This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CLPBN/clpbn/gibbs.yap

547 lines
15 KiB
Plaintext
Raw Normal View History

%
% each variable is represented by a node in a binary tree.
% each node contains:
% key,
% current_value
% Markov Blanket
%
:- module(clpbn_gibbs,
[gibbs/3,
check_if_gibbs_done/1,
2008-11-01 11:51:36 +00:00
init_gibbs_solver/4,
run_gibbs_solver/3]).
:- use_module(library(rbtrees),
[rb_new/1,
rb_insert/4,
rb_lookup/3]).
:- use_module(library(lists),
[member/2,
append/3,
delete/3,
max_list/2,
sum_list/2]).
:- use_module(library(ordsets),
[ord_subtract/3]).
:- use_module(library('clpbn/matrix_cpt_utils'), [
project_from_CPT/3,
reorder_CPT/5,
multiply_possibly_deterministic_factors/3,
column_from_possibly_deterministic_CPT/3,
normalise_possibly_deterministic_CPT/2,
list_from_CPT/2]).
:- use_module(library('clpbn/utils'), [
check_for_hidden_vars/3]).
:- use_module(library('clpbn/dists'), [
get_possibly_deterministic_dist_matrix/5,
get_dist_domain_size/2]).
:- use_module(library('clpbn/topsort'), [
topsort/2]).
:- use_module(library('clpbn/display'), [
clpbn_bind_vals/3]).
2008-11-01 11:51:36 +00:00
:- use_module(library('clpbn/connected'),
[
influences/4
]).
:- dynamic gibbs_params/3.
:- dynamic explicit/1.
% arguments:
%
% list of output variables
% list of attributed variables
%
gibbs(LVs,Vs0,AllDiffs) :-
2008-11-01 11:51:36 +00:00
init_gibbs_solver(LVs, Vs0, AllDiffs, Vs),
run_gibbs_solver(LVs, LPs, Vs),
clpbn_bind_vals(LVs,LPs,AllDiffs),
clean_up.
2008-11-01 11:51:36 +00:00
init_gibbs_solver(GoalVs, Vs0, _, Vs) :-
2008-09-30 00:02:31 +01:00
clean_up,
2008-11-01 11:51:36 +00:00
term_variables(GoalVs, LVs),
2008-09-30 00:02:31 +01:00
check_for_hidden_vars(Vs0, Vs0, Vs1),
2008-11-01 11:51:36 +00:00
influences(Vs1, LVs, _, Vs2),
sort(Vs2,Vs).
2008-09-30 00:02:31 +01:00
2008-11-01 11:51:36 +00:00
run_gibbs_solver(LVs, LPs, Vs) :-
initialise(Vs, Graph, LVs, OutputVars, VarOrder),
process(VarOrder, Graph, OutputVars, Estimates),
sum_up_all(Estimates, LPs),
clean_up.
initialise(LVs, Graph, GVs, OutputVars, VarOrder) :-
init_keys(Keys0),
gen_keys(LVs, 0, VLen, Keys0, Keys),
functor(Graph,graph,VLen),
graph_representation(LVs, Graph, 0, Keys, TGraph),
compile_graph(Graph),
topsort(TGraph, VarOrder),
%writeln(TGraph:VarOrder),
% show_sorted(VarOrder, Graph),
add_all_output_vars(GVs, Keys, OutputVars).
init_keys(Keys0) :-
rb_new(Keys0).
gen_keys([], I, I, Keys, Keys).
gen_keys([V|Vs], I0, If, Keys0, Keys) :-
clpbn:get_atts(V,[evidence(_)]), !,
gen_keys(Vs, I0, If, Keys0, Keys).
gen_keys([V|Vs], I0, If, Keys0, Keys) :-
I is I0+1,
rb_insert(Keys0,V,I,KeysI),
gen_keys(Vs, I, If, KeysI, Keys).
graph_representation([],_,_,_,[]).
