190 lines
4.3 KiB
Prolog
190 lines
4.3 KiB
Prolog
%% -*- mode: prolog-*-
|
|
%% Follows 'Coding guidelines for Prolog' - Theory and Practice of Logic Programming
|
|
%% https://doi.org/10.1017/S1471068411000391
|
|
|
|
polynomial_variables([x, y, z]).
|
|
polynomial_variable_p(X) :-
|
|
polynomial_variables(V), member(X, V).
|
|
|
|
power_p(X) :-
|
|
polynomial_variable_p(X), !.
|
|
power_p(X^N) :-
|
|
polynomial_variable_p(X), integer(N), N > 1, !.
|
|
|
|
term_p(N) :-
|
|
number(N).
|
|
term_p(X) :-
|
|
power_p(X).
|
|
term_p(L * R) :-
|
|
term_p(L),
|
|
term_p(R), !.
|
|
|
|
polynomial_p(M) :-
|
|
term_p(M).
|
|
polynomial_p(L + R) :- % Left greedy
|
|
polynomial_p(L), % Why?
|
|
term_p(R), !.
|
|
|
|
%% ?- polynomial_p(3*x^2+y*z).
|
|
%@ true.
|
|
%% ?- polynomial_p(x^100*y*z).
|
|
%@ true.
|
|
%% ?- polynomial_p(x+y+z).
|
|
%@ true.
|
|
%@ false.
|
|
%@ false.
|
|
%% ?- polynomial_p(3*x^2+y*z+x^100*y*z).
|
|
%@ true.
|
|
%@ true.
|
|
%% @ false. WIP
|
|
|
|
simplify_term(1 * P, P) :-
|
|
term_p(P), !.
|
|
simplify_term(0 * _, 0) :-
|
|
!.
|
|
simplify_term(T, T2) :-
|
|
term_to_list(T, L),
|
|
sort(0, @=<, L, L2),
|
|
join_like_terms(L2, L3),
|
|
sort(0, @>=, L3, L4),
|
|
term_to_list(T2, L4).
|
|
|
|
%% ?- simplify_term(2*y*z*x^3*x, X).
|
|
%@ X = [z^1, y^1, x^4, 2].
|
|
%@ false.
|
|
%@ X = [2, x^4, y^1, z^1].
|
|
%@ X = [2, x^1, x^3, y^1, z^1].
|
|
%% ?- simplify_term(2*y*z*23*x*y*x^3*x, X).
|
|
%@ X = [2, 23, x^1, x^3, y^1, z^1].
|
|
%@ X = [46, x^4, y^1, z^1].
|
|
|
|
join_like_terms([T1, T2 | L], [B1^N | L2]) :-
|
|
not(number(T1)),
|
|
not(number(T2)),
|
|
B1^N1 = T1,
|
|
B2^N2 = T2,
|
|
B1 == B2,
|
|
join_like_terms(L, L2),
|
|
N is N1 + N2,
|
|
!.
|
|
join_like_terms([N1, N2 | L], [N | L2]) :-
|
|
number(N1),
|
|
number(N2),
|
|
N is N1 * N2,
|
|
join_like_terms(L, L2),
|
|
!.
|
|
join_like_terms([X | L], [X | L2]) :-
|
|
join_like_terms(L, L2).
|
|
join_like_terms([], []).
|
|
%% ?- join_like_terms([2, 3, x^1, x^2], T).
|
|
%@ T = [6, x^3].
|
|
%@ T = [6, x^3].
|
|
%% ?- join_like_terms([2, 3, x^1, x^2, y^1, y^6], T).
|
|
%@ T = [6, x^3, y^7].
|
|
%@ T = [6, x^3, y].
|
|
|
|
term_to_list(L * N, [N | TS]) :-
|
|
number(N),
|
|
term_to_list(L, TS),
|
|
!.
|
|
term_to_list(L * T, [T2 | TS]) :-
|
|
power_p(T),
|
|
power_to_canon(T, T2),
|
|
term_to_list(L, TS),
|
|
!.
|
|
term_to_list(T, [T]).
|
|
|
|
list_to_term([N | NS], N * L) :-
|
|
number(N),
|
|
term_to_list(L, NS).
