This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
polynomialmani.pl/polimani.pl

554 lines
12 KiB
Prolog

%% -*- mode: prolog-*-
%% vim: set softtabstop=4 shiftwidth=4 tabstop=4 expandtab:
/**
*
* polimani.pl
*
* Assignment 1 - Polynomial Manipulator
* Programming in Logic - DCC-FCUP
*
* Diogo Peralta Cordeiro
* up201705417@fc.up.pt
*
* Hugo David Cordeiro Sales
* up201704178@fc.up.pt
*
*********************************************
* Follows 'Coding guidelines for Prolog' *
* https://doi.org/10.1017/S1471068411000391 *
*********************************************
*/
/* Import the Constraint Logic Programming over Finite Domains lybrary
* Essentially, this library improves the way Prolog deals with integers,
* allowing more predicates to be reversible.
* For instance, number(N) is always false, which prevents the
* reversing of a predicate.
*/
:- use_module(library(clpfd)).
/*******************************
* USER INTERFACE *
*******************************/
/*
poly2list/2 transforms a list representing a polynomial (second
argument) into a polynomial represented as an expression (first argu-
ment) and vice-versa.
*/
poly2list(P, L) :-
polynomial_to_list(P, L).
/*
simpolylist/2 simplifies a polynomial represented as a list into
another polynomial as a list.
*/
simpoly_list(L, S) :-
simplify_polynomial_list(L, S).
/*
simpoly/2 simplifies a polynomial represented as an expression
as another polynomial as an expression.
*/
simpoly(P, S) :-
simplify_polynomial(P, S).
/*
scalepoly/3 multiplies a polynomial represented as an expression by a scalar
resulting in a second polynomial. The two first arguments are assumed to
be ground. The polynomial resulting from the sum is in simplified form.
*/
scalepoly(P1, P2, S) :-
scale_polynomial(P1, P2, S).
/*
addpoly/3 adds two polynomials as expressions resulting in a
third one. The two first arguments are assumed to be ground.
The polynomial resulting from the sum is in simplified form.
*/
addpoly(P1, P2, S) :-
add_polynomial(P1, P2, S).
/*******************************
* BACKEND *
*******************************/
%% polynomial_variable_list(-List) is det
%
% List of possible polynomial variables
%
polynomial_variable_list([x, y, z]).
%% polynomial_variable(?X:atom) is det
%
% Returns true if X is a polynomial variable, false otherwise.
%
polynomial_variable(X) :-
polynomial_variable_list(V),
member(X, V).
%% Tests:
%% ?- polynomial_variable(x).
%@ true .
%% ?- polynomial_variable(a).
%@ false.
%% power(+X:atom) is semidet
%
% Returns true if X is a power term, false otherwise.
%
power(P^N) :-
(
zcompare((<), 0, N),
polynomial_variable(P)
;
fail
).
power(X) :-
polynomial_variable(X).
%% Tests:
%% ?- power(x).
%@ true .
%% ?- power(a).
%@ false.
%% ?- power(x^1).
%@ true .
%% ?- power(x^3).
%@ true .
%% ?- power(x^(-3)).
%@ false.
%% ?- power(X).
%@ X = x^_7334,
%@ _7334 in 1..sup ;
%@ X = y^_7334,
%@ _7334 in 1..sup ;
%@ X = z^_7334,
%@ _7334 in 1..sup ;
%@ X = x ;
%@ X = y ;
%@ X = z.
%% term(+N:atom) is det
%
% Returns true if N is a term, false otherwise.
%
term(N) :-
number(N).
%% N in inf..sup.
term(X) :-
power(X).
term(L * R) :-
term(L),
term(R).
%% append_two_atoms_with_star(L, R, T).
%% Tests:
%% ?- term(2*x^3).
%@ true .
%% ?- term(x^(-3)).
%@ false.
%% ?- term(a).
%@ false.
%% ?- term((-3)*x^2).
%@ true .
%% ?- term(3.2*x).
%@ true .
%% ?- term(X).
%% Doesn't give all possible terms, because number(N) is not reversible
%% The ic library seems to be able to help here, but it's not a part of
%% SwiPL by default
%% is_term_valid_in_predicate(+T, +F) is det
%
% Returns true if valid Term, fails with UI message otherwise.
