| 
									
										
										
										
											2009-02-16 12:23:29 +00:00
										 |  |  | /***************************************************************************/ | 
					
						
							|  |  |  | /*                                                                         */ | 
					
						
							|  |  |  | /* The SLG System                                                          */ | 
					
						
							|  |  |  | /* Authors: Weidong Chen and David Scott Warren                            */ | 
					
						
							|  |  |  | /* Copyright (C) 1993 Southern Methodist University                        */ | 
					
						
							|  |  |  | /*               1993 SUNY at Stony Brook                                  */ | 
					
						
							|  |  |  | /* See file COPYRIGHT_SLG for copying policies and disclaimer.             */ | 
					
						
							|  |  |  | /*                                                                         */ | 
					
						
							|  |  |  | /***************************************************************************/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*========================================================================== | 
					
						
							|  |  |  |   File               : slg.pl | 
					
						
							|  |  |  |   Last Modification  : November 14, 2007 by Fabrizio Riguzzi | 
					
						
							|  |  |  | ===========================================================================*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ----------- beginning of system dependent features --------------------- | 
					
						
							|  |  |  |    To run the SLG system under a version of Prolog other than Quintus, | 
					
						
							|  |  |  |    comment out the following Quintus-specific code, and include the code | 
					
						
							|  |  |  |    for the Prolog you are running. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % Quintus | 
					
						
							|  |  |  | /* Begin Quintus specific code */ | 
					
						
							|  |  |  | % :- use_module(library(basics)). | 
					
						
							|  |  |  | % :- dynamic 'slg$prolog'/1, 'slg$tab'/2. | 
					
						
							|  |  |  | % :- dynamic slg_expanding/0. | 
					
						
							|  |  |  | % :- dynamic wfs_trace/0. | 
					
						
							|  |  |  | /* End Quintus specific code */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % Sicstus | 
					
						
							|  |  |  | /* Begin Sicstus specific code */ | 
					
						
							| 
									
										
										
										
											2010-03-18 16:11:21 +01:00
										 |  |  | /* append([],L,L). | 
					
						
							| 
									
										
										
										
											2009-02-16 12:23:29 +00:00
										 |  |  |  append([X|L1],L2,[X|L3]) :- append(L1,L2,L3). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  member(X,[X|_]). | 
					
						
							|  |  |  |  member(X,[_|L]) :- member(X,L). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  memberchk(X,[X|_]) :- !. | 
					
						
							|  |  |  |  memberchk(X,[_|L]) :- memberchk(X,L). | 
					
						
							| 
									
										
										
										
											2010-03-18 16:11:21 +01:00
										 |  |  | */ | 
					
						
							| 
									
										
										
										
											2009-02-16 12:23:29 +00:00
										 |  |  |  :- dynamic 'slg$prolog'/1, 'slg$tab'/2. | 
					
						
							|  |  |  |  :- dynamic slg_expanding/0. | 
					
						
							|  |  |  |  :- dynamic wfs_trace/0. | 
					
						
							|  |  |  | /* End Sicstus specific code */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % XSB | 
					
						
							|  |  |  | /* Begin XSB specific code */ | 
					
						
							|  |  |  | /* To compile this under xsb, you must allocate more than the default stack | 
					
						
							|  |  |  |    space when running xsb. E.g. use % xsb -m 2000 | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | %:- import member/2, memberchk/2, append/3, ground/1 from basics. | 
					
						
							|  |  |  | %:- import numbervars/3 from num_vars. | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  | %:- dynamic slg_expanding/0. | 
					
						
							|  |  |  | %:- dynamic 'slg$prolog'/1, 'slg$tab'/2. | 
					
						
							|  |  |  | %:- dynamic wfs_trace/0. | 
					
						
							|  |  |  | /* End XSB specific code */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* -------------- end of system dependent features ----------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* -------------- beginning of slg_load routines ------------------------- | 
					
						
							|  |  |  |   An input file may contain three kinds of directives (in addition to  | 
					
						
							|  |  |  |   regular Prolog clauses and commands): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   a) :- default(prolog). | 
					
						
							|  |  |  |      :- default(tabled). | 
					
						
							|  |  |  |      All predicates defined from now on are prolog (tabled) predicates | 
					
						
							|  |  |  |      unless specified otherwise later. | 
					
						
							|  |  |  |   b) :- tabled pred_name/arity. | 
					
						
							|  |  |  |      pred_name/arity is a tabled predicate. A comma separated list | 
					
						
							|  |  |  |      is also acceptable. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   c) :- prolog pred_name/arity. | 
					
						
							|  |  |  |      pred_name/arity is a prolog predicate. A comma separated list | 
					
						
							|  |  |  |      is also acceptable. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Besides Prolog clauses, we allow general clauses where the body is a  | 
					
						
							|  |  |  |   universal disjunction of literals. Such clauses are specified in the form | 
					
						
							|  |  |  |          Head <-- Body. | 
					
						
							|  |  |  |   (Maybe <-- can be viewed as "All".) The head must be an atom of a tabled | 
					
						
							|  |  |  |   predicate and the body should be a disjunction of literals (separated by ';') | 
					
						
							|  |  |  |   and should not contain cut. The head must be ground whenever it is called.  | 
					
						
							|  |  |  |   All variables in the body that do not occur in the head are universally  | 
					
						
							|  |  |  |   quantified. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   There is NO support for module facilities. In particular, ALL TABLED | 
					
						
							|  |  |  |   PREDICATES SHOULD BE DEFINED IN MODULE 'user'. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | :- op(1200,xfx,<--). | 
					
						
							|  |  |  | :- op(1150,fx,[(tabled),(prolog),(default)]). | 
					
						
							|  |  |  | :- op(900,xfx,<-). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | :- assert('slg$tabled'(0,0)), retractall('slg$tabled'(_,_)). | 
					
						
							|  |  |  | :- assert('slg$default'((prolog))). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | do_term_expansion(end_of_file,_) :- !, | 
					
						
							|  |  |  | 	retractall('slg$default'(_)), | 
					
						
							|  |  |  | 	assert('slg$default'((prolog))), | 
					
						
							|  |  |  | 	retractall('slg$prolog'(_)), | 
					
						
							|  |  |  | 	retractall('slg$tab'(_,_)), | 
					
						
							|  |  |  | 	fail. | 
					
						
							|  |  |  | do_term_expansion((:-Com),Clauses) :- !, | 
					
						
							|  |  |  | 	expand_command(Com,Clauses). | 
					
						
							|  |  |  | do_term_expansion((H-->B),NewClause) :- !, | 
					
						
							|  |  |  | 	\+ slg_expanding, | 
					
						
							|  |  |  | 	assert(slg_expanding), | 
					
						
							|  |  |  | 	expand_term((H-->B),Clause), | 
					
						
							|  |  |  | 	retractall(slg_expanding), | 
					
						
							|  |  |  | 	do_term_expansion(Clause,NewClause). | 
					
						
							|  |  |  | do_term_expansion((Head <-- Body),Clauses) :- !, | 
					
						
							|  |  |  | 	functor(Head,P,A), | 
					
						
							|  |  |  | 	Pred = P/A, | 
					
						
							|  |  |  | 	( 'slg$tab'(P,A) -> | 
					
						
							|  |  |  | 	  convert_univ_clause(Head,Body,Clauses) | 
					
						
							|  |  |  | 	; 'slg$prolog'(Pred) -> | 
					
						
							|  |  |  | 	  write('Error: Prolog predicate '), write(Pred), | 
					
						
							|  |  |  | 	  write(' in clauses with universal disjunction.'),nl, | 
					
						
							|  |  |  | 	  write('       Clause ignored: '), write((Head <-- Body)), nl, | 
					
						
							|  |  |  | 	  Clauses = [] | 
					
						
							|  |  |  | 	; 'slg$default'(Default), | 
					
						
							|  |  |  | 	  ( Default == (prolog) -> | 
					
						
							|  |  |  | 	    write('Error: Prolog predicate '), write(Pred), | 
					
						
							|  |  |  | 	    write(' in clauses with universal disjunction.'),nl, | 
					
						
							|  |  |  | 	    write('       Clause ignored: '), write((Head <-- Body)), nl, | 
					
						
							|  |  |  | 	    Clauses = [] | 
					
						
							|  |  |  | 	  ; assert('slg$tab'(P,A)), | 
					
						
							|  |  |  | 	    retractall('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	    assert('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	    functor(NewHead,P,A), | 
					
						
							|  |  |  | 	    Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), | 
					
						
							|  |  |  |                          (NewHead :- slg(NewHead))|RestClauses], | 
					
						
							|  |  |  |             convert_univ_clause(Head,Body,RestClauses) | 
					
						
							|  |  |  | 	  ) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | do_term_expansion(Clause,Clauses) :- | 
					
