1090 lines
27 KiB
Perl
1090 lines
27 KiB
Perl
|
/***************************************************************************************************
|
||
|
MCLPADS
|
||
|
http://www.di.uniba.it/~ndm/mclpads/
|
||
|
|
||
|
Copyright (c) 2013 University of Bari "Aldo Moro"
|
||
|
Author: Nicola Di Mauro
|
||
|
|
||
|
**************************************************************************************************
|
||
|
|
||
|
This code is part of the SLIPCOVER code https://sites.google.com/a/unife.it/ml/slipcover
|
||
|
Copyright (c) 2011, Fabrizio Riguzzi and Elena Bellodi
|
||
|
Parts of this code are thaken from the SLIPCOVER source code
|
||
|
|
||
|
***************************************************************************************************
|
||
|
|
||
|
The MCLPADS Software is made available under the terms and conditions of the Artistic License 2.0.
|
||
|
LICENSEE shall acknowledge University of Bari "Aldo Moro" as the provider of the Software.
|
||
|
|
||
|
***************************************************************************************************/
|
||
|
|
||
|
:- include(slipcover_lemur).
|
||
|
|
||
|
/**************************************
|
||
|
__BEGIN__
|
||
|
New source code for MCLPADS
|
||
|
**************************************/
|
||
|
|
||
|
%setting(mcts_max_depth,8).
|
||
|
%setting(mcts_c,0.7). /* see L. Kocsis, C. Szepesvri, and J. Willemson, "Improved Monte-Carlo Search", 2006 */
|
||
|
%setting(mcts_iter,100).
|
||
|
setting(mcts_beamsize,3).
|
||
|
setting(mcts_visits,+inf).
|
||
|
%setting(max_rules,6).
|
||
|
|
||
|
setting(max_var,4).
|
||
|
|
||
|
mcts(File,ParDepth,ParC,ParIter,ParRules,Covering):-
|
||
|
assert(setting(mcts_max_depth,ParDepth)),
|
||
|
assert(setting(mcts_c,ParC)),
|
||
|
assert(setting(mcts_iter,ParIter)),
|
||
|
assert(setting(mcts_covering,Covering)),
|
||
|
( Covering = true ->
|
||
|
assert(setting(max_rules,1)),
|
||
|
assert(setting(mcts_maxrestarts,ParRules))
|
||
|
;
|
||
|
assert(setting(max_rules,ParRules))
|
||
|
),
|
||
|
setting(seed,Seed),
|
||
|
setrand(Seed),
|
||
|
format("\nMonte Carlo Tree Search for LPAD Structure Learning\n",[]),
|
||
|
generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL),
|
||
|
|
||
|
name(File,FileDot),
|
||
|
append(FileDot,".dot",FileDotExt),
|
||
|
name(FileExt,FileDotExt),
|
||
|
assert(filedot(FileExt)),
|
||
|
|
||
|
reconsult(FileL),
|
||
|
load_models(FileKB,DB),
|
||
|
statistics(walltime,[_,_]),
|
||
|
(file_exists(FileBG)->
|
||
|
set(compiling,on),
|
||
|
load(FileBG,_ThBG,RBG),
|
||
|
set(compiling,off),
|
||
|
generate_clauses(RBG,_RBG1,0,[],ThBG),
|
||
|
assert_all(ThBG)
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
(file_exists(FileIn)->
|
||
|
set(compiling,on),
|
||
|
load(FileIn,_Th1,R1),
|
||
|
set(compiling,off)
|
||
|
;
|
||
|
get_head_atoms(LHM,_LH0),
|
||
|
generate_top_cl(LHM,R1)
|
||
|
),
|
||
|
|
||
|
% write('Initial theory'),nl,
|
||
|
% write_rules(R1,user_output),
|
||
|
|
||
|
findall(BL , modeb(_,BL), BLS0),
|
||
|
sort(BLS0,BSL),
|
||
|
assert(mcts_modeb(BSL)),
|
||
|
|
||
|
assert(mcts_restart(1)),
|
||
|
learn_struct_mcts(DB,R1,R2,CLL2),
|
||
|
retract(mcts_restart(_)),
|
||
|
learn_params(DB,R2,R,CLL),
|
||
|
|
||
|
statistics(walltime,[_,WT]),
|
||
|
WTS is WT/1000,
|
||
|
format("~nRefinement CLL ~f - CLL after EMBLEM ~f~n",[CLL2,CLL]),
|
||
|
format("Total execution time ~f~n~n",[WTS]),
|
||
|
write_rules(R,user_output),
|
||
|
listing(setting/2),
|
||
|
format("Model:~n",[]),
|
||
|
open(FileOut,write,Stream),
|
||
|
format(Stream,"/* MCTS Final CLL(da prolog) ~f~n",[CLL]),
|
||
|
format(Stream,"Execution time ~f~n",[WTS]),
|
||
|
tell(Stream),
|
||
|
listing(setting/2),
|
||
|
format(Stream,"*/~n~n",[]),
|
||
|
told,
|
||
|
open(FileOut,append,Stream1),
|
||
|
write_rules(R,Stream1),
|
||
|
close(Stream1).
|
||
|
|
||
|
learn_struct_mcts(DB,R1,R,CLL1):-
|
||
|
generate_clauses(R1,R2,0,[],Th1),
|
||
|
assert_all(Th1),
|
||
|
assert_all(R2),
|
||
|
!,
|
||
|
findall(R-HN,(rule(R,HL,_BL,_Lit),length(HL,HN)),L),
|
||
|
keysort(L,LS),
|
||
|
get_heads(LS,LSH),
|
||
|
length(LSH,NR),
|
||
|
init(NR,LSH),
|
||
|
retractall(v(_,_,_)),
|
||
|
length(DB,NEx),
|
||
|
(setting(examples,atoms) ->
|
||
|
setting(group,G),
|
||
|
derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),
|
||
|
!
|
||
|
;
|
||
|
derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),
|
||
|
!