% The fail message reports which Term is invalid and in which
% predicate the problem ocurred.
%
is_term_valid_in_predicate(T, F) :-
(
term(T)
;
write("Invalid term in "),
write(F),
write(": "),
write(T),
fail
).
%% Tests:
%% ?- is_term_valid_in_predicate(1, "Test").
%@ true .
%% ?- is_term_valid_in_predicate(a, "Test").
%% polynomial(+M:atom) is det
%
% Returns true if polynomial, false otherwise.
%
polynomial(M) :-
term(M).
polynomial(L + R) :-
polynomial(L),
term(R).
%% Tests:
%% ?- polynomial(x).
%@ true .
%% ?- polynomial(x^3).
%@ true .
%% ?- polynomial(3*x^7).
%@ true .
%% ?- polynomial(2 + 3*x + 4*x*y^3).
%@ true .
%% ?- polynomial(a).
%@ false.
%% ?- polynomial(x^(-3)).
%@ false.
%% power_to_canon(+T:atom, -T^N:atom) is det
%
% Returns a canon power term.
%
power_to_canon(T^N, T^N) :-
polynomial_variable(T),
N #\= 1.
power_to_canon(T, T^1) :-
polynomial_variable(T).
%% Tests:
%% ?- power_to_canon(x, X).
%@ X = x^1 .
%% ?- power_to_canon(X, x^1).
%@ X = x .
%% ?- power_to_canon(X, x^4).
%@ X = x^4 .
%% ?- power_to_canon(X, a^1).
%@ false.
%% ?- power_to_canon(X, x^(-3)).
%@ X = x^ -3 .
%% term_to_list(?T, ?List) is det
%
% Converts a term to a list and vice versa.
% Can verify if term and list are compatible.
%
term_to_list(L * N, [N | TS]) :-
number(N),
term_to_list(L, TS).
term_to_list(L * P, [P2 | TS]) :-
power(P),
power_to_canon(P, P2),
term_to_list(L, TS).
term_to_list(N, [N]) :-
number(N).
term_to_list(P, [P2]) :-
power(P),
power_to_canon(P, P2).
%% Tests:
%% ?- term_to_list(1, X).
%@ X = [1] .
%% ?- term_to_list(1*2*y*z*23*x*y*x^3*x, X).
%@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2, 1] .
%% ?- term_to_list(X, [y^1, x^1]).
%@ X = x*y .
%% ?- term_to_list(X, [x^4]).
%@ X = x^4 .
%% ?- term_to_list(X, [y^6, z^2, x^4]).
%@ X = x^4*z^2*y^6 .
%% simplify_term(+Term_In:term, ?Term_Out:term) is det
%
% Simplifies a term.
%
simplify_term(Term_In, Term_Out) :-
term_to_list(Term_In, L),
sort(0, @=<, L, L2),
(
member(0, L2),
Term_Out = 0
;
(
length(L2, 1),
Term_Out = Term_In
);
exclude(==(1), L2, L3),
join_similar_parts_of_term(L3, L4),
sort(0, @>=, L4, L5),
term_to_list(Term_Out, L5)
),
% First result is always the most simplified form.
!.
%% Tests:
%% ?- simplify_term(1, X).
%@ X = 1.
%% ?- simplify_term(x, X).
%@ X = x.
%% ?- simplify_term(2*y*z*x^3*x, X).
%@ X = 2*x^4*y*z.
%% ?- simplify_term(1*y*z*x^3*x, X).
%@ X = x^4*y*z.
%% ?- simplify_term(0*y*z*x^3*x, X).
%@ X = 0.
%% ?- simplify_term(6*y*z*7*x*y*x^3*x, X).
%@ X = 42*x^2*x^3*y^2*z.
%% ?- simplify_term(a, X).
%@ false.
%% ?- simplify_term(x^(-3), X).
%@ false.