						
							|  |  |  | 	( Clause = (Head :- Body) -> true; Head = Clause, Body = true ), | 
					
						
							|  |  |  | 	functor(Head,P,A), | 
					
						
							|  |  |  | 	Pred = P/A, | 
					
						
							|  |  |  | 	( 'slg$tab'(P,A) -> | 
					
						
							|  |  |  | 	  convert_tabled_clause(Head,Body,Clauses) | 
					
						
							|  |  |  |         ; 'slg$prolog'(Pred) -> | 
					
						
							|  |  |  | 	  Clauses = Clause | 
					
						
							|  |  |  |         ; 'slg$default'(Default), | 
					
						
							|  |  |  | 	  ( Default == (prolog) -> | 
					
						
							|  |  |  | 	    Clauses = Clause | 
					
						
							|  |  |  | 	  ; ( 'slg$tab'(P,A) -> | 
					
						
							|  |  |  | 	      convert_tabled_clause(Head,Body,Clauses) | 
					
						
							|  |  |  | 	    ; assert('slg$tab'(P,A)), | 
					
						
							|  |  |  | 	      retractall('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	      assert('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	      functor(NewHead,P,A), | 
					
						
							|  |  |  | 	      Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), | 
					
						
							|  |  |  | 			 (NewHead :- slg(NewHead))|RestClauses], | 
					
						
							|  |  |  |               convert_tabled_clause(Head,Body,RestClauses) | 
					
						
							|  |  |  | 	    ) | 
					
						
							|  |  |  | 	  ) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | expand_command(tabled(Preds),Clauses) :- | 
					
						
							|  |  |  | 	expand_command_table(Preds,Clauses,[]). | 
					
						
							|  |  |  | expand_command(prolog(Preds),Clauses) :- | 
					
						
							|  |  |  | 	expand_command_prolog(Preds,Clauses,[]). | 
					
						
							|  |  |  | expand_command(multifile(Preds),(:-multifile(NewPreds))) :- | 
					
						
							|  |  |  | 	add_table_preds(Preds,NewPreds,[]). | 
					
						
							|  |  |  | expand_command(dynamic(Preds),(:-dynamic(NewPreds))) :- | 
					
						
							|  |  |  | 	add_table_preds(Preds,NewPreds,[]). | 
					
						
							|  |  |  | expand_command(default(D),[]) :- | 
					
						
							|  |  |  | 	( (D == (prolog); D == (tabled)) -> | 
					
						
							|  |  |  | 	  retractall('slg$default'(_)), | 
					
						
							|  |  |  | 	  assert('slg$default'(D)) | 
					
						
							|  |  |  |         ; write('Warning: illegal default '), | 
					
						
							|  |  |  | 	  write(D), | 
					
						
							|  |  |  | 	  write(' ignored.'), | 
					
						
							|  |  |  | 	  nl | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | expand_command_table((Pred,Preds),Clauses0,Clauses) :- !, | 
					
						
							|  |  |  | 	expand_command_table_one(Pred,Clauses0,Clauses1), | 
					
						
							|  |  |  | 	expand_command_table(Preds,Clauses1,Clauses). | 
					
						
							|  |  |  | expand_command_table(Pred,Clauses0,Clauses) :- | 
					
						
							|  |  |  | 	expand_command_table_one(Pred,Clauses0,Clauses). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | expand_command_table_one(Pspec,Clauses0,Clauses) :- | 
					
						
							|  |  |  | 	  ( Pspec = P/A -> true; P = Pspec, A = 0 ), | 
					
						
							|  |  |  | 	  Pred = P/A, | 
					
						
							|  |  |  | 	  functor(H,P,A), | 
					
						
							|  |  |  | 	  ( ( predicate_property(H,built_in); slg_built_in(H) ) -> | 
					
						
							|  |  |  | 	    write('ERROR: Cannot table built_in '), | 
					
						
							|  |  |  | 	    write(Pred), nl, | 
					
						
							|  |  |  | 	    Clauses0 = Clauses | 
					
						
							|  |  |  | 	  ; 'slg$prolog'(Pred) -> | 
					
						
							|  |  |  | 	    write('ERROR: '), | 
					
						
							|  |  |  | 	    write(Pred), | 
					
						
							|  |  |  | 	    write(' assumed to be a Prolog predicate'), | 
					
						
							|  |  |  | 	    nl, | 
					
						
							|  |  |  | 	    tab(7), | 
					
						
							|  |  |  | 	    write('But later declared a tabled predicate.'), | 
					
						
							|  |  |  | 	    nl, | 
					
						
							|  |  |  | 	    Clauses0 = Clauses | 
					
						
							|  |  |  | 	  ; 'slg$tab'(P,A) -> | 
					
						
							|  |  |  | 	    Clauses0 = Clauses | 
					
						
							|  |  |  | 	  ; assert('slg$tab'(P,A)), | 
					
						
							|  |  |  | 	    retractall('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	    assert('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	    Clauses0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), | 
					
						
							|  |  |  | 	                (H :- slg(H))|Clauses] | 
					
						
							|  |  |  | 	  ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | expand_command_prolog((Pred,Preds),Clauses0,Clauses) :- !, | 
					
						
							|  |  |  | 	expand_command_prolog_one(Pred,Clauses0,Clauses1), | 
					
						
							|  |  |  | 	expand_command_prolog(Preds,Clauses1,Clauses). | 
					
						
							|  |  |  | expand_command_prolog(Pred,Clauses0,Clauses) :- | 
					
						
							|  |  |  | 	expand_command_prolog_one(Pred,Clauses0,Clauses). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | expand_command_prolog_one(Pspec,Clauses0,Clauses) :- | 
					
						
							|  |  |  | 	  ( Pspec = P/A -> true; P = Pspec, A = 0 ), | 
					
						
							|  |  |  | 	  Pred = P/A, | 
					
						
							|  |  |  | 	  ( 'slg$tab'(P,A) -> | 
					
						
							|  |  |  | 	    write('ERROR: '), | 
					
						
							|  |  |  | 	    write(Pred), | 
					
						
							|  |  |  | 	    write(' assumed to be a tabled predicate'), | 
					
						
							|  |  |  | 	    nl, | 
					
						
							|  |  |  | 	    tab(7), | 
					
						
							|  |  |  | 	    write('But later declared a Prolog predicate.'), | 
					
						
							|  |  |  | 	    nl, | 
					
						
							|  |  |  | 	    Clauses0 = Clauses | 
					
						
							|  |  |  | 	  ; retractall('slg$tab'(P,A)), | 
					
						
							|  |  |  | 	    retractall('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	    ( 'slg$prolog'(Pred) -> | 
					
						
							|  |  |  | 	      true | 
					
						
							|  |  |  | 	    ; assert('slg$prolog'(Pred)) | 
					
						
							|  |  |  | 	    ), | 
					
						
							|  |  |  | 	    Clauses0 = [(:- retractall('slg$tabled'(P,A)))|Clauses] | 
					
						
							|  |  |  |           ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | add_table_preds(Preds,NewPreds0,NewPreds) :- | 
					
						
							|  |  |  | 	( Preds == [] -> | 
					
						
							|  |  |  | 	  NewPreds0 = NewPreds | 
					
						
							|  |  |  |         ; Preds = [P|Ps] -> | 
					
						
							|  |  |  | 	  add_table_preds(P,NewPreds0,NewPreds1), | 
					
						
							|  |  |  | 	  add_table_preds(Ps,NewPreds1,NewPreds) | 
					
						
							|  |  |  |         ; Preds = (P,Ps) -> | 
					
						
							|  |  |  | 	  add_table_preds(P,NewPreds0,NewPreds1), | 
					
						
							|  |  |  | 	  add_table_preds(Ps,NewPreds1,NewPreds) | 
					
						
							|  |  |  |         ; ( Preds = P/A -> true; P = Preds, A = 0 ), | 
					
						
							|  |  |  | 	  ( 'slg$tab'(P,A) -> | 
					
						
							|  |  |  | 	    name(P,Pl), | 
					
						
							|  |  |  | 	    name(NewP,[115,108,103,36|Pl]), % 'slg$' | 
					
						
							|  |  |  | 	    NewA is A+1, | 
					
						
							|  |  |  | 	    NewPreds0 = [P/A,NewP/NewA|NewPreds] | 
					
						
							|  |  |  | 	  ; NewPreds0 = [P/A|NewPreds] | 
					
						
							|  |  |  |           ) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | convert_tabled_clause(Head,Body,Clauses0) :- | 
					
						
							|  |  |  | 	  conj_to_list(Body,Blist), | 
					
						
							|  |  |  | 	  extract_guard(Blist,Guard,[],Nbody,Clauses0,Clauses), | 
					
						
							|  |  |  | 	  list_to_conj(Guard,Gconj), | 
					
						
							|  |  |  | 	  new_slg_head(Head,Nbody,NewHead), | 
					
						
							|  |  |  | 	  ( Gconj == true -> | 
					
						
							|  |  |  | 	    Clauses = [NewHead] | 
					
						
							|  |  |  | 	  ; Clauses = [(NewHead :- Gconj)] | 
					
						
							|  |  |  |           ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | convert_univ_clause(Head,Body,Clauses) :- | 
					