|
||
|
),
|
||
|
setting(random_restarts_number,N),
|
||
|
format("~nInitial CLL ~f~n~n",[CLL0]),
|
||
|
random_restarts(N,Nodes,CLL0,CLL,initial,Par,LE),
|
||
|
format("CLL after EMBLEM = ~f~n",[CLL]),
|
||
|
retract_all(Th1),
|
||
|
retract_all(R2),
|
||
|
!,
|
||
|
end,
|
||
|
update_theory(R2,Par,R3),
|
||
|
write('updated Theory'),nl,
|
||
|
write_rules(R3,user_output),
|
||
|
|
||
|
|
||
|
assert(mcts_best_score(CLL)),
|
||
|
assert(mcts_best_theory(R3)),
|
||
|
assert(mcts_theories(0)),
|
||
|
|
||
|
assert(mcts_best_theories_iteration([])),
|
||
|
|
||
|
mcts(R3,CLL,DB),
|
||
|
% assert(mcts_best_by_cll(-inf)),
|
||
|
% assert(mcts_best_theory_by_cll([])),
|
||
|
% assert(mcts_best_by_visits(-inf)),
|
||
|
% select_the_best_bycll,
|
||
|
% select_the_best_byvisits,
|
||
|
|
||
|
retract(mcts_best_theories_iteration(BestsIter)),
|
||
|
format("\nBests found at : ~w",[BestsIter]),
|
||
|
|
||
|
retract(mcts_theories(_)),
|
||
|
retract(mcts_best_score(CLLNew)),
|
||
|
retract(mcts_best_theory(RNew)),
|
||
|
|
||
|
( setting(mcts_covering,true) ->
|
||
|
|
||
|
setting(mcts_maxrestarts,MctsRestarts),
|
||
|
mcts_restart(CurrentRestart),
|
||
|
|
||
|
Improvement is CLLNew - CLL,
|
||
|
( (CLLNew > CLL, Improvement > 0.1, CurrentRestart =< MctsRestarts) ->
|
||
|
|
||
|
format("\n---------------- Improvement ~w",[Improvement]),
|
||
|
retractall(node(_, _, _, _, _, _, _)),
|
||
|
retract(setting(max_rules,ParRules)),
|
||
|
ParRules1 is ParRules + 1,
|
||
|
assert(setting(max_rules,ParRules1)),
|
||
|
retract(mcts_restart(Restart)),
|
||
|
Restart1 is Restart + 1,
|
||
|
assert(mcts_restart(Restart1)),
|
||
|
learn_struct_mcts(DB,RNew,R,CLL1)
|
||
|
;
|
||
|
CLL1 = CLLNew,
|
||
|
R = RNew
|
||
|
)
|
||
|
;
|
||
|
CLL1 = CLLNew,
|
||
|
R = RNew
|
||
|
).
|
||
|
|
||
|
|
||
|
/*
|
||
|
retract(mcts_best_by_cll(CLL1)),
|
||
|
% retract(mcts_best_theory_by_visits(_)),
|
||
|
retract(mcts_best_theory_by_cll(R)).
|
||
|
*/
|
||
|
select_the_best_bycll:-
|
||
|
node(_, _, _, CLL, Theory, VISITED, BACKSCORE),
|
||
|
( VISITED >= 0 ->
|
||
|
mcts_best_by_cll(BS),
|
||
|
Score is CLL,
|
||
|
( Score =< 0, Score >= BS ->
|
||
|
format("\n Best Theory ~w\n\t Backscore ~w\n\t Visits ~w\n\t CLL ~w",[Theory,BACKSCORE,VISITED,CLL]),
|
||
|
retract(mcts_best_by_cll(_)),
|
||
|
assert(mcts_best_by_cll(Score)),
|
||
|
retract(mcts_best_theory_by_cll(_)),
|
||
|
assert(mcts_best_theory_by_cll(Theory))
|
||
|
;
|
||
|
true
|
||
|
)
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
fail.
|
||
|
select_the_best_bycll.
|
||
|
|
||
|
select_the_best_byvisits:-
|
||
|
node(_, _, _, CLL, Theory, VISITED, BACKSCORE),
|
||
|
( VISITED >= 0 ->
|
||
|
mcts_best_by_visits(BS),
|
||
|
Score is VISITED,
|
||
|
( Score >= BS ->
|
||
|
format("\n Best Theory ~w\n\t Backscore ~w\n\t Visits ~w\n\t CLL ~w",[Theory,BACKSCORE,VISITED,CLL]),
|
||
|
retract(mcts_best_by_visits(_)),
|
||
|
assert(mcts_best_by_visits(Score))
|
||
|
;
|
||
|
true
|
||
|
)
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
fail.
|
||
|
select_the_best_byvisits.
|
||
|
|
||
|
|
||
|
mcts(InitialTheory,InitialScore,DB):-
|
||
|
% node(ID, CHILDRENS, PARENT, CLL, Theory, VISITED, BACKSCORE)
|
||
|
assert(node(1, [], 0, InitialScore , InitialTheory, 0 , 0)),
|
||
|
assert(lastid(1)),
|
||
|
setting(mcts_iter,I),
|
||
|
assert(mcts_iteration(0)),
|
||
|
cycle_mcts(I,DB),
|
||
|
retract(mcts_iteration(_)),
|
||
|
retract(lastid(Nodes)),
|
||
|
print_graph,
|
||
|
format("\nTree size: ~w nodes.",[Nodes]).
|
||
|
|
||
|
print_graph:-
|
||
|
filedot(FileDot),
|
||
|
open(FileDot,write,S),
|
||
|
format(S,"digraph UCT{\n",[]),
|
||
|
format(S,"graph [splines=line];\n",[]),
|
||
|
format(S,"edge [dir=\"none\"];\n",[]),
|
||
|
format(S,"node [style=\"filled\",label=\"\",shape=point];\n",[]),
|
||
|
|
||
|
print_graph([1],S),
|
||
|
format(S,"}",[]),
|
||
|
close(S).
|
||
|
print_graph([],S).
|
||
|
print_graph([ID|R],S):-
|
||
|
node(ID, Childs, Parent , CLL, Theory, Visited, Backscore),
|
||
|
print_edges(ID,Childs,S),
|
||
|
print_graph(R,S),
|
||
|
print_graph(Childs,S).
|
||
|
print_edges(ID,[],S).
|
||
|
print_edges(ID,[ID1|R],S):-
|
||
|
node(ID1, Childs, Parent , CLL, Theory, Visited, Backscore),
|
||
|
(Visited > 1 ->
|
||
|
format(S,"~w -> ~w;\n",[ID,ID1])
|
||
|
%format(S,"~w [label=\"~w,~w\"] ;\n",[ID1,ID1,Visited])
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
print_edges(ID,R,S).
|
||
|
|
||
|
backup_transposition(1,Reward,_):-
|
||
|
!,
|
||
|
(retract(node(1, Childs, Parent , PSLL, MLN, Visited, Backscore)) ->
|
||
|
true
|
||
|
;
|
||
|
format(user_error,"\nNo node with ID ~w in backup",[NodeID]),
|
||
|
throw(no_node_id(NodeID))
|
||
|
),
|
||
|
Visited1 is Visited + 1,
|
||
|
assert(node(1, Childs, Parent , PSLL, MLN, Visited1, Backscore)).