graph_representation([V|Vs], Graph, I0, Keys, TGraph) :-
clpbn:get_atts(V,[evidence(_)]), !,
clpbn:get_atts(V, [dist(Id,Parents)]),
get_possibly_deterministic_dist_matrix(Id, Parents, _, Vals, Table),
get_sizes(Parents, Szs),
length(Vals,Sz),
project_evidence_out([V|Parents],[V|Parents],Table,[Sz|Szs],Variables,NewTable),
% all variables are parents
propagate2parents(Variables, NewTable, Variables, Graph, Keys),
graph_representation(Vs, Graph, I0, Keys, TGraph).
graph_representation([V|Vs], Graph, I0, Keys, [I-IParents|TGraph]) :-
I is I0+1,
clpbn:get_atts(V, [dist(Id,Parents)]),
get_possibly_deterministic_dist_matrix(Id, Parents, _, Vals, Table),
get_sizes(Parents, Szs),
length(Vals,Sz),
project_evidence_out([V|Parents],[V|Parents],Table,[Sz|Szs],Variables,NewTable),
Variables = [V|NewParents],
sort_according_to_indices(NewParents,Keys,SortedNVs,SortedIndices),
reorder_CPT(Variables,NewTable,[V|SortedNVs],NewTable2,_),
add2graph(V, Vals, NewTable2, SortedIndices, Graph, Keys),
propagate2parents(NewParents, NewTable, Variables, Graph,Keys),
parent_indices(NewParents, Keys, IVariables0),
sort(IVariables0, IParents),
arg(I, Graph, var(_,_,_,_,_,_,_,NewTable2,SortedIndices)),
graph_representation(Vs, Graph, I, Keys, TGraph).
write_pars([]).
write_pars([V|Parents]) :-
clpbn:get_atts(V, [key(K),dist(I,_)]),write(K:I),nl,
write_pars(Parents).
get_sizes([], []).
get_sizes([V|Parents], [Sz|Szs]) :-
clpbn:get_atts(V, [dist(Id,_)]),
get_dist_domain_size(Id, Sz),
get_sizes(Parents, Szs).
parent_indices([], _, []).
parent_indices([V|Parents], Keys, [I|IParents]) :-
rb_lookup(V, I, Keys),
parent_indices(Parents, Keys, IParents).
%
% first, remove nodes that have evidence from tables.
%
project_evidence_out([],Deps,Table,_,Deps,Table).
project_evidence_out([V|Parents],Deps,Table,Szs,NewDeps,NewTable) :-
clpbn:get_atts(V,[evidence(_)]), !,
project_from_CPT(V,tab(Table,Deps,Szs),tab(ITable,IDeps,ISzs)),
project_evidence_out(Parents,IDeps,ITable,ISzs,NewDeps,NewTable).
project_evidence_out([_Par|Parents],Deps,Table,Szs,NewDeps,NewTable) :-
project_evidence_out(Parents,Deps,Table,Szs,NewDeps,NewTable).
propagate2parents([], _, _, _, _).
propagate2parents([V|NewParents], Table, Variables, Graph, Keys) :-
delete(Variables,V,NVs),
sort_according_to_indices(NVs,Keys,SortedNVs,SortedIndices),
reorder_CPT(Variables,Table,[V|SortedNVs],NewTable,_),
add2graph(V, _, NewTable, SortedIndices, Graph, Keys),
propagate2parents(NewParents,Table, Variables, Graph, Keys).
add2graph(V, Vals, Table, IParents, Graph, Keys) :-
rb_lookup(V, Index, Keys),
(var(Vals) -> true ; length(Vals,Sz)),
arg(Index, Graph, var(V,Index,_,Vals,Sz,VarSlot,_,_,_)),
member(tabular(Table,Index,IParents), VarSlot), !.
sort_according_to_indices(NVs,Keys,SortedNVs,SortedIndices) :-
vars2indices(NVs,Keys,ToSort),
keysort(ToSort, Sorted),
split_parents(Sorted, SortedNVs,SortedIndices).
split_parents([], [], []).
split_parents([I-V|Sorted], [V|SortedNVs],[I|SortedIndices]) :-
split_parents(Sorted, SortedNVs, SortedIndices).
vars2indices([],_,[]).
vars2indices([V|Parents],Keys,[I-V|IParents]) :-
rb_lookup(V, I, Keys),
vars2indices(Parents,Keys,IParents).