|
|
|
|
%% ?- term_to_list(2*y*z*23*x*y*x^3*x, X).
|
|
%@ X = [x^1, x^3, y^1, x^1, 23, z^1, y^1, 2].
|
|
%% ?- term_to_list(X, [2, x^1, y^1]).
|
|
%@ X = y^1*x*2.
|
|
%@ X = y^1*x*2.
|
|
%@ X = y^1*x*2.
|
|
%@ X = y*x*2.
|
|
%@ X = x*2.
|
|
%@ X = 2.
|
|
%@ false.
|
|
%@ false.
|
|
%@ X = x*2.
|
|
|
|
power_to_canon(T, T^1) :-
|
|
polynomial_variable_p(T),
|
|
!.
|
|
power_to_canon(T^N, T^N) :-
|
|
polynomial_variable_p(T),
|
|
!.
|
|
|
|
simplify_polynomial(M, M2) :-
|
|
term_p(M), simplify_term(M, M2), !.
|
|
simplify_polynomial(P + 0, P) :-
|
|
term_p(P), !.
|
|
simplify_polynomial(0 + P, P) :-
|
|
term_p(P), !.
|
|
simplify_polynomial(P + M, P2 + M2) :-
|
|
simplify_polynomial(P, P2), simplify_term(M, M2).
|
|
simplify_polynomial(P + M, P2 + M3) :-
|
|
monomial_parts(M, _, XExp),
|
|
delete_monomial(P, XExp, M2, P2), !,
|
|
add_monomial(M, M2, M3).
|
|
simplify_polynomial(P + M, P2 + M2) :-
|
|
simplify_polynomial(P, P2), simplify_term(M, M2).
|
|
|
|
%% ?- simplify_polynomial(1*x+(-1)*x, P).
|
|
|
|
monomial_parts(X, 1, X) :-
|
|
power_p(X), !.
|
|
monomial_parts(X^N, 1, X^N) :-
|
|
power_p(X^N), !.
|
|
monomial_parts(K * M, K, M) :-
|
|
coeficient_p(K), !.
|
|
monomial_parts(K, K, indep) :-
|
|
coeficient_p(K), !.
|
|
|
|
|
|
delete_monomial(M, X, M, 0) :-
|
|
term_p(M),
|
|
monomial_parts(M, _, X), !.
|
|
delete_monomial(M + M2, X, M, M2) :-
|
|
term_p(M2), term_p(M),
|
|
monomial_parts(M, _, X), !.
|
|
delete_monomial(P + M, X, M, P) :-
|
|
term_p(M), monomial_parts(M, _, X), !.
|
|
delete_monomial(P + M2, X, M, P2 + M2) :-
|
|
delete_monomial(P, X, M, P2).
|
|
|
|
add_monomial(K1, K2, K3) :-
|
|
number(K1), number(K2), !,
|
|
K3 is K1 + K2.
|
|
add_monomial(M1, M2, M3) :-
|
|
monomial_parts(M1, K1, XExp),
|
|
monomial_parts(M2, K2, XExp),
|
|
K3 is K1 + K2,
|
|
p_aux_add_monomial(K3, XExp, M3).
|
|
|
|
p_aux_add_monomial(K, indep, K) :-
|
|
!.
|
|
p_aux_add_monomial(0, _, 0) :-
|
|
!.
|
|
p_aux_add_monomial(1, XExp, XExp) :-
|
|
!.
|
|
p_aux_add_monomial(K, XExp, K * XExp).
|
|
|
|
closure_simplify_polynomial(P, P) :-
|
|
simplify_polynomial(P, P2),
|
|
P==P2, !.
|
|
closure_simplify_polynomial(P, P3) :-
|
|
simplify_polynomial(P, P2),
|
|
closure_simplify_polynomial(P2, P3), !.
|
|
|
|
%% ?- simplify_polynomial(1*x+(-1)*x, P).
|
|
%@ P = x+ -1*x .
|
|
%@ P = x+ -1*x
|
|
%@ Unknown action: q (h for help)
|
|
%@ Action?
|
|
%@ Unknown action: q (h for help)
|
|
%@ Action? .
|