|
||
|
backup_transposition(NodeID,Reward,ParentsTranspose):-
|
||
|
(retract(node(NodeID, Childs, Parent , PSLL, MLN, Visited, Backscore)) ->
|
||
|
true
|
||
|
;
|
||
|
format(user_error,"\nNo node with ID ~w in backup",[NodeID]),
|
||
|
throw(no_node_id(NodeID))
|
||
|
),
|
||
|
(member(NodeID,ParentsTranspose) ->
|
||
|
Backscore1 is Backscore,
|
||
|
Visited1 is Visited,
|
||
|
format("~w- ",[NodeID])
|
||
|
;
|
||
|
(Visited == 1 -> Backscore1 = Reward ; Backscore1 is Backscore + Reward),
|
||
|
Visited1 is Visited + 1,
|
||
|
format("~w+ ",[NodeID])
|
||
|
),
|
||
|
assert(node(NodeID, Childs, Parent , PSLL, MLN, Visited1, Backscore1)),
|
||
|
backup_transposition(Parent,Reward,ParentsTranspose).
|
||
|
|
||
|
|
||
|
check_transposition(NodeID,Theory,SigmoidValue,ParentsTranspose):-
|
||
|
lastid(Nodes),
|
||
|
check_transposition(Nodes,NodeID,Theory,SigmoidValue,ParentsTranspose).
|
||
|
|
||
|
check_transposition(1,NodeID,_,SigmoidValue,ParentsTranspose):-
|
||
|
!.
|
||
|
check_transposition(Node,NodeID,Theory,SigmoidValue,ParentsTranspose):-
|
||
|
Node \== NodeID,
|
||
|
!,
|
||
|
node(Node, Childs, Parent , CLL, TheoryN, Visited, Backscore),
|
||
|
( same_theory(Theory,TheoryN) ->
|
||
|
format("\n\tTransposition node ~w - node ~w ~w: ",[Node,NodeID,ParentsTranspose]),
|
||
|
backup_transposition(Node,SigmoidValue,ParentsTranspose)
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
Node1 is Node - 1,
|
||
|
check_transposition(Node1,NodeID,Theory,SigmoidValue,ParentsTranspose).
|
||
|
|
||
|
check_transposition(Node,NodeID,Theory,SigmoidValue,ParentsTranspose):-
|
||
|
Node1 is Node - 1,
|
||
|
check_transposition(Node1,NodeID,Theory,SigmoidValue,ParentsTranspose).
|
||
|
|
||
|
|
||
|
backup_amaf(1,Reward,_):-
|
||
|
!,
|
||
|
(retract(node(1, Childs, Parent , PSLL, MLN, Visited, Backscore)) ->
|
||
|
true
|
||
|
;
|
||
|
format(user_error,"\nNo node with ID ~w in backup",[NodeID]),
|
||
|
throw(no_node_id(NodeID))
|
||
|
),
|
||
|
Visited1 is Visited + 1,
|
||
|
assert(node(1, Childs, Parent , PSLL, MLN, Visited1, Backscore)).
|
||
|
backup_amaf(NodeID,Reward,ParentsTranspose):-
|
||
|
(retract(node(NodeID, Childs, Parent , PSLL, MLN, Visited, Backscore)) ->
|
||
|
true
|
||
|
;
|
||
|
format(user_error,"\nNo node with ID ~w in backup",[NodeID]),
|
||
|
throw(no_node_id(NodeID))
|
||
|
),
|
||
|
(member(NodeID,ParentsTranspose) ->
|
||
|
Backscore1 is Backscore,
|
||
|
Visited1 is Visited
|
||
|
% format("~w- ",[NodeID])
|
||
|
;
|
||
|
SigmoidValue is 1 / (1 - PSLL),
|
||
|
( PSLL = 1 ->
|
||
|
Backscore1 is Backscore + Reward
|
||
|
;
|
||
|
( Reward > SigmoidValue ->
|
||
|
Backscore1 is Backscore + Reward
|
||
|
;
|
||
|
Backscore1 is Backscore + SigmoidValue
|
||
|
% Backscore1 is Backscore + Reward
|
||
|
)
|
||
|
),
|
||
|
|
||
|
Visited1 is Visited + 1
|
||
|
% format("~w+ ",[NodeID])
|
||
|
),
|
||
|
assert(node(NodeID, Childs, Parent , PSLL, MLN, Visited1, Backscore1)).
|
||
|
%%% backup_amaf(Parent,Reward,ParentsTranspose).
|
||
|
|
||
|
|
||
|
check_amaf(NodeID,Theory,SigmoidValue,ParentsTranspose):-
|
||
|
lastid(Nodes),
|
||
|
format("\nChecking amaf: node ~w, parents ~w: ",[NodeID,ParentsTranspose]),
|
||
|
check_amaf(Nodes,NodeID,Theory,SigmoidValue,ParentsTranspose).
|
||
|
|
||
|
check_amaf(1,NodeID,_,SigmoidValue,ParentsTranspose):-
|
||
|
retract(node(1, Childs, Parent , PSLL, MLN, Visited, Backscore)),
|
||
|
Visited1 is Visited + 1,
|
||
|
assert(node(1, Childs, Parent , PSLL, MLN, Visited1, Backscore)),
|
||
|
!.
|
||
|
check_amaf(Node,NodeID,Theory,SigmoidValue,ParentsTranspose):-
|
||
|
Node \== NodeID,
|
||
|
!,
|
||
|
node(Node, Childs, Parent , CLL, TheoryN, Visited, Backscore),
|
||
|
( subsume_theory(TheoryN,Theory) ->
|
||
|
%%% format("\n\t ~w ~w: ",[TheoryN,Theory]),
|
||
|
backup_amaf(Node,SigmoidValue,ParentsTranspose)
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
Node1 is Node - 1,
|
||
|
check_amaf(Node1,NodeID,Theory,SigmoidValue,ParentsTranspose).
|
||
|
|
||
|
check_amaf(Node,NodeID,Theory,SigmoidValue,ParentsTranspose):-
|
||
|
Node1 is Node - 1,
|
||
|
check_amaf(Node1,NodeID,Theory,SigmoidValue,ParentsTranspose).
|
||
|
|
||
|
|
||
|
subsume_theory(Theory,TheoryN):-
|
||
|
copy_term(Theory,Theory1),
|
||
|
skolemize(TheoryN,TheoryN1),
|
||
|
subsume_theory1(Theory1,TheoryN1),
|
||
|
!.