%
% This is the really cool bit.
%
compile_graph(Graph) :-
Graph =.. [_|VarsInfo],
compile_vars(VarsInfo,Graph).
compile_vars([],_).
compile_vars([var(_,I,_,Vals,Sz,VarSlot,Parents,_,_)|VarsInfo],Graph)
:-
compile_var(I,Vals,Sz,VarSlot,Parents,Graph),
compile_vars(VarsInfo,Graph).
compile_var(I,Vals,Sz,VarSlot,Parents,Graph) :-
fetch_all_parents(VarSlot,Graph,[],Parents,[],Sizes),
mult_list(Sizes,1,TotSize),
compile_var(TotSize,I,Vals,Sz,VarSlot,Parents,Sizes,Graph).
fetch_all_parents([],_,Parents,Parents,Sizes,Sizes) :- !.
fetch_all_parents([tabular(_,_,Ps)|CPTs],Graph,Parents0,ParentsF,Sizes0,SizesF) :-
merge_these_parents(Ps,Graph,Parents0,ParentsI,Sizes0,SizesI),
fetch_all_parents(CPTs,Graph,ParentsI,ParentsF,SizesI,SizesF).
merge_these_parents([],_,Parents,Parents,Sizes,Sizes).
merge_these_parents([I|Ps],Graph,Parents0,ParentsF,Sizes0,SizesF) :-
member(I,Parents0), !,
merge_these_parents(Ps,Graph,Parents0,ParentsF,Sizes0,SizesF).
merge_these_parents([I|Ps],Graph,Parents0,ParentsF,Sizes0,SizesF) :-
arg(I,Graph,var(_,I,_,Vals,_,_,_,_,_)),
length(Vals, Sz),
add_parent(Parents0,I,ParentsI,Sizes0,Sz,SizesI),
merge_these_parents(Ps,Graph,ParentsI,ParentsF,SizesI,SizesF).
add_parent([],I,[I],[],Sz,[Sz]).
add_parent([P|Parents0],I,[I,P|Parents0],Sizes0,Sz,[Sz|Sizes0]) :-
P > I, !.
add_parent([P|Parents0],I,[P|ParentsI],[S|Sizes0],Sz,[S|SizesI]) :-
add_parent(Parents0,I,ParentsI,Sizes0,Sz,SizesI).
mult_list([],Mult,Mult).
mult_list([Sz|Sizes],Mult0,Mult) :-
MultI is Sz*Mult0,
mult_list(Sizes,MultI,Mult).
% compile node as set of facts, faster execution
compile_var(TotSize,I,_Vals,Sz,CPTs,Parents,_Sizes,Graph) :-
TotSize < 1024*64, TotSize > 0, !,
multiply_all(I,Parents,CPTs,Sz,Graph).
% do it dynamically
compile_var(_,_,_,_,_,_,_,_).
multiply_all(I,Parents,CPTs,Sz,Graph) :-
markov_blanket_instance(Parents,Graph,Values),
(
multiply_all(CPTs,Graph,Probs)
->
store_mblanket(I,Values,Probs)
;
throw(error(domain_error(bayesian_domain),gibbs_cpt(I,Parents,Values,Sz)))
),
fail.
multiply_all(I,_,_,_,_) :-
assert(explicit(I)).
% note: what matters is how this predicate instantiates the temp
% slot in the graph!
markov_blanket_instance([],_,[]).
markov_blanket_instance([I|Parents],Graph,[Pos|Values]) :-
arg(I,Graph,var(_,I,Pos,Vals,_,_,_,_,_)),
fetch_val(Vals,0,Pos),
markov_blanket_instance(Parents,Graph,Values).