%% join_similar_parts_of_term(+List, -List)
%
% Combine powers of the same variable in the given list
%
join_similar_parts_of_term([P1, P2 | L], L2) :-
power(P1),
power(P2),
B^N1 = P1,
B^N2 = P2,
N is N1 + N2,
join_similar_parts_of_term([B^N | L], L2).
join_similar_parts_of_term([N1, N2 | L], L2) :-
number(N1),
number(N2),
N is N1 * N2,
join_similar_parts_of_term([N | L], L2).
join_similar_parts_of_term([X | L], [X | L2]) :-
join_similar_parts_of_term(L, L2).
join_similar_parts_of_term([], []).
%% Tests:
%% ?- join_similar_parts_of_term([3], T).
%@ T = [3].
%% ?- join_similar_parts_of_term([x^2], T).
%@ T = [x^2].
%% ?- join_similar_parts_of_term([x^1, x^1, x^1, x^1], T).
%@ T = [x^4] .
%% ?- join_similar_parts_of_term([2, 3, x^1, x^2], T).
%@ T = [6, x^3] .
%% ?- join_similar_parts_of_term([2, 3, x^1, x^2, y^1, y^6], T).
%@ T = [6, x^3, y^7] .
%% simplify_polynomial(+P:atom, -P2:atom) is det
%
% Simplifies a polynomial.
% TODO: not everything is a +, there are -
%
simplify_polynomial(0, 0) :-
!.
simplify_polynomial(P, P2) :-
polynomial_to_list(P, L),
maplist(term_to_list, L, L2),
maplist(join_similar_parts_of_term, L2, L3),
maplist(sort(0, @=<), L3, L4),
join_similar_terms(L4, L5),
transform_list(sort(0, @>=), L5, L6),
transform_list(term_to_list, L7, L6),
delete(L7, 0, L8),
polynomial_to_list(P2, L8),
!.
%% Tests:
%% ?- simplify_polynomial(1, X).
%@ X = 1.
%% ?- simplify_polynomial(0, X).
%@ X = 0.
%% ?- simplify_polynomial(x, X).
%@ X = x.
%% ?- simplify_polynomial(x*x, X).
%@ X = x^2.
%% ?- simplify_polynomial(0 + x*x, X).
%@ X = x^2.
%% ?- simplify_polynomial(x^2*x + 3*x^3, X).
%@ X = 4*x^3.
%% ?- simplify_polynomial(x^2*x + 3*x^3 + x^3 + x*x*x, X).
%@ X = 6*x^3.
join_similar_terms([TL, TR | L], L2) :-
add_terms(TL, TR, T2),
join_similar_terms([T2 | L], L2),
%% Give only first result. Red cut
!.
join_similar_terms([X | L], [X | L2]) :-
join_similar_terms(L, L2),
%% Give only first result. Red cut
!.
join_similar_terms([], []).
%% Tests:
%% ?- join_similar_terms([[2, x^3], [3, x^3], [x^3]], L).
%@ L = [[6, x^3]].
term_to_canon([T], [1, T]) :-
%% Give only first result. Red cut
!.
term_to_canon(L, L).
%% Tests:
%% ?- term_to_canon([x^3], T).
%@ T = [1, x^3].
%% ?- term_to_canon([2, x^3], T).
%@ T = [2, x^3].
add_terms([NL | TL], [NR | TR], [N2 | TL2]) :-
term_to_canon([NL | TL], [NL2 | TL2]),
term_to_canon([NR | TR], [NR2 | TR2]),
TL2 == TR2,
number(NL2),
number(NR2),
N2 is NL2 + NR2.
%% Tests
%% ?- add_terms([2, x^3], [x^3], R).
%@ R = [3, x^3].
%% ?- add_terms([2, x^3], [3, x^3], R).
%@ R = [5, x^3].
%% transform_list(+Pred, +L, -R) is det
%
% Apply predicate to each of the elements of L, producing R
%
transform_list(_, [], []).
transform_list(Pred, [L | LS], [R | RS]) :-
call(Pred, L, R),
transform_list(Pred, LS, RS),
!.
%% Tests:
%% ?- transform_list(term_to_list, [x, 2], L).
%@ L = [[x^1], [2]].
%% ?- transform_list(term_to_list, [x, x, 2], L).
%@ L = [[x^1], [x^1], [2]].
%% ?- transform_list(term_to_list, L, [[x^1], [x^1], [2]]).