|
||
|
|
||
|
/*skolemize(Theory,Theory1):-
|
||
|
copy_term(Theory,Theory1),
|
||
|
term_variables(Theory1,Vars),
|
||
|
skolemize1(Vars,1).
|
||
|
|
||
|
skolemize1([],_).
|
||
|
skolemize1([Var|R],K):-
|
||
|
atomic_list_concat([s,K],Skolem),
|
||
|
Var = Skolem,
|
||
|
K1 is K + 1,
|
||
|
skolemize1(R,K1).
|
||
|
*/
|
||
|
|
||
|
subsume_theory1([],_).
|
||
|
subsume_theory1([Rule|R],TheoryN):-
|
||
|
subsume_theory2(Rule,TheoryN,NewTheoryN),
|
||
|
subsume_theory1(R,NewTheoryN).
|
||
|
|
||
|
subsume_theory2(Rule,[Rule1|R],R):-
|
||
|
Rule = rule(_,[H: _, _: _],Body,_),
|
||
|
Rule1 = rule(_,[H1: _, _: _],Body1,_),
|
||
|
H = H1,
|
||
|
subsume_body(Body,Body1),
|
||
|
!.
|
||
|
subsume_theory2(Rule,[Rule1|R],[Rule1|R1]):-
|
||
|
subsume_theory2(Rule,R,R1).
|
||
|
|
||
|
|
||
|
subsume_body(Body,Body1):-
|
||
|
length(Body,L),
|
||
|
length(Body1,L1),
|
||
|
L =< L1,
|
||
|
subsume_body1(Body,Body1).
|
||
|
subsume_body1([],_).
|
||
|
subsume_body1([L|R],Body):-
|
||
|
nth(_,Body,L,Rest),
|
||
|
subsume_body1(R,Rest).
|
||
|
|
||
|
|
||
|
|
||
|
same_theory(Theory0,TheoryN):-
|
||
|
copy_term(Theory0,Theory),
|
||
|
length(Theory,L),
|
||
|
length(TheoryN,L),
|
||
|
same_theory1(Theory,TheoryN),
|
||
|
!.
|
||
|
|
||
|
same_theory1([],[]).
|
||
|
same_theory1([Rule|R],TheoryN):-
|
||
|
same_theory2(Rule,TheoryN,NewTheoryN),
|
||
|
same_theory1(R,NewTheoryN).
|
||
|
|
||
|
same_theory2(Rule,[Rule1|R],R):-
|
||
|
Rule = rule(_,[H: _, _: _],Body,_),
|
||
|
Rule1 = rule(_,[H1: _, _: _],Body1,_),
|
||
|
H = H1,
|
||
|
same_body(Body,Body1),
|
||
|
!.
|
||
|
same_theory2(Rule,[Rule1|R],[Rule1|R1]):-
|
||
|
same_theory2(Rule,R,R1).
|
||
|
|
||
|
|
||
|
same_body(Body,Body1):-
|
||
|
length(Body,L),
|
||
|
length(Body1,L),
|
||
|
same_body1(Body,Body1).
|
||
|
same_body1([],[]).
|
||
|
same_body1([L|R],Body):-
|
||
|
nth(_,Body,L,Rest),
|
||
|
same_body1(R,Rest).
|
||
|
|
||
|
%
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
cycle_mcts(0,_):-
|
||
|
!.
|
||
|
cycle_mcts(K,DB):-
|
||
|
setting(mcts_iter,MaxI),
|
||
|
Iteration is MaxI - K + 1,
|
||
|
retract(mcts_iteration(_)),
|
||
|
assert(mcts_iteration(Iteration)),
|
||
|
format("\nIteration ~w",[Iteration]),
|
||
|
tree_policy(1,NodeID,DB,1,Depth),
|
||
|
( node(NodeID, Childs, Parent , CLL, Theory, Visited, Backscore) ->
|
||
|
%% do update with the sigmoid of the Score
|
||
|
%% SigmoidValue is ((1 / (1 + exp(-PSLL)))/0.5),
|
||
|
%% format("\n~w: ~w ~w Sigmoid ~w",[K,MLN,PSLL,SigmoidValue]),
|
||
|
setting(mcts_max_depth, MaxDepth),
|
||
|
random(1,MaxDepth,MaxDepth1),
|
||
|
default_policy(Theory,-inf,Reward,_,BestDefaultTheory,DB,1,MaxDepth1),
|
||
|
% do update with the sigmoid of the Score
|
||
|
%%% SigmoidValue is ((1 / (1 + exp(-Reward)))/0.5),
|
||
|
|
||
|
|
||
|
SigmoidValue is 1 / (1 - Reward),
|
||
|
|
||
|
( SigmoidValue > 0 ->
|
||
|
|
||
|
% (Reward > CLL ->
|
||
|
% SigmoidValue = 1
|
||
|
% ;
|
||
|
% SigmoidValue = 0
|
||
|
% ),
|
||
|
|
||
|
%%% format("\n~w: ~w \nReward ~w Sigmoid ~w",[K,Theory,Reward,SigmoidValue]),
|
||
|
format("\n[Backup reward ~w]",[SigmoidValue]),
|
||
|
backup(NodeID,SigmoidValue,Parents),
|
||
|
% check_transposition(NodeID,Theory,SigmoidValue,Parents),
|
||
|
check_amaf(NodeID,BestDefaultTheory,SigmoidValue,Parents)
|
||
|
;
|
||
|
format("\n--> no default policy expansion",[])
|
||
|
),
|
||
|
K1 is K - 1,
|
||
|
%%% read(_),
|
||
|
cycle_mcts(K1,DB)
|
||
|
;
|
||
|
format("\n--> tree policy end",[])
|
||
|
).
|
||
|
|
||
|
check_pruning(ID):-
|
||
|
node(ID, Childs, Parent , CLL, Theory, VISITED, BACKSCORE),
|
||
|
Childs \== [],
|
||
|
length(Childs,NumChilds),
|
||
|
setting(mcts_beamsize,BeamSize),
|
||
|
NumChilds > BeamSize,
|
||
|
!,
|
||
|
setting(mcts_visits,NumVisits),
|
||
|
check_pruning(Childs,ID,NumVisits,BeamSize,NewChilds),
|
||
|
retract(node(ID, Childs, Parent , CLL, Theory, VISITED, BACKSCORE)),
|
||
|
assert(node(ID, NewChilds, Parent , CLL, Theory, VISITED, BACKSCORE)).
|
||
|
check_pruning(_ID).