% backtrack through every value in domain
%
fetch_val([_|_],Pos,Pos).
fetch_val([_|Vals],I0,Pos) :-
I is I0+1,
fetch_val(Vals,I,Pos).
multiply_all([tabular(Table,_,Parents)|CPTs],Graph,Probs) :-
fetch_parents(Parents, Graph, Vals),
column_from_possibly_deterministic_CPT(Table,Vals,Probs0),
multiply_more(CPTs,Graph,Probs0,Probs).
fetch_parents([], _, []).
fetch_parents([P|Parents], Graph, [Val|Vals]) :-
arg(P,Graph,var(_,_,Val,_,_,_,_,_,_)),
fetch_parents(Parents, Graph, Vals).
multiply_more([],_,Probs0,LProbs) :-
normalise_possibly_deterministic_CPT(Probs0, Probs),
list_from_CPT(Probs, LProbs0),
accumulate_up_list(LProbs0, 0.0, LProbs).
multiply_more([tabular(Table,_,Parents)|CPTs],Graph,Probs0,Probs) :-
fetch_parents(Parents, Graph, Vals),
column_from_possibly_deterministic_CPT(Table, Vals, P0),
multiply_possibly_deterministic_factors(Probs0, P0, ProbsI),
multiply_more(CPTs,Graph,ProbsI,Probs).
accumulate_up_list([], _, []).
accumulate_up_list([P|LProbs], P0, [P1|L]) :-
P1 is P0+P,
accumulate_up_list(LProbs, P1, L).
store_mblanket(I,Values,Probs) :-
recordz(mblanket,m(I,Values,Probs),_).
add_all_output_vars([], _, []).
add_all_output_vars([Vs|LVs], Keys, [Is|OutputVars]) :-
add_output_vars(Vs, Keys, Is),
add_all_output_vars(LVs, Keys, OutputVars).
add_output_vars([], _, []).
add_output_vars([V|LVs], Keys, [I|OutputVars]) :-
rb_lookup(V, I, Keys),
add_output_vars(LVs, Keys, OutputVars).
process(VarOrder, Graph, OutputVars, Estimates) :-
gibbs_params(NChains,BurnIn,NSamples),
functor(Graph,_,Len),
init_chains(NChains,VarOrder,Len,Graph,Chains0),
init_estimates(NChains,OutputVars,Graph,Est0),
process_chains(BurnIn,VarOrder,BurnedIn,Chains0,Graph,Len,Est0,_),
process_chains(NSamples,VarOrder,_,BurnedIn,Graph,Len,Est0,Estimates).
%
% I use an uniform distribution to generate the initial sample.
%
init_chains(0,_,_,_,[]) :- !.
init_chains(I,VarOrder,Len,Graph,[Chain|Chains]) :-
init_chain(VarOrder,Len,Graph,Chain),
I1 is I-1,
init_chains(I1,VarOrder,Len,Graph,Chains).
init_chain(VarOrder,Len,Graph,Chain) :-
functor(Chain,sample,Len),
gen_sample(VarOrder,Graph,Chain).
gen_sample([],_,_) :- !.
gen_sample([I|Vs],Graph,Chain) :-
arg(I,Graph,var(_,I,_,_,Sz,_,_,_,_)),
Pos is integer(random*Sz),
arg(I,Chain,Pos),
gen_sample(Vs,Graph,Chain).
init_estimates(0,_,_,[]) :- !.
init_estimates(NChains,OutputVars,Graph,[Est|Est0]) :-
NChainsI is NChains-1,
init_estimate_all_outvs(OutputVars,Graph,Est),
init_estimates(NChainsI,OutputVars,Graph,Est0).
init_estimate_all_outvs([],_,[]).
init_estimate_all_outvs([Vs|OutputVars],Graph,[E|Est]) :-
init_estimate(Vs, Graph, E),
init_estimate_all_outvs(OutputVars,Graph,Est).