						
							|  |  |  | 	disj_to_list(Body,Blist), | 
					
						
							|  |  |  | 	new_slg_head(Head,all(Blist),NewHead), | 
					
						
							|  |  |  | 	Clauses = [(NewHead :- ( ground0(Head) ->  | 
					
						
							|  |  |  | 	                         true | 
					
						
							|  |  |  | 			       ; write('Error: Non-ground call '), | 
					
						
							|  |  |  | 			         write(Head), | 
					
						
							|  |  |  | 				 write(' in a clause with universal disjunction.'), | 
					
						
							|  |  |  | 				 nl | 
					
						
							|  |  |  | 			       ))]. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ground0(X) :- ground(X). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | conj_to_list(Term,List) :- | 
					
						
							|  |  |  | 	conj_to_list(Term,List,[]). | 
					
						
							|  |  |  | conj_to_list(Term,List0,List) :- | 
					
						
							|  |  |  | 	( Term = (T1,T2) -> | 
					
						
							|  |  |  | 	  conj_to_list(T1,List0,List1), | 
					
						
							|  |  |  | 	  conj_to_list(T2,List1,List) | 
					
						
							|  |  |  |         ; Term == true -> | 
					
						
							|  |  |  | 	  List0 = List | 
					
						
							|  |  |  |         ; List0 = [Term|List] | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | disj_to_list(Term,List) :- | 
					
						
							|  |  |  | 	disj_to_list(Term,List,[]). | 
					
						
							|  |  |  | disj_to_list(Term,List0,List) :- | 
					
						
							|  |  |  | 	( Term = (T1;T2) -> | 
					
						
							|  |  |  | 	  disj_to_list(T1,List0,List1), | 
					
						
							|  |  |  | 	  disj_to_list(T2,List1,List) | 
					
						
							|  |  |  |         ; Term == true -> | 
					
						
							|  |  |  | 	  List0 = List | 
					
						
							|  |  |  |         ; List0 = [Term|List] | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | extract_guard([],G,G,[],Cls,Cls). | 
					
						
							|  |  |  | extract_guard([Lit|List],G0,G,Rest,Cls0,Cls) :- | 
					
						
							|  |  |  | 	( Lit = (\+N) -> | 
					
						
							|  |  |  | 	  Nlit = N | 
					
						
							|  |  |  |         ; Nlit = Lit | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  | 	( ( predicate_property(Nlit,built_in); slg_built_in(Nlit) ) -> | 
					
						
							|  |  |  | 	  G0 = [Lit|G1], | 
					
						
							|  |  |  | 	  extract_guard(List,G1,G,Rest,Cls0,Cls) | 
					
						
							|  |  |  |         ; functor(Nlit,P,A), | 
					
						
							|  |  |  | 	  Pred = P/A, | 
					
						
							|  |  |  | 	  ( 'slg$tab'(P,A) -> | 
					
						
							|  |  |  | 	    G0 = G, | 
					
						
							|  |  |  | 	    Rest = [Lit|List], | 
					
						
							|  |  |  | 	    Cls0 = Cls | 
					
						
							|  |  |  | 	  ; 'slg$prolog'(Pred) -> | 
					
						
							|  |  |  | 	    G0 = [Lit|G1], | 
					
						
							|  |  |  | 	    extract_guard(List,G1,G,Rest,Cls0,Cls) | 
					
						
							|  |  |  | 	  ; 'slg$default'((prolog)) -> | 
					
						
							|  |  |  | 	    G0 = [Lit|G1], | 
					
						
							|  |  |  | 	    assert('slg$prolog'(Pred)), | 
					
						
							|  |  |  | 	    Cls0 = [(:- 'slg$prolog'(Pred) -> true; assert('slg$prolog'(Pred)))|Cls1], | 
					
						
							|  |  |  | 	    extract_guard(List,G1,G,Rest,Cls1,Cls) | 
					
						
							|  |  |  | 	  ; 'slg$default'((tabled)) -> | 
					
						
							|  |  |  | 	    G0 = G, | 
					
						
							|  |  |  | 	    Rest = [Lit|List], | 
					
						
							|  |  |  | 	    assert('slg$tab'(P,A)), | 
					
						
							|  |  |  | 	    retractall('slg$tabled'(P,A)), | 
					
						
							|  |  |  |             assert('slg$tabled'(P,A)), | 
					
						
							|  |  |  | 	    functor(Head,P,A), | 
					
						
							|  |  |  | 	    Cls0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), | 
					
						
							|  |  |  |                     (Head :- slg(Head))|Cls] | 
					
						
							|  |  |  | 	  ) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | list_to_conj([],true). | 
					
						
							|  |  |  | list_to_conj([Lit|List],G0) :- | 
					
						
							|  |  |  | 	( List == [] -> | 
					
						
							|  |  |  | 	  G0 = Lit | 
					
						
							|  |  |  |         ; G0 = (Lit,G), | 
					
						
							|  |  |  | 	  list_to_conj(List,G) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | new_slg_head(Head,Body,NewHead) :- | 
					
						
							|  |  |  | 	functor(Head,P,A), | 
					
						
							|  |  |  | 	name(P,Pl), | 
					
						
							|  |  |  | 	name(Npred,[115,108,103,36|Pl]), % 'slg$' | 
					
						
							|  |  |  | 	Narity is A+1, | 
					
						
							|  |  |  | 	functor(NewHead,Npred,Narity), | 
					
						
							|  |  |  | 	arg(Narity,NewHead,Body), | 
					
						
							|  |  |  | 	put_in_args(0,A,Head,NewHead). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | put_in_args(A,A,_,_). | 
					
						
							|  |  |  | put_in_args(A0,A,Head,NewHead) :- | 
					
						
							|  |  |  | 	A0 < A, | 
					
						
							|  |  |  | 	A1 is A0+1, | 
					
						
							|  |  |  | 	arg(A1,Head,Arg), | 
					
						
							|  |  |  | 	arg(A1,NewHead,Arg), | 
					
						
							|  |  |  | 	put_in_args(A1,A,Head,NewHead). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | slg_built_in(slg(_)). | 
					
						
							|  |  |  | slg_built_in(_<-_). | 
					
						
							|  |  |  | slg_built_in(slgall(_,_)). | 
					
						
							|  |  |  | slg_built_in(slgall(_,_,_,_)). | 
					
						
							|  |  |  | slg_built_in(emptytable(_)). | 
					
						
							|  |  |  | slg_built_in(st(_,_)). | 
					
						
							|  |  |  | slg_built_in(stnot(_,_)). | 
					
						
							|  |  |  | slg_built_in(stall(_,_,_)). | 
					
						
							|  |  |  | slg_built_in(stall(_,_,_,_,_)). | 
					
						
							|  |  |  | slg_built_in(stselect(_,_,_,_)). | 
					
						
							|  |  |  | slg_built_in(stselect(_,_,_,_,_,_)). | 
					
						
							|  |  |  | slg_built_in(xtrace). | 
					
						
							|  |  |  | slg_built_in(xnotrace). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ----------------- end of slg_load routines --------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* SLG tracing: | 
					
						
							|  |  |  |    xtrace: turns SLG trace on, which prints out tables at various  | 
					
						
							|  |  |  |            points | 
					
						
							|  |  |  |    xnotrace: turns off SLG trace | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | xtrace :-  | 
					
						
							|  |  |  |     ( wfs_trace ->  | 
					
						
							|  |  |  |       true  | 
					
						
							|  |  |  |     ; assert(wfs_trace) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | xnotrace :-  | 
					
						
							|  |  |  |     ( wfs_trace ->  | 
					
						
							|  |  |  |       retractall(wfs_trace)  | 
					
						
							|  |  |  |     ; true | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* isprolog(Call): Call is a Prolog subgoal */ | 
					
						
							|  |  |  | isprolog(Call) :- | 
					
						
							|  |  |  |         functor(Call,P,A), | 
					
						
							|  |  |  |         \+ 'slg$tabled'(P,A). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* slg(Call): | 
					
						
							|  |  |  |    It returns all true answers of Call under the well-founded semantics | 
					
						
							|  |  |  |    one by one. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | slg(Call) :- | 
					
						
							|  |  |  |         ( isprolog(Call) -> | 
					
						
							|  |  |  |           call(Call) | 
					
						
							|  |  |  |         ; oldt(Call,Tab), | 
					
						
							|  |  |  |           ground(Call,Ggoal), | 
					
						
							|  |  |  |           find(Tab,Ggoal,Ent), | 
					
						
							|  |  |  |           ent_to_anss(Ent,Anss), | 
					
						
							|  |  |  |           member_anss(d(Call,[]),Anss) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Call<-Cons: | 
					
						
							|  |  |  |    It returns all true or undefined answers of Call one by one. In | 
					
						
							|  |  |  |    case of a true answer, Cons = []. For an undefined answer, | 
					
						
							|  |  |  |    Cons is a list of delayed literals. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | Call<-Cons :- | 
					
						
							|  |  |  |         ( isprolog(Call) -> | 
					
						
							|  |  |  |           call(Call), | 
					
						
							|  |  |  |           Cons = [] | 
					
						
							|  |  |  |         ; oldt(Call,Tab), | 
					
						
							|  |  |  |           ground(Call,Ggoal), | 
					
						
							|  |  |  |           find(Tab,Ggoal,Ent), | 
					
						
							|  |  |  |           ent_to_anss(Ent,Anss), | 
					
						
							|  |  |  |           member_anss(d(Call,Cons),Anss) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* emptytable(EmptTab): creates an initial empty stable. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | emptytable(0:[]). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* slgall(Call,Anss): | 
					