|
||
|
|
||
|
check_pruning(Childs,ID,NumVisits,BeamSize,Childs2):-
|
||
|
check_pruning1(Childs,NumVisits,ToPrune,Childs1),
|
||
|
length(Childs1,L1),
|
||
|
L1 > BeamSize,
|
||
|
ToPrune == 1,
|
||
|
!,
|
||
|
choose_best_childs(Childs1,BeamSize,Childs2),
|
||
|
format("\n#Pruning tree ~w ~w",[ID,Childs2]),flush_output,
|
||
|
prune(Childs,Childs2).
|
||
|
check_pruning(Childs,_,_NumVisits,_BeamSize,Childs).
|
||
|
|
||
|
|
||
|
choose_best_childs(Childs,BeamSize,Childs1):-
|
||
|
add_visisted(Childs,ChildsV),
|
||
|
keysort(ChildsV,ChildsV1),
|
||
|
remove_visisted(ChildsV1,ChildsV2),
|
||
|
length(Childs1,BeamSize),
|
||
|
append(Childs1,_,ChildsV2),!.
|
||
|
|
||
|
|
||
|
remove_visisted([],[]).
|
||
|
remove_visisted([V-ID|R],[ID|R1]):-
|
||
|
remove_visisted(R,R1).
|
||
|
|
||
|
add_visisted([],[]).
|
||
|
add_visisted([ID|R],[V-ID|R1]):-
|
||
|
node(ID, Childs, Parent , CLL, Theory, VISITED, BACKSCORE),
|
||
|
V is -1 * VISITED,
|
||
|
add_visisted(R,R1).
|
||
|
|
||
|
prune([],_Childs1).
|
||
|
prune([ID|R],Childs1):-
|
||
|
member(ID,Childs1),
|
||
|
!,
|
||
|
prune(R,Childs1).
|
||
|
prune([ID|R],Childs1):-
|
||
|
prune_sub_tree(ID),
|
||
|
prune(R,Childs1).
|
||
|
|
||
|
prune_sub_tree(ID):-
|
||
|
retract(node(ID, Childs, _Parent , _CLL, _Theory, _VISITED, _BACKSCORE)),
|
||
|
prune_sub_tree1(Childs).
|
||
|
|
||
|
prune_sub_tree1([]).
|
||
|
prune_sub_tree1([ID|R]):-
|
||
|
retract(node(ID, Childs, _Parent , _CLL, _Theory, _VISITED, _BACKSCORE)),
|
||
|
prune_sub_tree1(Childs),
|
||
|
prune_sub_tree1(R).
|
||
|
|
||
|
|
||
|
check_pruning1([],_NumVisits,1,[]).
|
||
|
check_pruning1([ID|R],NumVisits,ToPrune,[ID|R1]):-
|
||
|
node(ID, _Childs, _Parent , CLL, _Theory, VISITED, _BACKSCORE),
|
||
|
(CLL == 1 ->
|
||
|
ToPrune = 0,
|
||
|
R1 = [],
|
||
|
!
|
||
|
;
|
||
|
VISITED >= NumVisits,
|
||
|
!,
|
||
|
check_pruning1(R,NumVisits,ToPrune,R1)
|
||
|
).
|
||
|
check_pruning1([ID|R],NumVisits,ToPrune,R1):-
|
||
|
check_pruning1(R,NumVisits,ToPrune,R1).
|
||
|
|
||
|
|
||
|
|
||
|
tree_policy(ID,NodeID,DB,Od,Nd):-
|
||
|
% check_pruning(ID),
|
||
|
|
||
|
|
||
|
(retract(node(ID, Childs, Parent , CLL, Theory, VISITED, BACKSCORE)) ->
|
||
|
true
|
||
|
;
|
||
|
throw(no_node_id(ID))
|
||
|
),
|
||
|
%%% format("\n Tree policy ~w ~w ~w",[Theory,VISITED, BACKSCORE]),
|
||
|
format("\n[Tree Policy ~w, ~w, ~w] ",[ID,VISITED,BACKSCORE]), flush_output,
|
||
|
%%% ( VISITED = 0, ID \= 1 ->
|
||
|
( CLL = 1, ID \= 1 ->
|
||
|
score_theory(Theory,DB,CLL1,BestTheory,NewTheory),
|
||
|
mcts_best_score(BestScore),
|
||
|
|
||
|
% Ratio is BestScore / CLL1,
|
||
|
% ( Ratio > 1.001 ->
|
||
|
|
||
|
|
||
|
( setting(mcts_covering,true) ->
|
||
|
length(NewTheory,NewTheoryL), %lemurc
|
||
|
length(Theory,TheoryL),
|
||
|
( NewTheoryL = TheoryL ->
|
||
|
LengthCondition = true
|
||
|
;
|
||
|
LengthCondition = false
|
||
|
)
|
||
|
;
|
||
|
LengthCondition = true
|
||
|
),
|
||
|
|
||
|
|
||
|
( (CLL1 > BestScore, LengthCondition = true) ->
|
||
|
format("\n[New best score: ~w ~w]",[CLL1, BestTheory]),flush_output,
|
||
|
|
||
|
|
||
|
retract(mcts_best_score(_)),
|
||
|
retract(mcts_best_theory(_)),
|
||
|
assert(mcts_best_score(CLL1)),
|
||
|
assert(mcts_best_theory(NewTheory)),
|
||
|
|
||
|
retract(mcts_best_theories_iteration(BestsIter)),
|
||
|
mcts_iteration(Iteration),
|
||
|
append(BestsIter,[Iteration],BestsIter1),
|
||
|
assert(mcts_best_theories_iteration(BestsIter1)),
|
||
|
|
||
|
retract(mcts_theories(Mlns)),
|
||
|
Mlns1 is Mlns + 1,
|
||
|
assert(mcts_theories(Mlns1))
|
||
|
;
|
||
|
true
|
||
|
)
|
||
|
;
|
||
|
CLL1 = CLL,
|
||
|
NewTheory = Theory
|
||
|
),
|
||
|
|
||
|
Visited1 is VISITED + 1,
|
||
|
|
||
|
% (CLL = 1 ->
|
||
|
% Visited2 = Visited1,
|
||
|
% (Visited2 == 2 -> Backscore1 = BACKSCORE ; Backscore1 = 0) % in this case the node has been visited by transposition
|
||
|
% ;
|
||
|
% Visited2 = Visited1,
|
||
|
% Backscore1 = BACKSCORE
|
||
|
% ),
|
||
|
|
||
|
Visited2 = Visited1,
|
||
|
Backscore1 = BACKSCORE,
|
||
|
|
||
|
|
||
|
(Childs == [] ->
|
||
|
Nd = Od,
|
||
|
expand(ID, Theory, CLL1, DB, NodeID, Childs1),
|
||
|
assert(node(ID, Childs1, Parent , CLL1, NewTheory, Visited2, Backscore1))
|
||
|
;
|
||
|
Od1 is Od + 1,
|
||
|
minmaxvalue(Childs,MinV,MaxV),
|
||
|
% mean_value_level(Childs,Mvl),
|
||
|
once(uct(Childs, VISITED, MinV, MaxV, BestChild)),
|
||
|
% once(uct(Childs, VISITED, BestChild)),
|
||
|
tree_policy(BestChild,NodeID,DB,Od1, Nd),
|
||
|
assert(node(ID, Childs, Parent , CLL1, NewTheory, Visited2, Backscore1))
|
||
|
).