%@ L = [x, x, 2].
%% simplify_polynomial_list(+L:list, -S:list) is det
%
% Simplifies a polynomial represented as a list
%
simplify_polynomial_list(L, S) :-
polynomial_to_list(P1, L),
simplify_polynomial(P1, P2),
polynomial_to_list(P2, S).
%% polynomial_to_list(+P:polynomial, -L:List)
%
% Converts a polynomial in a list.
% TODO: not everything is a +, there are -
%
polynomial_to_list(L + T, [T | LS]) :-
term(T),
polynomial_to_list(L, LS).
% The others computations are semantically meaningless
%% !.
polynomial_to_list(T, [T]) :-
term(T).
%% Tests:
%%?- polynomial_to_list(2, S).
%@ S = [2] .
%%?- polynomial_to_list(x^2, S).
%@ S = [x^2] .
%%?- polynomial_to_list(x^2 + x^2, S).
%@ S = [x^2, x^2] .
%%?- polynomial_to_list(2*x^2+5+y*2, S).
%@ S = [y*2, 5, 2*x^2] .
%%?- polynomial_to_list(P, [2]).
%@ P = 2 .
%%?- polynomial_to_list(P, [x]).
%@ P = x .
%%?- polynomial_to_list(P, [x^2, x, -2.3]).
%@ P = -2.3+x+x^2 .
%% append_two_atoms_with_star(+V1, +V2, -R) is det
%
% Returns R = V1 * V2
%
append_two_atoms_with_star(V1, V2, R) :-
% Convert term V2 into a string V3
term_string(V2, V3),
% Concat atom V1 with * into a compound V4
atom_concat(V1, *, V4),
% Concat atom V4 with V3 into a compound S
atom_concat(V4, V3, S),
% Convert compound S into a term R
term_string(R, S).
%% Tests:
% ?- append_two_atoms_with_star(2, x^2, R).
%@ R = 2*x^2.
%@ R = 2*x^2.
%@ R = 2*3.
%% scale_polynomial(+P:polynomial,+C:constant,-S:polynomial) is det
%
% Scales a polynomial with a constant
%
scale_polynomial(P, C, S) :-
polynomial_to_list(P, L),
maplist(append_two_atoms_with_star(C), L, L2),
polynomial_to_list(S, L2),
simplify_polynomial(S, S1),
!.
%% Tests:
%% ?- scale_polynomial(3*x^2, 2, S).
%@ S = 2*3*x^2.
/* CENAS DO PROF: */
%% monomial_parts(X, Y, Z)
%
% TODO Maybe remove
% Separate monomial into it's parts. Given K*X^N, gives K and N
%
monomial_parts(X, 1, X) :-
power(X),
!.
monomial_parts(X^N, 1, X^N) :-
power(X^N),
!.
monomial_parts(K * M, K, M) :-
number(K),
!.
monomial_parts(K, K, indep) :-
number(K),
!.
delete_monomial(M, X, M, 0) :-
term(M),
monomial_parts(M, _, X),
!.
delete_monomial(M + M2, X, M, M2) :-
term(M2),
term(M),
monomial_parts(M, _, X),
!.
delete_monomial(P + M, X, M, P) :-
term(M),
monomial_parts(M, _, X),
!.
delete_monomial(P + M2, X, M, P2 + M2) :-
delete_monomial(P, X, M, P2).
add_monomial(K1, K2, K3) :-
number(K1),
number(K2), !,
K3 is K1 + K2.
add_monomial(M1, M2, M3) :-
monomial_parts(M1, K1, XExp),
monomial_parts(M2, K2, XExp),
K3 is K1 + K2,
p_aux_add_monomial(K3, XExp, M3).
p_aux_add_monomial(K, indep, K) :-
!.
p_aux_add_monomial(0, _, 0) :-
!.
p_aux_add_monomial(1, XExp, XExp) :-
!.
p_aux_add_monomial(K, XExp, K * XExp).
closure_simplify_polynomial(P, P) :-
simplify_polynomial(P, P2),
P==P2,
!.
closure_simplify_polynomial(P, P3) :-
simplify_polynomial(P, P2),
closure_simplify_polynomial(P2, P3),
!.