						
							|  |  |  |    slgall(Call,Anss,N0-Tab0,N-Tab): | 
					
						
							|  |  |  |    If Call is a prolog call, findall is used, and Tab = Tab0; | 
					
						
							|  |  |  |    If Call is an atom of a tabled predicate, SLG evaluation | 
					
						
							|  |  |  |    is carried out. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | slgall(Call,Anss) :- | 
					
						
							|  |  |  | 	slgall(Call,Anss,0:[],_). | 
					
						
							|  |  |  | slgall(Call,Anss,N0:Tab0,N:Tab) :- | 
					
						
							|  |  |  |         ( isprolog(Call) -> | 
					
						
							|  |  |  |           findall(Call,Call,Anss), | 
					
						
							|  |  |  | 	  N = N0, Tab = Tab0 | 
					
						
							|  |  |  |         ; ground(Call,Ggoal), | 
					
						
							|  |  |  |           ( find(Tab0,Ggoal,Ent) -> | 
					
						
							|  |  |  |             ent_to_anss(Ent,Answers), | 
					
						
							|  |  |  |             Tab = Tab0 | 
					
						
							|  |  |  |           ; new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1), | 
					
						
							|  |  |  |             add_tab_ent(Ggoal,Ent,Tab0,Tab1), | 
					
						
							|  |  |  |             oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP), | 
					
						
							|  |  |  |             find(Tab,Ggoal,NewEnt), | 
					
						
							|  |  |  |             ent_to_anss(NewEnt,Answers) | 
					
						
							|  |  |  |           ), | 
					
						
							|  |  |  |           ansstree_to_list(Answers,Anss,[]) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* st(Call,PSM): | 
					
						
							|  |  |  |    stnot(Call,PSM): | 
					
						
							|  |  |  |    It finds a stable model in which Call must be true (false). | 
					
						
							|  |  |  |    Call must be ground. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | st(Call,PSM) :- | 
					
						
							|  |  |  | 	st_true_false(Call,true,PSM). | 
					
						
							|  |  |  | stnot(Call,PSM) :- | 
					
						
							|  |  |  | 	st_true_false(Call,false,PSM). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | st_true_false(Call,Val,PSM) :- | 
					
						
							|  |  |  | 	( isprolog(Call) -> | 
					
						
							|  |  |  | 	  PSM = [], | 
					
						
							|  |  |  | 	  call(Call) | 
					
						
							|  |  |  |         ; ground(Call) -> | 
					
						
							|  |  |  | 	  wfs_newcall(Call,[],Tab1,0,_), | 
					
						
							|  |  |  | 	  find(Tab1,Call,Ent), | 
					
						
							|  |  |  | 	  ent_to_anss(Ent,Anss), | 
					
						
							|  |  |  | 	  ( succeeded(Anss) -> | 
					
						
							|  |  |  | 	    ( Val == true -> | 
					
						
							|  |  |  | 	      PSM = [] | 
					
						
							|  |  |  | 	    ; fail | 
					
						
							|  |  |  | 	    ) | 
					
						
							|  |  |  | 	  ; failed(Anss) -> | 
					
						
							|  |  |  | 	    ( Val == false -> | 
					
						
							|  |  |  | 	      PSM = [] | 
					
						
							|  |  |  | 	    ; fail | 
					
						
							|  |  |  | 	    ) | 
					
						
							|  |  |  | 	  ; assume_one(Call,Val,Tab1,Tab2,[],Abd1,A0,A1), | 
					
						
							|  |  |  | 	    collect_unds(Anss,A1,A), | 
					
						
							|  |  |  | 	    st(A0,A,Tab2,Tab3,Abd1,Abd,[],DAbd,[],_Plits), | 
					
						
							|  |  |  | 	    final_check(Abd,Tab3,_Tab,DAbd,PSM) | 
					
						
							|  |  |  | 	  ) | 
					
						
							|  |  |  |         ; write('Error: non-ground call '), | 
					
						
							|  |  |  | 	  write(Call), | 
					
						
							|  |  |  | 	  write(' in st/2.'), | 
					
						
							|  |  |  | 	  nl, | 
					
						
							|  |  |  | 	  fail | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* stall(Call,Anss,PSM): | 
					
						
							|  |  |  |    stall(Call,Anss,PSM,Tab0,Tab): | 
					
						
							|  |  |  |    It computes a partial stable model PSM and collects all | 
					
						
							|  |  |  |    answers of Call in that model. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | stall(Call,Anss,PSM) :- | 
					
						
							|  |  |  | 	stall(Call,Anss,PSM,0:[],_). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | stall(Call,Anss,PSM,N0:Tab0,N:Tab) :- | 
					
						
							|  |  |  | 	( isprolog(Call) -> | 
					
						
							|  |  |  | 	  findall(Call,Call,Anss), | 
					
						
							|  |  |  | 	  PSM = [], N = N0, Tab = Tab0 | 
					
						
							|  |  |  |         ; ground(Call,Ggoal), | 
					
						
							|  |  |  | 	  ( find(Tab0,Ggoal,Ent) -> | 
					
						
							|  |  |  | 	    Tab1 = Tab0, N = N0 | 
					
						
							|  |  |  |           ; wfs_newcall(Call,Tab0,Tab1,N0,N), | 
					
						
							|  |  |  | 	    find(Tab1,Ggoal,Ent) | 
					
						
							|  |  |  |           ), | 
					
						
							|  |  |  | 	  ent_to_delay(Ent,Delay), | 
					
						
							|  |  |  | 	  ( Delay == false -> | 
					
						
							|  |  |  | 	    Fent = Ent, PSM = [], Tab = Tab1 | 
					
						
							|  |  |  | 	  ; ent_to_anss(Ent,Anss0), | 
					
						
							|  |  |  | 	    collect_unds(Anss0,A0,A), | 
					
						
							|  |  |  | 	    st(A0,A,Tab1,Tab2,[],Abd,[],DAbd,[],_Plits), | 
					
						
							|  |  |  | 	    final_check(Abd,Tab2,Tab,DAbd,PSM), | 
					
						
							|  |  |  | 	    find(Tab,Ggoal,Fent) | 
					
						
							|  |  |  | 	  ), | 
					
						
							|  |  |  | 	  ent_to_anss(Fent,Anss1), | 
					
						
							|  |  |  |           ansstree_to_list(Anss1,Anss,[]) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* stselect(Call,PSM0,Anss,PSM): | 
					
						
							|  |  |  |    stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab): | 
					
						
							|  |  |  |    It computes a partial stable model PSM in which all ground | 
					
						
							|  |  |  |    literals in PSM0 are true, and returns all answers of Call | 
					
						
							|  |  |  |    in the partial stable model. Call must be an atom of a tabled | 
					
						
							|  |  |  |    or stable predicate. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | stselect(Call,PSM0,Anss,PSM) :- | 
					
						
							|  |  |  | 	stselect(Call,PSM0,Anss,PSM,0:[],_). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab) :- | 
					
						
							|  |  |  | 	( isprolog(Call) -> | 
					
						
							|  |  |  | 	  write('Error: Prolog predicate '), | 
					
						
							|  |  |  | 	  write(Call), | 
					
						
							|  |  |  | 	  write('stselect.'), | 
					
						
							|  |  |  | 	  fail | 
					
						
							|  |  |  |         ; wfsoldt(Call,PSM0,Ent,Tab0,Tab1,N0,N), | 
					
						
							|  |  |  | 	  ent_to_delay(Ent,Delay), | 
					
						
							|  |  |  | 	  assume_list(PSM0,true,Tab1,Tab2,[],Abd0,A0,A1), | 
					
						
							|  |  |  | 	  ( Delay == false -> | 
					
						
							|  |  |  | 	    A1 = A2 | 
					
						
							|  |  |  |           ; ent_to_anss(Ent,Anss0), | 
					
						
							|  |  |  | 	    collect_unds(Anss0,A1,A2) | 
					
						
							|  |  |  |           ), | 
					
						
							|  |  |  | 	  st(A0,A2,Tab2,Tab3,Abd0,Abd,[],DAbd,[],_Plits), | 
					
						
							|  |  |  | 	  final_check(Abd,Tab3,Tab,DAbd,PSM), | 
					
						
							|  |  |  | 	  ground(Call,Ggoal), | 
					
						
							|  |  |  | 	  find(Tab,Ggoal,Fent), | 
					
						
							|  |  |  | 	  ent_to_anss(Fent,Anss1), | 
					
						
							|  |  |  | 	  ansstree_to_list(Anss1,Anss,[]) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | wfsoldt(Call,PSM0,Ent,Tab0,Tab,N0,N) :- | 
					