|
||
|
|
||
|
|
||
|
|
||
|
default_policy(Theory, Reward, Reward, BestDefaultTheory,BestDefaultTheory,DB, Depth, MaxDepth):-
|
||
|
Depth > MaxDepth,
|
||
|
!.
|
||
|
default_policy(Theory,PrevR,Reward,PrevBestDefaultTheory,BestDefaultTheory,DB,Depth,MaxDepth):-
|
||
|
%%% format("\nDefault policy",[]),flush_output,
|
||
|
format("\n[Default Policy ~w]",[Depth]),
|
||
|
theory_revisions_r(Theory,Revisions),
|
||
|
( Revisions \== [] ->
|
||
|
length(Revisions,L),
|
||
|
random(0,L,K),
|
||
|
nth0(K, Revisions,Spec),
|
||
|
Depth1 is Depth + 1,
|
||
|
|
||
|
|
||
|
score_theory(Spec,DB,Score,BestTheory,NewTheory),
|
||
|
|
||
|
( setting(mcts_covering,true) ->
|
||
|
length(NewTheory,NewTheoryL), %lemurc
|
||
|
length(Spec,TheoryL),
|
||
|
( NewTheoryL = TheoryL ->
|
||
|
LengthCondition = true
|
||
|
;
|
||
|
LengthCondition = false
|
||
|
)
|
||
|
;
|
||
|
LengthCondition = true
|
||
|
),
|
||
|
|
||
|
|
||
|
( (Score > PrevR, LengthCondition = true) ->
|
||
|
Reward1 = Score,
|
||
|
BestDefaultTheory1 = NewTheory
|
||
|
;
|
||
|
Reward1 = PrevR,
|
||
|
BestDefaultTheory1 = PrevBestDefaultTheory
|
||
|
),
|
||
|
|
||
|
format(" cll-reward ~w",[Reward1]),
|
||
|
|
||
|
mcts_best_score(BestScore),
|
||
|
|
||
|
|
||
|
( (Score > BestScore, LengthCondition = true) ->
|
||
|
format("\n[New best score: ~w ~w]",[Score, BestTheory]),flush_output,
|
||
|
|
||
|
|
||
|
retract(mcts_best_score(_)),
|
||
|
retract(mcts_best_theory(_)),
|
||
|
assert(mcts_best_score(Score)),
|
||
|
assert(mcts_best_theory(NewTheory)),
|
||
|
|
||
|
retract(mcts_best_theories_iteration(BestsIter)),
|
||
|
mcts_iteration(Iteration),
|
||
|
append(BestsIter,[Iteration],BestsIter1),
|
||
|
assert(mcts_best_theories_iteration(BestsIter1)),
|
||
|
|
||
|
|
||
|
retract(mcts_theories(Mlns)),
|
||
|
Mlns1 is Mlns + 1,
|
||
|
assert(mcts_theories(Mlns1))
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
|
||
|
|
||
|
|
||
|
default_policy(Spec, Reward1,Reward, BestDefaultTheory1,BestDefaultTheory,DB, Depth1,MaxDepth)
|
||
|
|
||
|
;
|
||
|
Reward = PrevR,
|
||
|
BestDefaultTheory = PrevBestDefaultTheory
|
||
|
/*
|
||
|
|
||
|
%%% format("\n\t Default ~w",[Theory]),
|
||
|
score_theory(Theory,DB,Score,BestTheory),
|
||
|
|
||
|
(Score > PrevR ->
|
||
|
Reward = Score
|
||
|
;
|
||
|
Reward = PrevR
|
||
|
),
|
||
|
|
||
|
mcts_best_score(BestScore),
|
||
|
|
||
|
|
||
|
( Score > BestScore ->
|
||
|
format("\n[New best score: ~w ~w]",[Score, BestTheory]),flush_output,
|
||
|
|
||
|
retract(mcts_best_score(_)),
|
||
|
retract(mcts_best_theory(_)),
|
||
|
assert(mcts_best_score(Score)),
|
||
|
assert(mcts_best_theory(BestTheory)),
|
||
|
|
||
|
retract(mcts_best_theories_iteration(BestsIter)),
|
||
|
mcts_iteration(Iteration),
|
||
|
append(BestsIter,[Iteration],BestsIter1),
|
||
|
assert(mcts_best_theories_iteration(BestsIter1)),
|
||
|
|
||
|
|
||
|
retract(mcts_theories(Mlns)),
|
||
|
Mlns1 is Mlns + 1,
|
||
|
assert(mcts_theories(Mlns1))
|
||
|
;
|
||
|
true
|
||
|
)
|
||
|
|
||
|
|
||
|
*/
|
||
|
|
||
|
).
|
||
|
|
||
|
|
||
|
minmaxvalue(Childs,MinV,MaxV):-
|
||
|
Childs = [F|R],
|
||
|
node(F, _, _ , _, _, Visits, Reward),
|
||
|
V is Reward / Visits,
|
||
|
minmaxvalue(R,V,V,MinV,MaxV).
|
||
|
|
||
|
minmaxvalue([],Min,Max,Min,Max).
|
||
|
minmaxvalue([C|R],PrevMin,PrevMax,MinV,MaxV):-
|
||
|
node(C, _, _ , _, _, Visits, Reward),
|
||
|
V is Reward / Visits,
|
||
|
( V > PrevMax ->
|
||
|
Max1 is V
|
||
|
;
|
||
|
Max1 is PrevMax
|
||
|
),
|
||
|
( V < PrevMin ->
|
||
|
Min1 is V
|
||
|
;
|
||
|
Min1 is PrevMin
|
||
|
),
|
||
|
minmaxvalue(R,Min1,Max1,MinV,MaxV).
