%% -*- mode: prolog-*- %% vim: set softtabstop=4 shiftwidth=4 tabstop=4 expandtab: %% Follows 'Coding guidelines for Prolog' - Theory and Practice of Logic Programming %% https://doi.org/10.1017/S1471068411000391 %% Import the Constraint Logic Programming over Finite Domains lybrary %% Essentially, this library improves the way Prolog deals with integers, %% allowing more predicates to be reversible. %% For instance, number(N) is always false, which prevents the %% reversing of a predicate. :- use_module(library(clpfd)). %% polynomial_variable_list(-List) is det % % List of possible polynomial variables % polynomial_variable_list([x, y, z]). %% polynomial_variable(?X:atom) is det % % Returns true if X is a polynomial variable, false otherwise. % polynomial_variable(X) :- polynomial_variable_list(V), member(X, V). %% Tests: %% ?- polynomial_variable(x). %@ true . %% ?- polynomial_variable(a). %@ false. %% power(+X:atom) is semidet % % Returns true if X is a power term, false otherwise. % power(P^N) :- ( zcompare((<), 0, N), polynomial_variable(P) ; fail ). power(X) :- polynomial_variable(X). %% Tests: %% ?- power(x). %@ true . %% ?- power(a). %@ false. %% ?- power(x^1). %@ true . %% ?- power(x^3). %@ true . %% ?- power(x^(-3)). %@ false. %% ?- power(X). %@ X = x^_7334, %@ _7334 in 1..sup ; %@ X = y^_7334, %@ _7334 in 1..sup ; %@ X = z^_7334, %@ _7334 in 1..sup ; %@ X = x ; %@ X = y ; %@ X = z. %% term(+N:atom) is det % % Returns true if N is a term, false otherwise. % term(N) :- number(N). %% N in inf..sup. term(X) :- power(X). term(L * R) :- term(L), term(R). %% append_two_atoms_with_star(L, R, T). %% Tests: %% ?- term(2*x^3). %@ true . %% ?- term(x^(-3)). %@ false. %% ?- term(a). %@ false. %% ?- term((-3)*x^2). %@ true . %% ?- term(3.2*x). %@ true . %% ?- term(X). %% Doesn't give all possible terms, because number(N) is not reversible %% The ic library seems to be able to help here, but it's not a part of %% SwiPL by default %% is_term_valid_in_predicate(+T, +F) is det % % Returns true if valid Term, fails with UI message otherwise. % The fail message reports which Term is invalid and in which % predicate the problem ocurred. % is_term_valid_in_predicate(T, F) :- ( term(T) ; write("Invalid term in "), write(F), write(": "), write(T), fail ). %% Tests: %% ?- is_term_valid_in_predicate(1, "Test"). %@ true . %% ?- is_term_valid_in_predicate(a, "Test"). %% polynomial(+M:atom) is det % % Returns true if polynomial, false otherwise. % polynomial(M) :- term(M). polynomial(L + R) :- polynomial(L), term(R). %% Tests: %% ?- polynomial(x). %@ true . %% ?- polynomial(x^3). %@ true . %% ?- polynomial(3*x^7). %@ true . %% ?- polynomial(2 + 3*x + 4*x*y^3). %@ true . %% ?- polynomial(a). %@ false. %% ?- polynomial(x^(-3)). %@ false. %% power_to_canon(+T:atom, -T^N:atom) is det % % Returns a canon power term. % power_to_canon(T^N, T^N) :- polynomial_variable(T), N #\= 1. power_to_canon(T, T^1) :- polynomial_variable(T). %% Tests: %% ?- power_to_canon(x, X). %@ X = x^1 . %% ?- power_to_canon(X, x^1). %@ X = x . %% ?- power_to_canon(X, x^4). %@ X = x^4 . %% ?