						
							|  |  |  | 	ground(Call,Ggoal), | 
					
						
							|  |  |  | 	( find(Tab0,Ggoal,Ent) -> | 
					
						
							|  |  |  | 	  Tab1 = Tab0, N1 = N0 | 
					
						
							|  |  |  |         ; wfs_newcall(Call,Tab0,Tab1,N0,N1), | 
					
						
							|  |  |  | 	  find(Tab1,Ggoal,Ent) | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  | 	wfsoldt_ground(PSM0,Tab1,Tab,N1,N). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | wfsoldt_ground([],Tab,Tab,N,N). | 
					
						
							|  |  |  | wfsoldt_ground([A|PSM],Tab0,Tab,N0,N) :- | 
					
						
							|  |  |  | 	( ground(A) -> | 
					
						
							|  |  |  | 	  true | 
					
						
							|  |  |  |         ; write('Error: non-ground assumption in stable model selection: '), | 
					
						
							|  |  |  | 	  write(A), nl, fail | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  | 	( A = (\+G) -> | 
					
						
							|  |  |  | 	  true | 
					
						
							|  |  |  |         ; A = G | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  | 	( isprolog(G) -> | 
					
						
							|  |  |  | 	  Tab1 = Tab0, N1 = N0, | 
					
						
							|  |  |  | 	  call(A) | 
					
						
							|  |  |  |         ; find(Tab0,G,_) -> | 
					
						
							|  |  |  | 	  Tab1 = Tab0, N1 = N0 | 
					
						
							|  |  |  |         ; wfs_newcall(G,Tab0,Tab1,N0,N1) | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  | 	wfsoldt_ground(PSM,Tab1,Tab,N1,N). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | wfs_newcall(Call,Tab0,Tab,N0,N) :- | 
					
						
							|  |  |  | 	new_init_call(Call,Ggoal,Ent0,[],S1,1,Dfn1), | 
					
						
							|  |  |  | 	add_tab_ent(Ggoal,Ent0,Tab0,Tab1), | 
					
						
							|  |  |  | 	oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP). | 
					
						
							|  |  |  | 	 | 
					
						
							|  |  |  | /* collect_unds(Anss,A0,A): | 
					
						
							|  |  |  |    collects all delayed literals in answers Anss in a open-ended difference | 
					
						
							|  |  |  |    list A0/A. These delayed literals are assumed either false or true in the | 
					
						
							|  |  |  |    stable model computation. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | collect_unds([],A,A). | 
					
						
							|  |  |  | collect_unds(l(_GH,Lanss),A1,A) :- | 
					
						
							|  |  |  | 	collect_unds_lanss(Lanss,A1,A). | 
					
						
							|  |  |  | collect_unds(n2(T1,_,T2),A1,A) :- | 
					
						
							|  |  |  | 	collect_unds(T1,A1,A2), | 
					
						
							|  |  |  | 	collect_unds(T2,A2,A). | 
					
						
							|  |  |  | collect_unds(n3(T1,_,T2,_,T3),A1,A) :- | 
					
						
							|  |  |  | 	collect_unds(T1,A1,A2), | 
					
						
							|  |  |  | 	collect_unds(T2,A2,A3), | 
					
						
							|  |  |  | 	collect_unds(T3,A3,A). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | collect_unds_lanss([],A,A). | 
					
						
							|  |  |  | collect_unds_lanss([d(_,D)|Lanss],A1,A) :- | 
					
						
							|  |  |  | 	collect_unds_list(D,A1,A2), | 
					
						
							|  |  |  | 	collect_unds_lanss(Lanss,A2,A). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | collect_unds_list([],A,A). | 
					
						
							|  |  |  | collect_unds_list([Lit|D],[Lit|A1],A) :- | 
					
						
							|  |  |  | 	collect_unds_list(D,A1,A). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits): | 
					
						
							|  |  |  |    A0/A is an open-ended difference list containing a list of | 
					
						
							|  |  |  |    delayed literals. st tries for each delayed literal to  | 
					
						
							|  |  |  |    assume that it is true or false and checks to see if  | 
					
						
							|  |  |  |    it leads to a partial stable model. Propagation of assumed | 
					
						
							|  |  |  |    truth values is carried out as much as possible. It will  | 
					
						
							|  |  |  |    fail if the relevant program contains p :- \+p. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    Abd0/Abd is an accumulator for a table of assumed truth  | 
					
						
							|  |  |  |    values. They are checked against the table Tab0/Tab for | 
					
						
							|  |  |  |    consistency later in check_consistency. DAbd0/DAbd is an  | 
					
						
							|  |  |  |    accumulator for truth values of undefined literals that | 
					
						
							|  |  |  |    are derived from assumed truth values of other literals. | 
					
						
							|  |  |  |    Plits0/Plits is an accumulator for avoiding positive  | 
					
						
							|  |  |  |    infinite loops in processing positive delayed literals. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) :- | 
					
						
							|  |  |  | 	( % empty difference list | 
					
						
							|  |  |  | 	  A0 == A -> | 
					
						
							|  |  |  | 	  Tab = Tab0, Abd = Abd0, DAbd = DAbd0, Plits = Plits0 | 
					
						
							|  |  |  |         ; A0 = [Lit|A1], | 
					
						
							|  |  |  | 	  ( % non-ground negative literals | 
					
						
							|  |  |  | 	    Lit = (Ggoal - (\+GH)) -> | 
					
						
							|  |  |  | 	    write('Error: cannot handle non-ground negative literals: '), | 
					
						
							|  |  |  | 	    write(\+GH), nl, fail | 
					
						
							|  |  |  | 	  ; % positive undefined literal | 
					
						
							|  |  |  | 	    Lit = Ggoal-GH -> | 
					
						
							|  |  |  | 	    ( % encountered before | 
					
						
							|  |  |  | 	      find(Plits0,Lit,_) -> | 
					
						
							|  |  |  | 	      st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) | 
					
						
							|  |  |  | 	    ; % otherwise, process undefined literals it depends upon | 
					
						
							|  |  |  | 	      addkey(Plits0,Lit,_,Plits1), | 
					
						
							|  |  |  | 	      find(Tab0,Ggoal,Ent), | 
					
						
							|  |  |  | 	      ent_to_anss(Ent,Anss), | 
					
						
							|  |  |  | 	      find(Anss,GH,Lanss), | 
					
						
							|  |  |  | 	      collect_unds_lanss(Lanss,A,NewA), | 
					
						
							|  |  |  | 	      st(A1,NewA,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits1,Plits) | 
					
						
							|  |  |  | 	    ) | 
					
						
							|  |  |  | 	  ; % negative undefined literal | 
					
						
							|  |  |  | 	    Lit = (\+G) -> | 
					
						
							|  |  |  | 	    ( % has been assumed or derived to be true or false | 
					
						
							|  |  |  | 	      ( find(Abd0,G,_Val); find(DAbd0,G,_) ) ->  | 
					
						
							|  |  |  | 	      st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) | 
					
						
							|  |  |  | 	    ; find(Tab0,G,Gent), | 
					
						
							|  |  |  | 	      ent_to_anss(Gent,Ganss), | 
					
						
							|  |  |  | 	      ( % found to be false already | 
					
						
							|  |  |  | 	        failed(Ganss) -> | 
					
						
							|  |  |  | 		addkey(DAbd0,G,false,DAbd1), | 
					
						
							|  |  |  | 	        st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits) | 
					
						
							|  |  |  | 	      ; % found to be true already  | 
					
						
							|  |  |  | 	        succeeded(Ganss) -> | 
					
						
							|  |  |  | 		addkey(DAbd0,G,true,DAbd1), | 
					
						
							|  |  |  | 	        st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits) | 
					
						
							|  |  |  | 	      ; % create a choice point | 
					
						
							|  |  |  | 	        addkey(Abd0,G,Val,Abd1), | 
					
						
							|  |  |  | 		( Ganss = l(G,[d(G,Ds)]), memberchk(\+G,Ds) -> | 
					
						
							|  |  |  | 		  Val = false | 
					
						
							|  |  |  | 	        ; ( Val = false; Val = true ) | 
					
						
							|  |  |  | 	        ), | 
					
						
							|  |  |  | 	        propagate_forward(G,Val,Tab0,Tab1,Abd1), | 
					
						
							|  |  |  | 	        A = [G-G|NewA], % make sure delayed literals of G are checked | 
					
						
							|  |  |  | 	        propagate_backward(G,Val,Ganss,Tab1,Tab2,Abd1,Abd2,NewA,NNA), | 
					
						
							|  |  |  | 	        st(A1,NNA,Tab2,Tab,Abd2,Abd,DAbd0,DAbd,Plits0,Plits) | 
					
						
							|  |  |  | 	      ) | 
					
						
							|  |  |  | 	    ) | 
					
						
							|  |  |  |           ) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* propagate_forward(G,Val,Tab0,Tab,Abd): | 
					
						
							|  |  |  |    G has been assumed to be Val, and this information is propagated | 
					
						
							|  |  |  |    using simplification or forward chaining links as much as  | 
					
						
							|  |  |  |    possible. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | propagate_forward(G,Val,Tab0,Tab,Abd) :- | 
					