init_estimate([],_,[]).
init_estimate([V],Graph,[I|E0L]) :- !,
arg(V,Graph,var(_,I,_,_,Sz,_,_,_,_)),
gen_e0(Sz,E0L).
init_estimate(Vs,Graph,me(Is,Mults,Es)) :-
generate_est_mults(Vs, Is, Graph, Mults, Sz),
gen_e0(Sz,Es).
generate_est_mults([], [], _, [], 1).
generate_est_mults([V|Vs], [I|Is], Graph, [M0|Mults], M) :-
arg(V,Graph,var(_,I,_,_,Sz,_,_,_,_)),
generate_est_mults(Vs, Is, Graph, Mults, M0),
M is M0*Sz.
gen_e0(0,[]) :- !.
gen_e0(Sz,[0|E0L]) :-
Sz1 is Sz-1,
gen_e0(Sz1,E0L).
process_chains(0,_,F,F,_,_,Est,Est) :- !.
process_chains(ToDo,VarOrder,End,Start,Graph,Len,Est0,Estf) :-
%format('ToDo = ~d~n',[ToDo]),
process_chains(Start,VarOrder,Int,Graph,Len,Est0,Esti),
% (ToDo mod 100 =:= 1 -> statistics,cvt2problist(Esti, Probs), Int =[S|_], format('did ~d: ~w~n ~w~n',[ToDo,Probs,S]) ; true),
ToDo1 is ToDo-1,
process_chains(ToDo1,VarOrder,End,Int,Graph,Len,Esti,Estf).
process_chains([], _, [], _, _,[],[]).
process_chains([Sample0|Samples0], VarOrder, [Sample|Samples], Graph, SampLen,[E0|E0s],[Ef|Efs]) :-
functor(Sample,sample,SampLen),
do_sample(VarOrder,Sample,Sample0,Graph),
% format('Sample = ~w~n',[Sample]),
update_estimates(E0,Sample,Ef),
process_chains(Samples0, VarOrder, Samples, Graph, SampLen,E0s,Efs).
do_sample([],_,_,_).
do_sample([I|VarOrder],Sample,Sample0,Graph) :-
do_var(I,Sample,Sample0,Graph),
do_sample(VarOrder,Sample,Sample0,Graph).
do_var(I,Sample,Sample0,Graph) :-
( explicit(I) ->
arg(I,Graph,var(_,_,_,_,_,_,Parents,_,_)),
fetch_parents(Parents,I,Sample,Sample0,Args),
recorded(mblanket,m(I,Args,Vals),_)
;
arg(I,Graph,var(_,_,_,_,_,CPTs,Parents,_,_)),
fetch_parents(Parents,I,Sample,Sample0,Bindings),
multiply_all_in_context(Parents,Bindings,CPTs,Graph,Vals)
),
X is random,
pick_new_value(Vals,X,0,Val),
arg(I,Sample,Val).
multiply_all_in_context(Parents,Args,CPTs,Graph,Vals) :-
set_pos(Parents,Args,Graph),
multiply_all(CPTs,Graph,Vals),
assert(mall(Vals)), fail.
multiply_all_in_context(_,_,_,_,Vals) :-
retract(mall(Vals)).
set_pos([],[],_).
set_pos([I|Is],[Pos|Args],Graph) :-
arg(I,Graph,var(_,I,Pos,_,_,_,_,_,_)),
set_pos(Is,Args,Graph).
fetch_parents([],_,_,_,[]).
fetch_parents([P|Parents],I,Sample,Sample0,[VP|Args]) :-
arg(P,Sample,VP),
nonvar(VP), !,
fetch_parents(Parents,I,Sample,Sample0,Args).
fetch_parents([P|Parents],I,Sample,Sample0,[VP|Args]) :-
arg(P,Sample0,VP),
fetch_parents(Parents,I,Sample,Sample0,Args).