- power_to_canon(X, a^1). %@ false. %% ?- power_to_canon(X, x^(-3)). %@ X = x^ -3 . %% term_to_list(?T, ?List) is det % % Converts a term to a list and vice versa. % Can verify if term and list are compatible. % term_to_list(L * N, [N | TS]) :- number(N), term_to_list(L, TS). term_to_list(L * P, [P2 | TS]) :- power(P), power_to_canon(P, P2), term_to_list(L, TS). term_to_list(N, [N]) :- number(N). term_to_list(P, [P2]) :- power(P), power_to_canon(P, P2). %% Tests: %% ?- term_to_list(1, X). %@ X = [1] . %% ?- term_to_list(1*2*y*z*23*x*y*x^3*x, X). %@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2, 1] . %% ?- term_to_list(X, [y^1, x^1]). %@ X = x*y . %% ?- term_to_list(X, [x^4]). %@ X = x^4 . %% ?- term_to_list(X, [y^6, z^2, x^4]). %@ X = x^4*z^2*y^6 . %% simplify_term(+Term_In:term, ?Term_Out:term) is det % % Simplifies a term. % simplify_term(Term_In, Term_Out) :- term_to_list(Term_In, L), sort(0, @=<, L, L2), ( member(0, L2), Term_Out = 0 ; ( length(L2, 1), Term_Out = Term_In ); exclude(==(1), L2, L3), join_like_terms(L3, L4), sort(0, @>=, L4, L5), term_to_list(Term_Out, L5) ), % First result is always the most simplified form. !. %% Tests: %% ?- simplify_term(1, X). %@ X = 1. %% ?- simplify_term(x, X). %@ X = x. %% ?- simplify_term(2*y*z*x^3*x, X). %@ X = 2*x^4*y*z. %% ?- simplify_term(1*y*z*x^3*x, X). %@ X = x^4*y*z. %% ?- simplify_term(0*y*z*x^3*x, X). %@ X = 0. %% ?- simplify_term(6*y*z*7*x*y*x^3*x, X). %@ X = 42*x^2*x^3*y^2*z. %% ?- simplify_term(a, X). %@ false. %% ?- simplify_term(x^(-3), X). %@ false. %% join_like_terms(+List, -List) % % Combine powers of the same variable in the given list % join_like_terms([P1, P2 | L], [B^N | L2]) :- power(P1), power(P2), B^N1 = P1, B^N2 = P2, N is N1 + N2, join_like_terms(L, L2). join_like_terms([N1, N2 | L], [N | L2]) :- number(N1), number(N2), N is N1 * N2, join_like_terms(L, L2). join_like_terms([X | L], [X | L2]) :- join_like_terms(L, L2). join_like_terms([], []). %% Tests: %% ?- join_like_terms([2, 3, x^1, x^2], T). %@ T = [6, x^3] . %% ?- join_like_terms([2, 3, x^1, x^2, y^1, y^6], T). %@ T = [6, x^3, y^7] . %% simplify_polynomial(+P:atom, -P2:atom) is det % % Simplifies a polynomial. % TODO: not everything is a +, there are - % simplify_polynomial(M, M2) :- %% Are we dealing with a valid term? %is_term_valid_in_predicate(M, "simplify_polynomial(M, M2)"), %% term(M), %% If so, simplify it. simplify_term(M, M2), !. simplify_polynomial(P + 0, P) :- %% Ensure valid term %is_term_valid_in_predicate(P, "simplify_polynomial(P + 0, P)"), term(P), !. simplify_polynomial(0 + P, P) :- %% Ensure valid term %is_term_valid_in_predicate(P, "simplify_polynomial(0 + P, P)"), term(P), !. simplify_polynomial(P + M, P2 + M2) :- simplify_polynomial(P, P2), simplify_term(M, M2). simplify_polynomial(P + M, P2 + M3) :- monomial_parts(M, _, XExp), delete_monomial(P, XExp, M2, P2), !, add_monomial(M, M2, M3). simplify_polynomial(P + M, P2 + M2) :- simplify_polynomial(P, P2), simplify_term(M, M2). %% Tests: %% ?