						
							|  |  |  | 	updatevs(Tab0,G,Ent0,Ent,Tab1), | 
					
						
							|  |  |  | 	Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist0), | 
					
						
							|  |  |  | 	Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist), | 
					
						
							|  |  |  | 	extract_known_by_abd(Slist0,Val,[],Slist,[],Klist), | 
					
						
							|  |  |  | 	simplify(Klist,Tab1,Tab,Abd). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* The forward chaining is such that negative literals can fail  | 
					
						
							|  |  |  |    or succeed by assumption, and positive literals can fail  | 
					
						
							|  |  |  |    by assumption, but cannot succeed by assumption. | 
					
						
							|  |  |  |    This avoids the construction of supported models that are  | 
					
						
							|  |  |  |    not stable. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | extract_known_by_abd([],_,Slist,Slist,Klist,Klist). | 
					
						
							|  |  |  | extract_known_by_abd([Link|Links],Val,Slist0,Slist,Klist0,Klist) :- | 
					
						
							|  |  |  | 	( Link = (_ : (\+ _)) -> | 
					
						
							|  |  |  | 	  ( Val == false -> | 
					
						
							|  |  |  | 	    Slist1 = Slist0,  | 
					
						
							|  |  |  | 	    Klist1 = [succ-Link|Klist0] | 
					
						
							|  |  |  | 	  ; Val == true -> | 
					
						
							|  |  |  | 	    Slist1 = Slist0,  | 
					
						
							|  |  |  | 	    Klist1 = [fail-Link|Klist0] | 
					
						
							|  |  |  | 	  ; Slist1 = [Link|Slist0],  | 
					
						
							|  |  |  | 	    Klist1 = Klist0 | 
					
						
							|  |  |  | 	  ) | 
					
						
							|  |  |  |         ; % Link = (_ : _-GH) -> | 
					
						
							|  |  |  | 	  ( Val = false -> | 
					
						
							|  |  |  | 	    Slist1 = Slist0, | 
					
						
							|  |  |  | 	    Klist1 = [fail-Link|Klist0] | 
					
						
							|  |  |  | 	  ; % Val = true -> | 
					
						
							|  |  |  | 	    Slist1 = [Link|Slist0], | 
					
						
							|  |  |  | 	    Klist1 = Klist0 | 
					
						
							|  |  |  | 	  ) | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  | 	extract_known_by_abd(Links,Val,Slist1,Slist,Klist1,Klist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA): | 
					
						
							|  |  |  |    It tried to propagate the Val of G backward through answers | 
					
						
							|  |  |  |    if possible. If G is assumed to be true, and G has only one | 
					
						
							|  |  |  |    answer clause, then all literals in the body of the answer | 
					
						
							|  |  |  |    clause must be true. If G is assumed to be false, then all | 
					
						
							|  |  |  |    literals in answer clauses of G that have a single literal | 
					
						
							|  |  |  |    are assumed to be false too. Otherwise, it is no-op. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA) :- | 
					
						
							|  |  |  | 	( Ganss = l(G,Lanss) -> | 
					
						
							|  |  |  | 	  ( Val == true, Lanss = [d(G,Ds)] -> | 
					
						
							|  |  |  | 	    assume_list(Ds,true,Tab0,Tab,Abd0,Abd,A,NewA) | 
					
						
							|  |  |  | 	  ; Val == false, findall(Lit,member(d(G,[Lit]),Lanss),Ds) -> | 
					
						
							|  |  |  | 	    assume_list(Ds,false,Tab0,Tab,Abd0,Abd,A,NewA) | 
					
						
							|  |  |  | 	  ; Tab = Tab0, Abd = Abd0, A = NewA | 
					
						
							|  |  |  |           ) | 
					
						
							|  |  |  |         ; Tab = Tab0, Abd = Abd0, A = NewA | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | assume_list([],_Val,Tab,Tab,Abd,Abd,A,A). | 
					
						
							|  |  |  | assume_list([Lit|Lits],Val,Tab0,Tab,Abd0,Abd,A0,A) :- | 
					
						
							|  |  |  | 	assume_one(Lit,Val,Tab0,Tab1,Abd0,Abd1,A0,A1), | 
					
						
							|  |  |  | 	assume_list(Lits,Val,Tab1,Tab,Abd1,Abd,A1,A). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A): | 
					
						
							|  |  |  |    Due to back propagation, Lit is assumed to be Val. | 
					
						
							|  |  |  |    However, this assumption is carried out only if  | 
					
						
							|  |  |  |    Lit is a delayed literal of a ground call or most | 
					
						
							|  |  |  |    general call. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | assume_one(Ggoal-GH,_Val,Tab0,Tab,Abd0,Abd,A0,A) :- | 
					
						
							|  |  |  | 	Ggoal \== GH,  | 
					
						
							|  |  |  | 	!, | 
					
						
							|  |  |  | 	Tab = Tab0, Abd = Abd0, A = A0. | 
					
						
							|  |  |  | assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A) :- | 
					
						
							|  |  |  | 	( Lit = G-G -> | 
					
						
							|  |  |  | 	  GVal = Val | 
					
						
							|  |  |  |         ; Lit = (\+G) -> | 
					
						
							|  |  |  | 	  ( Val == true -> GVal = false; GVal = true ) | 
					
						
							|  |  |  |         ; Lit = G -> | 
					
						
							|  |  |  | 	  GVal = Val | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  | 	( find(Abd0,G,V) ->              % already assumed | 
					
						
							|  |  |  | 	  ( V == GVal -> | 
					
						
							|  |  |  | 	    Tab = Tab0, Abd = Abd0, A = A0 | 
					
						
							|  |  |  | 	  ; fail | 
					
						
							|  |  |  |           ) | 
					
						
							|  |  |  |         ; find(Tab0,G,Gent), | 
					
						
							|  |  |  | 	  ent_to_anss(Gent,Ganss), | 
					
						
							|  |  |  | 	  ( failed(Ganss) ->             % already known | 
					
						
							|  |  |  | 	    ( GVal == true ->  | 
					
						
							|  |  |  | 	      fail | 
					
						
							|  |  |  | 	    ; Tab = Tab0, Abd = Abd0, A = A0 | 
					
						
							|  |  |  | 	    ) | 
					
						
							|  |  |  | 	  ; succeeded(Ganss) ->          % already known | 
					
						
							|  |  |  | 	    ( GVal == false ->  | 
					
						
							|  |  |  | 	      fail | 
					
						
							|  |  |  | 	    ; Tab = Tab0, Abd = Abd0, A = A0 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  | 	  ; addkey(Abd0,G,GVal,Abd1),    % otherwise, propagate | 
					
						
							|  |  |  | 	    propagate_forward(G,GVal,Tab0,Tab1,Abd1), | 
					
						
							|  |  |  | 	    A0 = [G-G|A1], | 
					
						
							|  |  |  | 	    propagate_backward(G,Ganss,GVal,Tab1,Tab,Abd1,Abd,A1,A) | 
					
						
							|  |  |  | 	  ) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | final_check(Abd,Tab0,Tab,DAbd,Alist) :- | 
					
						
							|  |  |  | 	check_consistency(Abd,Tab0,Tab,Alist0,Alist1), | 
					
						
							|  |  |  | 	add_dabd(DAbd,Alist1,[]), | 
					
						
							|  |  |  | 	sort(Alist0,Sorted), | 
					
						
							|  |  |  | 	listval_to_listlit(Sorted,Alist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | listval_to_listlit([],[]). | 
					
						
							|  |  |  | listval_to_listlit([Val|Vlist],[Lit|Llist]) :- | 
					
						
							|  |  |  | 	val_to_lit(Val,Lit), | 
					
						
							|  |  |  | 	listval_to_listlit(Vlist,Llist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | val_to_lit(G-true,G). | 
					
						
							|  |  |  | val_to_lit(G-false,\+G). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* check_consistency(Abd,Tab0,Tab,Alist0,Alist): | 
					
						
							|  |  |  |    A proposition may be assumed to be true, but no true answer | 
					
						
							|  |  |  |    is derived at the end, which is inconsistency. A proposition | 
					
						
							|  |  |  |    may be assumed to be false, but has a true answer. The latter | 
					
						
							|  |  |  |    case is checked when the true answer is derived. Here Abd  | 
					
						
							|  |  |  |    indicates the assumed truth values, and answers in Tab0 | 
					
						
							|  |  |  |    indicate the derived values by a fixpoint computation of | 
					
						
							|  |  |  |    forward chaining. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    Also at the end of a fixpoint computation, a subgoal may | 
					
						
							|  |  |  |    have only delayed answers with positive literals. These | 
					
						
							|  |  |  |    have to be deleted in order for Tab0/Tab to be used | 
					
						
							|  |  |  |    correctly later. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | check_consistency([],Tab,Tab,Alist,Alist). | 
					
