:power, P:term) is det % % If there isn't a leading minus, multiplies the power by 1, % otherwise by a -1. This way it prefers the positive version. % Not idempotent % sign_of_power(P, 1*P) :- %% If P can't unify with a minus followed by an unnamed variable P \= -_, !. sign_of_power(-P, -1*P). %% Tests: %% ?- sign_of_power(x, X). %@ X = 1*x. %% ?- sign_of_power(-x, X). %@ X = -1*x. %% ?- sign_of_power(X, 1*x). %@ X = x. %% ?- sign_of_power(X, -1*x). %@ X = -x. %% add_terms(+L:List, +R:List, -Result:List) is det % % Adds two terms represented as list by adding % the coeficients if the power is the same. % Returns false if they can't be added % Requires the list of terms to be simplified. % add_terms([NL | TL], [NR | TR], [N2 | TL2]) :- %% Convert each term to a canon form. This ensures they %% have a number in front, so it can be added term_to_canon([NL | TL], [NL2 | TL2]), term_to_canon([NR | TR], [NR2 | TR2]), %% If the rest of the term is the same TL2 == TR2, %% Add the coeficients N2 is NL2 + NR2. %% Tests %% ?- add_terms([1], [1], R). %@ R = [2]. %% ?- add_terms([x], [x], R). %@ R = [2, x]. %% ?- add_terms([2, x^3], [x^3], R). %@ R = [3, x^3]. %% ?- add_terms([2, x^3], [3, x^3], R). %@ R = [5, x^3]. %% ?- add_terms([2, x^3], [3, x^2], R). %@ false. %% polynomial_to_list(+P:polynomial, -L:List) is det % % Converts a polynomial in a list. % polynomial_to_list(L - T, [T2 | LS]) :- term(T), negate_term(T, T2), polynomial_to_list(L, LS), !. polynomial_to_list(L + T, [T | LS]) :- term(T), polynomial_to_list(L, LS), !. polynomial_to_list(T, [T]) :- term(T), !. %% Tests: %% ?- polynomial_to_list(2, S). %@ S = [2]. %% ?- polynomial_to_list(x^2, S). %@ S = [x^2]. %% ?- polynomial_to_list(x^2 + x^2, S). %@ S = [x^2, x^2]. %% ?- polynomial_to_list(2*x^2+5+y*2, S). %@ S = [y*2, 5, 2*x^2]. %% ?- polynomial_to_list(2*x^2+5-y*2, S). %@ S = [-2*y, 5, 2*x^2]. %% ?- polynomial_to_list(2*x^2-5-y*2, S). %@ S = [-2*y, -5, 2*x^2]. %% list_to_polynomial(+L:List, -P:Polynomial) is det % % Converts a list in a polynomial. % An empty list will return false. % list_to_polynomial([T1|T2], P) :- % Start recursive calls until we are in the % end of the list. We know that the `-` will % always be at the left of a term. list_to_polynomial(T2, L1), ( % If this is a negative term term_string(T1, S1), string_chars(S1, [First|_]), First = -, % Concat them term_string(L1, S2), string_concat(S2,S1,S3), term_string(P, S3) ; % Otherwise sum them P = L1+T1 ), % The others computations are semantically meaningless !. list_to_polynomial([T], T). %% Tests: %% ?- list_to_polynomial([1, x, x^2], P). %@ P = x^2+x+1. %% ?- list_to_polynomial([-1, -x, -x^2], P). %@ P = -x^2-x-1. %% ?- list_to_polynomial([1, -x, x^2], P). %@ P = x^2-x+1. %% ?- list_to_polynomial([x^2, x, 1], P). %@ P = 1+x+x^2. %% ?- list_to_polynomial([a,-e], P). %@ P = -e+a. %% ?- list_to_polynomial([], P). %@ false. %% ?- list_to_polynomial([a], P). %@ P = a. %% negate_term(T, T2) is det % % Negate the coeficient of a term and return the negated term. % negate_term(T, T2) :- term_to_list(T, L), %% Ensure there is a coeficient term_to_canon(L, L2), [N | R] = L2, %% (-)/1 is an operator, needs to be evaluated, otherwise %% it gives a symbolic result, which messes with further processing N2 is -N, %% Convert the term back from canonic form term_to_canon(L3, [N2 | R]), %% Reverse the order of the list, because converting %% implicitly reverses it reverse(L3, L4), term_to_list(T2, L4), !. %% Tests: %% ?- negate_term(1, R). %@ R = -1. %% ?- negate_term(x, R). %@ R = -x. %% ?- negate_term(-x, R). %@ R = x. %% ?- negate_term(x^2, R). %@ R = -x^2. %% ?- negate_term(3*x*y^2, R). %@ R = -3*y^2*x. %% scale_polynomial(+P:Polynomial,+C:Constant,-S:Polynomial) is det % % Multiplies a polynomial by a scalar. % scale_polynomial(P, C, S) :- polynomial_to_list(P, L), %% Convert each term to a list maplist(term_to_list, L, L2), %% Canonize terms maplist(term_to_canon, L2, L3), %% Append C to the start of each sublist maplist(cons(C), L3, L4), %% Convert to a list of terms maplist(term_to_list, L5, L4), %% Simplify the resulting polynomial simplify_polynomial_as_list(L5, L6), %% Return as a simplified polynomial list_to_polynomial(L6, S), !. %% Tests: %% ?- scale_polynomial(3*x^2, 2, S). %@ S = 6*x^2. %% cons(+C:atom, +L:List, -L2:List) is det % % Add an atom C to the head of a list L. % cons(C, L, [C | L]). %% Tests: %% ?- cons(C, L, L2). %@ L2 = [C|L]. %% add_polynomial(+P1:polynomial,+P2:polynomial,-S:polynomial) is det % % S = P1 + P2. % add_polynomial(P1, P2, S) :- %% Convert both polynomials to lists polynomial_to_list(P1, L1), polynomial_to_list(P2, L2), %% Join them append(L1, L2, L3), %% Simplify the resulting polynomial simplify_polynomial_as_list(L3, L4), %% Convert back list_to_polynomial(L4, S), !. %% Tests: %% ?- add_polynomial(2, 2, S). %@ S = 4. %% ?- add_polynomial(x, x, S). %@ S = 2*x. %% ?- add_polynomial(2*x+5*z, 2*z+6*x, S). %@ S = 8*x+7*z.