- simplify_polynomial(1, X). %@ false. %@ false. %@ Invalid term in simplify_polynomial(M, M2): 1 %@ false. %% simplify_polynomial_list(+L1,-L3) is det % % Simplifies a list of polynomials % simplify_polynomial_list([L1], L3) :- simplify_polynomial(L1, L2), L3 = [L2]. simplify_polynomial_list([L1|L2],L3) :- simplify_polynomial(L1, P1), simplify_polynomial_list(L2, P2), L3 = [P1|P2], % There is nothing further to compute at this point !. %% polynomial_to_list(+P:polynomial, -L:List) % % Converts a polynomial in a list. % TODO: not everything is a +, there are - % polynomial_to_list(T1 + T2, L) :- polynomial_to_list(T1, L1), L = [T2|L1], % The others computations are semantically meaningless !. polynomial_to_list(P, L) :- L = [P]. %% Tests: %%?- polynomial_to_list(2*x^2+5+y*2, S). %@S = [y*2, 5, 2*x^2]. %% list_to_polynomial(+P:polynomial, -L:List) % % Converts a list in a polynomial. % TODO: not everything is a +, there are - % list_to_polynomial([T1|T2], P) :- list_to_polynomial(T2, L1), ( not(L1 = []), P = L1+T1 ; P = T1 ), % The others computations are semantically meaningless !. list_to_polynomial(T, P) :- P = T. %% Tests: %% TODO %% append_two_atoms_with_star(+V1, +V2, -R) is det % % Returns R = V1 * V2 % append_two_atoms_with_star(V1, V2, R) :- % Convert term V2 into a string V3 term_string(V2, V3), % Concat atom V1 with * into a compound V4 atom_concat(V1, *, V4), % Concat atom V4 with V3 into a compound S atom_concat(V4, V3, S), % Convert compound S into a term R term_string(R, S). %% Tests: % ?- append_two_atoms_with_star(2, x^2, R). %@ R = 2*x^2. %@ R = 2*x^2. %@ R = 2*3. %% scale_polynomial(+P:polynomial,+C:constant,-S:polynomial) is det % % Scales a polynomial with a constant % scale_polynomial(P, C, S) :- polynomial_to_list(P, L), maplist(append_two_atoms_with_star(C), L, L2), list_to_polynomial(L2, S). %simplify_polynomial(S1, S). %% Tests: %% ?- scale_polynomial(3*x^2, 2, S). %@ S = 2*3*x^2. %@ S = 2*(3*x^2). %% monomial_parts(X, Y, Z) % % TODO Maybe remove % Separate monomial into it's parts. Given K*X^N, gives K and N % monomial_parts(X, 1, X) :- power(X), !. monomial_parts(X^N, 1, X^N) :- power(X^N), !. monomial_parts(K * M, K, M) :- number(K), !. monomial_parts(K, K, indep) :- number(K), !. delete_monomial(M, X, M, 0) :- term(M), monomial_parts(M, _, X), !. delete_monomial(M + M2, X, M, M2) :- term(M2), term(M), monomial_parts(M, _, X), !. delete_monomial(P + M, X, M, P) :- term(M), monomial_parts(M, _, X), !. delete_monomial(P + M2, X, M, P2 + M2) :- delete_monomial(P, X, M, P2). add_monomial(K1, K2, K3) :- number(K1), number(K2), !, K3 is K1 + K2. add_monomial(M1, M2, M3) :- monomial_parts(M1, K1, XExp), monomial_parts(M2, K2, XExp), K3 is K1 + K2, p_aux_add_monomial(K3, XExp, M3). p_aux_add_monomial(K, indep, K) :- !. p_aux_add_monomial(0, _, 0) :- !. p_aux_add_monomial(1, XExp, XExp) :- !. p_aux_add_monomial(K, XExp, K * XExp). closure_simplify_polynomial(P, P) :- simplify_polynomial(P, P2), P==P2, !. closure_simplify_polynomial(P, P3) :- simplify_polynomial(P, P2), closure_simplify_polynomial(P2, P3), !. list_to_term([N | NS], N * L) :- number(N), term_to_list(L, NS).