						
							|  |  |  | check_consistency(l(G,Val),Tab0,Tab,Alist0,Alist) :- | 
					
						
							|  |  |  | 	updatevs(Tab0,G,Ent0,Ent,Tab), | 
					
						
							|  |  |  | 	Ent0 = e(Nodes,ANegs,Anss0,_Delay,Comp,Dfn,Slist), | 
					
						
							|  |  |  | 	Ent = e(Nodes,ANegs,Anss,false,Comp,Dfn,Slist), | 
					
						
							|  |  |  | 	( Val == true -> | 
					
						
							|  |  |  | 	  succeeded(Anss0), | 
					
						
							|  |  |  | 	  Anss = l(G,[d(G,[])]), % delete answers with positive delays | 
					
						
							|  |  |  | 	  Alist0 = [G-Val|Alist] | 
					
						
							|  |  |  |         ; % Val == false ->  | 
					
						
							|  |  |  | 	  Anss = [], | 
					
						
							|  |  |  | 	  Alist0 = [G-Val|Alist] | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | check_consistency(n2(T1,_,T2),Tab0,Tab,Alist0,Alist) :- | 
					
						
							|  |  |  | 	check_consistency(T1,Tab0,Tab1,Alist0,Alist1), | 
					
						
							|  |  |  | 	check_consistency(T2,Tab1,Tab,Alist1,Alist). | 
					
						
							|  |  |  | check_consistency(n3(T1,_,T2,_,T3),Tab0,Tab,Alist0,Alist) :- | 
					
						
							|  |  |  | 	check_consistency(T1,Tab0,Tab1,Alist0,Alist1), | 
					
						
							|  |  |  | 	check_consistency(T2,Tab1,Tab2,Alist1,Alist2), | 
					
						
							|  |  |  | 	check_consistency(T3,Tab2,Tab,Alist2,Alist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | add_dabd([],Alist,Alist). | 
					
						
							|  |  |  | add_dabd(l(G,Val),[G-Val|Alist],Alist). | 
					
						
							|  |  |  | add_dabd(n2(T1,_,T2),Alist0,Alist) :- | 
					
						
							|  |  |  | 	add_dabd(T1,Alist0,Alist1), | 
					
						
							|  |  |  | 	add_dabd(T2,Alist1,Alist). | 
					
						
							|  |  |  | add_dabd(n3(T1,_,T2,_,T3),Alist0,Alist) :- | 
					
						
							|  |  |  | 	add_dabd(T1,Alist0,Alist1), | 
					
						
							|  |  |  | 	add_dabd(T2,Alist1,Alist2), | 
					
						
							|  |  |  | 	add_dabd(T3,Alist2,Alist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* oldt(QueryAtom,Table): top level call for SLG resolution. | 
					
						
							|  |  |  |    It returns a table consisting of answers for each relevant | 
					
						
							|  |  |  |    subgoal. For stable predicates, it basically extract the  | 
					
						
							|  |  |  |    relevant set of ground clauses by solving Prolog predicates | 
					
						
							|  |  |  |    and other well-founded predicates. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | oldt(Call,Tab) :- | 
					
						
							|  |  |  |     new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1), | 
					
						
							|  |  |  |     add_tab_ent(Ggoal,Ent,[],Tab1), | 
					
						
							|  |  |  |     oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,0:[],_TP), | 
					
						
							|  |  |  |     ( wfs_trace ->  | 
					
						
							|  |  |  |       nl, write('Final '), display_table(Tab), nl | 
					
						
							|  |  |  |     ; true  | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* oldt(Call,Ggoal,Tab0,Tab,Stack0,Stack,DFN0,DFN,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |    explores the initial set of edges, i.e., all the  | 
					
						
							|  |  |  |    program clauses for Call. Ggoal is of the form  | 
					
						
							|  |  |  |    Gcall-Gdfn, where Gcall is numbervar of Call and Gdfn | 
					
						
							|  |  |  |    is the depth-first number of Gcall. Tab0/Tab,Stack0/Stack, | 
					
						
							|  |  |  |    DFN0/DFN, and Dep0/Dep are accumulators for the table,  | 
					
						
							|  |  |  |    the stack of subgoals, the DFN counter, and the dependencies. | 
					
						
							|  |  |  |    TP0/TP is the accumulator for newly created clauses during | 
					
						
							|  |  |  |    the processing of general clauss with universal disjunctions | 
					
						
							|  |  |  |    in the body. These clauses are created in order to guarantee | 
					
						
							|  |  |  |    polynomial data complexity in processing clauses with | 
					
						
							|  |  |  |    universal disjuntions in the body of a clause. The newly  | 
					
						
							|  |  |  |    created propositions are represented by numbers. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | oldt(Call,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     ( number(Call) -> | 
					
						
							|  |  |  |       TP0 = (_ : Tcl), | 
					
						
							|  |  |  |       find(Tcl,Call,Clause), | 
					
						
							|  |  |  |       edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1) | 
					
						
							|  |  |  |     ; findall(rule(d(Call,[]),Body), | 
					
						
							|  |  |  | 	      (new_slg_head(Call,Body,NewHead),call(NewHead)), | 
					
						
							|  |  |  | 	      Frames), | 
					
						
							|  |  |  |       map_oldt(Frames,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1) | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     comp_tab_ent(Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | map_oldt([],_Ggoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | map_oldt([Clause|Frames],Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |   edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |   map_oldt(Frames,Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |    Clause may be one of the following forms: | 
					
						
							|  |  |  |           rule(d(H,Dlist),Blist) | 
					
						
							|  |  |  |           rule(d(H,all(Dlist)),all(Blist)) | 
					
						
							|  |  |  |    where the second form is for general clauses with a universal | 
					
						
							|  |  |  |    disjunction of literals in the body. Dlist is a list of delayed  | 
					
						
							|  |  |  |    literals, and Blist is the list of literals to be solved. | 
					
						
							|  |  |  |    Clause represents a directed edge from Ggoal to the left most  | 
					
						
							|  |  |  |    subgoal in Blist. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     Clause = rule(Ans,B), | 
					
						
							|  |  |  |     ( B == [] -> | 
					
						
							|  |  |  |       ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |     ; B = [Lit|_] -> | 
					
						
							|  |  |  |       ( Lit = (\+N) -> | 
					
						
							|  |  |  |         neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |       ; pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; B = all(Bl) -> | 
					
						
							|  |  |  |       ( Bl == [] -> | 
					
						
							|  |  |  |         ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |       ; Bl = [Lit|_], | 
					
						
							|  |  |  |         ( Lit = (\+N) -> | 
					
						
							|  |  |  |           aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |         ; apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     ( add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab1) ->  | 
					
						
							|  |  |  |       ( Mode = new_head ->  | 
					
						
							|  |  |  |         returned_ans(Ans,Ggoal,RAns), | 
					
						
							|  |  |  |         map_nodes(Nodes,RAns,Tab1,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |       ; Mode = no_new_head -> | 
					
						
							|  |  |  |         Tab = Tab1, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     Clause = rule(_,[\+N|_]), | 
					
						
							|  |  |  |     ( ground(N) -> true | 
					
						
							|  |  |  |     ; write('Flounder: '), write(\+N), nl, fail | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     Node = (Ggoal:Clause), | 
					
						
							|  |  |  |     Ngoal = N,                 % N is already ground | 
					
						
							|  |  |  |     ( isprolog(N) ->           % if N is a Prolog predicate | 
					
						
							|  |  |  |       ( call(N) ->             %    then just call | 
					
						
							|  |  |  |         Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 | 
					
						
							|  |  |  |       ; apply_subst(Node,d(\+ N,[]),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; ( find(Tab0,Ngoal,Nent) -> | 
					
						
							|  |  |  |         Tab2 = Tab0, S2 = S0, Dfn2 = Dfn0, Dep1 = Dep0, TP1 = TP0 | 
					
						
							|  |  |  |       ; new_init_call(N,Ngoal,Ent,S0,S1,Dfn0,Dfn1), | 
					
						
							|  |  |  | 	add_tab_ent(Ngoal,Ent,Tab0,Tab1), | 
					
						
							|  |  |  | 	oldt(N,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,maxint-maxint,Ndep,TP0,TP1), | 
					
						
							|  |  |  | 	compute_mins(Dep0,Ndep,pos,Dep1), | 
					
						
							|  |  |  |         find(Tab2,Ngoal,Nent) | 
					
						
							|  |  |  |       ), | 
					
						
							|  |  |  |       ent_to_comp(Nent,Ncomp), | 
					
						
							|  |  |  |       ent_to_anss(Nent,Nanss), | 
					
						
							|  |  |  |       ( succeeded(Nanss) -> | 
					
						
							|  |  |  | 	Tab = Tab2, S = S2, Dfn = Dfn2, Dep = Dep1, TP = TP1 | 
					
						
							|  |  |  |       ; failed(Nanss), Ncomp == true -> | 
					
						
							|  |  |  |         apply_subst(Node,d(\+N,[]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP) | 
					
						
							|  |  |  |       ; apply_subst(Node,d(\+N,[\+N]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     Clause = rule(_H,[N|_B]), | 
					
						
							|  |  |  |     Node = (Ggoal:Clause), | 
					
						
							|  |  |  |     ground(N,Ngoal), | 
					
						
							|  |  |  |     ( isprolog(N) -> | 
					
						
							|  |  |  |       findall(d(N,[]),call(N),Nanss), | 
					
						
							|  |  |  |       map_anss_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |     ; ( find(Tab0,Ngoal,Nent) -> | 
					