pick_new_value([V|Vals],X,I0,Val) :-
( X < V ->
Val = I0
;
I is I0+1,
pick_new_value(Vals,X,I,Val)
).
update_estimates([],_,[]).
update_estimates([Est|E0],Sample,[NEst|Ef]) :-
update_estimate(Est,Sample,NEst),
update_estimates(E0,Sample,Ef).
update_estimate([I|E],Sample,[I|NE]) :-
arg(I,Sample,V),
update_estimate_for_var(V,E,NE).
update_estimate(me(Is,Mult,E),Sample,me(Is,Mult,NE)) :-
get_estimate_pos(Is, Sample, Mult, 0, V),
update_estimate_for_var(V,E,NE).
get_estimate_pos([], _, [], V, V).
get_estimate_pos([I|Is], Sample, [M|Mult], V0, V) :-
arg(I,Sample,VV),
VI is VV*M+V0,
get_estimate_pos(Is, Sample, Mult, VI, V).
update_estimate_for_var(V0,[X|T],[X1|NT]) :-
( V0 == 0 ->
X1 is X+1,
NT = T
;
V1 is V0-1,
X1 = X,
update_estimate_for_var(V1,T,NT)
).
check_if_gibbs_done(Var) :-
get_atts(Var, [dist(_)]), !.
clean_up :-
eraseall(mblanket),
fail.
clean_up :-
retractall(explicit(_)),
fail.
clean_up.
gibbs_params(5,1000,10000).
cvt2problist([], []).
cvt2problist([[[_|E]]|Est0], [Ps|Probs]) :-
sum_all(E,0,Sum),
do_probs(E,Sum,Ps),
cvt2problist(Est0, Probs) .
sum_all([],Sum,Sum).
sum_all([E|Es],S0,Sum) :-
SI is S0+E,
sum_all(Es,SI,Sum).
do_probs([],_,[]).
do_probs([E|Es],Sum,[P|Ps]) :-
P is E/Sum,
do_probs(Es,Sum,Ps).
show_sorted([], _) :- nl.
show_sorted([I|VarOrder], Graph) :-
arg(I,Graph,var(V,I,_,_,_,_,_,_,_)),
clpbn:get_atts(V,[key(K)]),
format('~w ',[K]),
show_sorted(VarOrder, Graph).
sum_up_all([[]|_], []).
sum_up_all([[C|MoreC]|Chains], [Dist|Dists]) :-
extract_sums(Chains, CurrentChains, LeftChains),
sum_up([C|CurrentChains], Dist),
sum_up_all([MoreC|LeftChains], Dists).
extract_sums([], [], []).
extract_sums([[C|Chains]|MoreChains], [C|CurrentChains], [Chains|LeftChains]) :-
extract_sums(MoreChains, CurrentChains, LeftChains).
sum_up([[_|Counts]|Chains], Dist) :-
add_up(Counts,Chains, Add),
normalise(Add, Dist).
sum_up([me(_,_,Counts)|Chains], Dist) :-
add_up_mes(Counts,Chains, Add),
normalise(Add, Dist).
add_up(Counts,[],Counts).
add_up(Counts,[[_|Cs]|Chains], Add) :-
sum_lists(Counts, Cs, NCounts),
add_up(NCounts, Chains, Add).
add_up_mes(Counts,[],Counts).
add_up_mes(Counts,[me(_,_,Cs)|Chains], Add) :-
sum_lists(Counts, Cs, NCounts),
add_up_mes(NCounts, Chains, Add).
sum_lists([],[],[]).
sum_lists([Count|Counts], [C|Cs], [NC|NCounts]) :-
NC is Count+C,
sum_lists(Counts, Cs, NCounts).
normalise(Add, Dist) :-
sum_list(Add, Sum),
divide_list(Add, Sum, Dist).
divide_list([], _, []).
divide_list([C|Add], Sum, [P|Dist]) :-
P is C/Sum,
divide_list(Add, Sum, Dist).