|
||
|
mean_value_level(Cs,M):-
|
||
|
mean_value_level1(Cs,Me),
|
||
|
length(Me,L),
|
||
|
sum_list(Me,S),
|
||
|
M is S / L.
|
||
|
mean_value_level1([],[]).
|
||
|
mean_value_level1([C|R],M1):-
|
||
|
node(C, _, _ , 1, _, _Visits, _Reward),
|
||
|
!,
|
||
|
mean_value_level1(R,M1).
|
||
|
mean_value_level1([C|R],[M|Rm]):-
|
||
|
node(C, _, _ , _, _, Visits, Reward),
|
||
|
!,
|
||
|
mean_value_level1(R,Rm),
|
||
|
M is (Reward / Visits).
|
||
|
|
||
|
/*
|
||
|
uct(Childs, ParentVisits, BestChild):-
|
||
|
%%% format("\nUCT ",[]),
|
||
|
Childs = [FirstChild|RestChilds],
|
||
|
node(FirstChild, _, _ , _, Theory, Visits, Reward),
|
||
|
( Visits == 0 ->
|
||
|
BestChild = FirstChild
|
||
|
;
|
||
|
setting(mcts_c,C),
|
||
|
UCT is Reward / Visits + 2 * C * sqrt(2 * log(ParentVisits) / Visits),
|
||
|
%%% format("~w ",[UCT]),
|
||
|
uct(RestChilds, UCT, ParentVisits, FirstChild, BestChild)
|
||
|
).
|
||
|
|
||
|
|
||
|
uct([], _CurrentBestUCT, _ParentVisits, BestChild, BestChild).
|
||
|
uct([Child|RestChilds], CurrentBestUCT, ParentVisits, CurrentBestChild, BestChild) :-
|
||
|
node(Child, _, _ , _, Theory, Visits, Reward),
|
||
|
( Visits == 0 ->
|
||
|
BestChild = Child
|
||
|
;
|
||
|
setting(mcts_c,C),
|
||
|
UCT is Reward / Visits + 2 * C * sqrt(2 * log(ParentVisits) / Visits),
|
||
|
%%% format("~w ",[UCT]),flush_output,
|
||
|
(UCT > CurrentBestUCT ->
|
||
|
uct(RestChilds, UCT, ParentVisits, Child, BestChild)
|
||
|
;
|
||
|
uct(RestChilds, CurrentBestUCT, ParentVisits, CurrentBestChild, BestChild)
|
||
|
)
|
||
|
).
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
uct(Childs, ParentVisits, Min, Max, BestChild):-
|
||
|
%%% format("\nUCT ",[]),
|
||
|
Childs = [FirstChild|RestChilds],
|
||
|
node(FirstChild, _, _ , Score, Theory, Visits, Reward),
|
||
|
( Visits == 0 ->
|
||
|
BestChild = FirstChild
|
||
|
;
|
||
|
setting(mcts_c,C),
|
||
|
% (Score == 1 ->
|
||
|
% R is Mvl
|
||
|
% ;
|
||
|
% R is Reward
|
||
|
% ),
|
||
|
R is Reward,
|
||
|
AA is ((R / Visits) - Min ) / (Max-Min),
|
||
|
BB is 2 * C * sqrt(2 * log(ParentVisits) / Visits),
|
||
|
UCT is ((R / Visits) - Min ) / (Max-Min) + 2 * C * sqrt(2 * log(ParentVisits) / Visits),
|
||
|
%%% format("\nID ~w UCT ~w ~w/~w=~w ~w",[FirstChild,UCT,R,Visits,AA,BB]),
|
||
|
%%% format("\n\t ~w ~w",[Score,Theory]),
|
||
|
%%% format("~w ",[UCT]),
|
||
|
uct(RestChilds, UCT, ParentVisits, FirstChild, Min,Max, BestChild)
|
||
|
).
|
||
|
|
||
|
|
||
|
uct([], _CurrentBestUCT, _ParentVisits, BestChild, _, _,BestChild).
|
||
|
uct([Child|RestChilds], CurrentBestUCT, ParentVisits, CurrentBestChild, Min, Max,BestChild) :-
|
||
|
node(Child, _, _ , Score, Theory, Visits, Reward),
|
||
|
( Visits == 0 ->
|
||
|
BestChild = Child
|
||
|
;
|
||
|
setting(mcts_c,C),
|
||
|
% (Score == 1 ->
|
||
|
% R is Mvl
|
||
|
% ;
|
||
|
% R is Reward
|
||
|
% ),
|
||
|
R is Reward,
|
||
|
AA is ((R / Visits) - Min ) / (Max-Min),
|
||
|
BB is 2 * C * sqrt(2 * log(ParentVisits) / Visits),
|
||
|
UCT is ((R / Visits) - Min ) / (Max-Min) + 2 * C * sqrt(2 * log(ParentVisits) / Visits),
|
||
|
%%% format("\nID ~w UCT ~w ~w/~w=~w ~w",[Child,UCT,R,Visits,AA,BB]),
|
||
|
%%% format("\n\t ~w ~w",[Score,Theory]),
|
||
|
%%% format("~w ",[UCT]),flush_output,
|
||
|
(UCT > CurrentBestUCT ->
|
||
|
uct(RestChilds, UCT, ParentVisits, Child, Min, Max, BestChild)
|
||
|
;
|
||
|
uct(RestChilds, CurrentBestUCT, ParentVisits, CurrentBestChild, Min, Max, BestChild)
|
||
|
)
|
||
|
).
|
||
|
|
||
|
|
||
|
expand(ID, Theory, ParentCLL, DB, NodeID, Childs):-
|
||
|
%%% format(" expanding...",[]),flush_output,
|
||
|
theory_revisions(Theory,Revisions),
|
||
|
!,
|
||
|
assert_childs(Revisions,ID,ParentCLL,Childs),
|
||
|
(Childs \= [] ->
|
||
|
Childs = [NodeID|_],
|
||
|
retract(node(NodeID, Childs1, Parent , _, Theory1, Visited, Backscore)),
|
||
|
format("\n[Expand ~w]",[NodeID]),
|
||
|
Visited1 is Visited + 1,
|
||
|
score_theory(Theory1,DB,CLL,BestTheory,NewTheory),
|
||
|
format(" CLL: ~w]",[CLL]),
|
||
|
%%%format("\nTree policy: ~w ~w]",[Score, Theory1]),
|
||
|
mcts_best_score(BestScore),
|
||
|
|
||
|
% Ratio is BestScore / CLL,
|
||
|
% ( Ratio > 1.001 ->
|
||
|
|
||
|
|
||
|
( setting(mcts_covering,true) ->
|
||
|
length(NewTheory,NewTheoryL), %lemurc
|
||
|
length(Theory1,Theory1L),
|
||
|
( NewTheoryL = Theory1L ->
|
||
|
LengthCondition = true
|
||
|
;
|
||
|
LengthCondition = false
|
||
|
)
|
||
|
;
|
||
|
LengthCondition = true
|
||
|
),
|
||
|
|
||
|
|
||
|
( (CLL > BestScore, LengthCondition = true) ->
|
||
|
format("\n[New best score: ~w ~w]",[CLL, BestTheory]),flush_output,
|
||
|
retract(mcts_best_score(_)),
|
||
|
retract(mcts_best_theory(_)),
|
||
|
assert(mcts_best_score(CLL)),
|
||
|
assert(mcts_best_theory(NewTheory)),
|
||
|
|
||
|
retract(mcts_best_theories_iteration(BestsIter)),
|
||
|
mcts_iteration(Iteration),
|
||
|
append(BestsIter,[Iteration],BestsIter1),
|
||
|
assert(mcts_best_theories_iteration(BestsIter1)),
|
||
|
|
||
|
|
||
|
retract(mcts_theories(Mlns)),
|
||
|
Mlns1 is Mlns + 1,
|
||
|
assert(mcts_theories(Mlns1))
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
assert(node(NodeID, Childs1, Parent , CLL, NewTheory, Visited1, Backscore))
|
||
|
;
|
||
|
NodeID = -1
|
||
|
).
|
||
|
%%% format(" END",[]),flush_output.
|
||
|
|
||
|
assert_childs([],_,_,[]).
|
||
|
assert_childs([Spec|Rest],P,PCLL,[ID1|Childs]):-
|
||
|
% node(ID, CHILDRENS, PARENT, PSLL, MLN, VISITED, BACKSCORE)
|
||
|
retract(lastid(ID)),
|
||
|
%%% format(" ~w",[ID]),flush_output,
|
||
|
ID1 is ID + 1,
|
||
|
assert(lastid(ID1)),
|
||
|
% SigmoidValue is ((1 / (1 + exp(-PCLL)))/0.5),
|
||
|
SigmoidValue is 1 / (1 - PCLL),
|
||
|
%format(" ~w",[ID1]),
|
||
|
%%% score_theory(Spec,DB,CLL),
|
||
|
assert(node(ID1, [], P, 1 , Spec, 1 , SigmoidValue)),
|
||
|
%% assert(node(ID1, [], P, 1 , Spec, 0 , 0)),
|
||
|
assert_childs(Rest,P,PCLL,Childs).
|
||
|
|
||
|
|
||
|
theory_length([],X,X).
|
||
|
theory_length([T|R],K,K1):-
|
||
|
theory_length(R,K,K0),
|
||
|
T = rule(_,_,B,_),
|
||
|
length(B,L),
|
||
|
( L > K0 ->
|
||
|
K1 = L
|
||
|
;
|
||
|
K1 = K0
|
||
|
).
|
||
|
|
||
|
score_theory(Theory0,DB,Score,Theory,R3):-
|
||
|
|
||
|
( mcts_theories(0) ->
|
||
|
Theory = Theory0
|
||
|
;
|
||
|
theory_length(Theory0,0,Le),
|
||
|
( Le > 1 ->
|
||
|
% mcts_best_theory(TheoryBest),
|
||
|
% append(TheoryBest,Theory0,Theory)
|
||
|
Theory = Theory0
|
||
|
;
|
||
|
Theory = Theory0
|
||
|
)
|
||
|
),
|
||
|
|
||
|
|
||
|
%%% format(" Scoring....",[]),flush_output,
|
||
|
%%% write_rules(Theory,user_output), flush_output,
|
||
|
generate_clauses(Theory,R2,0,[],Th1),
|
||
|
%%% format("\n ~w\n ~w\n ~w",[Theory,R2,Th1]),
|
||
|
assert_all(Th1),
|
||
|
assert_all(R2),!,
|
||
|
findall(RN-HN,(rule(RN,HL,_BL,_Lit),length(HL,HN)),L),
|
||
|
keysort(L,LS),
|
||
|
get_heads(LS,LSH),
|
||
|
length(LSH,NR),
|
||
|
init(NR,LSH),
|
||
|
retractall(v(_,_,_)),
|
||
|
length(DB,NEx),
|
||
|
(setting(examples,atoms)->
|
||
|
setting(group,G),
|
||
|
derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),!
|
||
|
;
|
||
|
derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),!
|
||
|
),
|
||
|
setting(random_restarts_REFnumber,N),
|
||
|
random_restarts(N,Nodes,-inf,CLL,initial,Par,LE),
|
||
|
end,
|
||
|
|
||
|
%%% format("\n Score ~w ~w",[CLL0,CLL]),
|
||
|
update_theory_par(R2,Par,R3),
|
||
|
|
||
|
%%%write('Updated refinement'),nl,
|
||
|
%% nl,nl,write_rules(R3,user_output),
|
||
|
Score = CLL,
|
||
|
%%% nl,write('Score (CLL) '),write(Score),nl,nl,nl,
|
||
|
retract_all(Th1),
|
||
|
retract_all(R2),
|
||
|
%%% format(" End",[]),flush_output,
|
||
|
!.
|
||
|
|
||
|
backup(1,Reward,[]):-
|
||
|
!.
|
||
|
backup(NodeID,Reward,[Parent|R]):-
|
||
|
(retract(node(NodeID, Childs, Parent , PSLL, MLN, Visited, Backscore)) ->
|
||
|
true
|
||
|
;
|
||
|
format(user_error,"\nNo node with ID ~w in backup",[NodeID]),
|
||
|
throw(no_node_id(NodeID))
|
||
|
),
|
||
|
SigmoidValue is 1 / (1 - PSLL),
|
||
|
( Reward > SigmoidValue ->
|
||
|
Backscore1 is Backscore + Reward,
|
||
|
Reward1 is Reward
|
||
|
;
|
||
|
Backscore1 is Backscore + SigmoidValue,
|
||
|
Reward1 is SigmoidValue
|
||
|
% Backscore1 is Backscore + Reward,
|
||
|
% Reward1 is Reward
|
||
|
),
|
||
|
%%% format("\n backup ~w ~w",[NodeID,MLN]),
|
||
|
assert(node(NodeID, Childs, Parent , PSLL, MLN, Visited, Backscore1)),
|
||
|
backup(Parent,Reward1,R).
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
__END__
|
||
|
New source code for MCLPADS
|
||
|
**************************************/
|
||
|
|