						
							|  |  |  |         ent_to_comp(Nent,Ncomp), | 
					
						
							|  |  |  |         ent_to_anss(Nent,Nanss), | 
					
						
							|  |  |  |         ( Ncomp \== true -> | 
					
						
							|  |  |  |           update_lookup_mins(Ggoal,Node,Ngoal,pos,Tab0,Tab1,Dep0,Dep1), | 
					
						
							|  |  |  |           map_anss(Nanss,Node,Ngoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep1,Dep,TP0,TP) | 
					
						
							|  |  |  |         ; % N is completed.  | 
					
						
							|  |  |  |           map_anss(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; % otherwise N is new | 
					
						
							|  |  |  |         new_pos_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1), | 
					
						
							|  |  |  |         add_tab_ent(Ngoal,Ent,Tab0,Tab1), | 
					
						
							|  |  |  |         oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP), | 
					
						
							|  |  |  |         update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     Clause = rule(_H,all([\+N|_B])), | 
					
						
							|  |  |  |     Node = (Ggoal:Clause), | 
					
						
							|  |  |  |     ground(N,Ngoal), | 
					
						
							|  |  |  |     ( isprolog(N) -> | 
					
						
							|  |  |  |       findall(d(N,[]),call(N),Nanss), | 
					
						
							|  |  |  |       return_to_disj_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |     ; ( find(Tab0,Ngoal,Nent) -> | 
					
						
							|  |  |  |         ent_to_comp(Nent,Ncomp), | 
					
						
							|  |  |  |         ent_to_anss(Nent,Nanss), | 
					
						
							|  |  |  |         ( Ncomp \== true -> | 
					
						
							|  |  |  |           update_lookup_mins(Ggoal,Node,Ngoal,aneg,Tab0,Tab,Dep0,Dep), | 
					
						
							|  |  |  |           S = S0, Dfn = Dfn0, TP = TP0 | 
					
						
							|  |  |  |         ; % N is completed.  | 
					
						
							|  |  |  |           return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; % otherwise N is new | 
					
						
							|  |  |  |         new_aneg_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1), | 
					
						
							|  |  |  |         add_tab_ent(Ngoal,Ent,Tab0,Tab1), | 
					
						
							|  |  |  |         oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP), | 
					
						
							|  |  |  |         update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     Clause = rule(d(H,D),all([N|B])), | 
					
						
							|  |  |  |     ( ground(N) -> true | 
					
						
							|  |  |  |     ; write('Flounder in a universal disjunction: '),  | 
					
						
							|  |  |  |       write(N),  | 
					
						
							|  |  |  |       nl,  | 
					
						
							|  |  |  |       fail | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     pos_edge(rule(d(H,[]),[N]),Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     edge_oldt(rule(d(H,D),all(B)),Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | apply_subst(Ggoal:Cl,d(An,Vr),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     copy_term(Cl,rule(d(Ac,Vc),Body)), | 
					
						
							|  |  |  |     ( Body = [Call|NBody] -> | 
					
						
							|  |  |  |       Call = An, | 
					
						
							|  |  |  |       append(Vr,Vc,Vn) | 
					
						
							|  |  |  |     ; Body = all([Call|Calls]), | 
					
						
							|  |  |  |       % Call = An,              % An is the numbervar-ed version of Call. | 
					
						
							|  |  |  |       ( Vc == [] -> | 
					
						
							|  |  |  |         Vn = all(Vr) | 
					
						
							|  |  |  |       ; Vc = all(Vc0), | 
					
						
							|  |  |  |         append(Vr,Vc0,Vn0), | 
					
						
							|  |  |  |         Vn = all(Vn0) | 
					
						
							|  |  |  |       ), | 
					
						
							|  |  |  |       NBody = all(Calls) | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     edge_oldt(rule(d(Ac,Vn),NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* map_nodes(Nodes,Ans,....): | 
					
						
							|  |  |  |    return Ans to each of the waiting nodes in Nodes, where a node | 
					
						
							|  |  |  |    is of the form Ggoal:Clause. | 
					
						
							|  |  |  | */   | 
					
						
							|  |  |  | map_nodes([],_Ans,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | map_nodes([Node|Nodes],Ans,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     map_nodes(Nodes,Ans,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | map_anss([],_Node,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | map_anss(l(_GH,Lanss),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     ( Lanss == [] -> | 
					
						
							|  |  |  |       Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 | 
					
						
							|  |  |  |     ; Lanss = [Ans|_], | 
					
						
							|  |  |  |       returned_ans(Ans,Ngoal,RAns), | 
					
						
							|  |  |  |       apply_subst(Node,RAns,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | map_anss(n2(T1,_,T2),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     map_anss(T2,Node,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | map_anss(n3(T1,_,T2,_,T3),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     map_anss(T2,Node,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,Dep1,Dep2,TP1,TP2), | 
					
						
							|  |  |  |     map_anss(T3,Node,Ngoal,Tab2,Tab,S2,S,Dfn2,Dfn,Dep2,Dep,TP2,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | map_anss_list([],_Node,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | map_anss_list([Ans|Lanss],Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     map_anss_list(Lanss,Node,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |    Nanss: an answer table for Ngoal | 
					
						
							|  |  |  |    Node: is of the form (Ggoal:Clause), where Clause is of the form | 
					
						
							|  |  |  |          rule(d(H,D),all([\+N|B])) | 
					
						
							|  |  |  |    It carries out resolution of each answer with Clause, and constructs | 
					
						
							|  |  |  |    a new clause rule(Head,NBody), where the body is basically a  | 
					
						
							|  |  |  |    conjunction of all the resolvents. If a resolvent is a disjunction | 
					
						
							|  |  |  |    or a non-ground literal, a new proposition is created (which is  | 
					
						
							|  |  |  |    actually represented by a number), which has a clause whose body | 
					
						
							|  |  |  |    is the resolvent. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     Node = (Ggoal : Clause), | 
					
						
							|  |  |  |     Clause = rule(Head,all(Body)), | 
					
						
							|  |  |  |     TP0 = (N0 : Tcl0), | 
					
						
							|  |  |  |     negative_return_all(Nanss,Body,Ngoal,NBody,[],N0,N,Tcl0,Tcl), | 
					
						
							|  |  |  |     TP1 = (N : Tcl), | 
					
						
							|  |  |  |     edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | negative_return_all([],_Body,_Ngoal,NBody,NBody,N,N,Tcl,Tcl). | 
					
						
							|  |  |  | negative_return_all(l(_GH,Lanss),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- | 
					
						
							|  |  |  |     ( Lanss == [] -> | 
					
						
							|  |  |  |       NBody0 = NBody, N = N0, Tcl = Tcl0 | 
					
						
							|  |  |  |     ; Lanss = [Ans|_], | 
					
						
							|  |  |  |       negative_return_one(Ans,Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | negative_return_all(n2(T1,_,T2),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- | 
					
						
							|  |  |  |     negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1), | 
					
						
							|  |  |  |     negative_return_all(T2,Body,Ngoal,NBody1,NBody,N1,N,Tcl1,Tcl). | 
					
						
							|  |  |  | negative_return_all(n3(T1,_,T2,_,T3),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- | 
					
						
							|  |  |  |     negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1), | 
					
						
							|  |  |  |     negative_return_all(T2,Body,Ngoal,NBody1,NBody2,N1,N2,Tcl1,Tcl2), | 
					
						
							|  |  |  |     negative_return_all(T3,Body,Ngoal,NBody2,NBody,N2,N,Tcl2,Tcl). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | negative_return_one(d(H,Tv),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- | 
					
						
							|  |  |  |     copy_term(Body,[\+Call|Bs]), | 
					
						
							|  |  |  |     H = Call, | 
					
						
							|  |  |  |     ( Tv == [] ->                    % no delay | 
					
						
							|  |  |  |       ( (Bs = [Lit], ground(Lit)) -> % resovlent is a ground literal | 
					
						
							|  |  |  |         NBody0 = [Lit|NBody], | 
					
						
							|  |  |  |         N = N0, Tcl = Tcl0 | 
					
						
							|  |  |  |       ; Lit = N0,                    % otherwise, replace it with a number | 
					
						
							|  |  |  |         N is N0+1, | 
					
						
							|  |  |  |         NBody0 = [Lit|NBody], | 
					
						
							|  |  |  |         Clause = rule(d(Lit,[]),all(Bs)), | 
					
						
							|  |  |  |         add_tab_ent(Lit,Clause,Tcl0,Tcl) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; ( ground(H) ->                 % if there is delay, always replace with number | 
					
						
							|  |  |  | 	NewTv = [\+H] | 
					
						
							|  |  |  |       ; ground(H,GH), | 
					
						
							|  |  |  | 	NewTv = [Ngoal - (\+GH)] | 
					
						
							|  |  |  |       ), | 
					
						
							|  |  |  |       Lit = N0, | 
					
						
							|  |  |  |       N is N0+1, | 
					
						
							|  |  |  |       NBody0 = [Lit|NBody], | 
					
						
							|  |  |  |       Clause = rule(d(Lit,all(NewTv)),all(Bs)), | 
					
						
							|  |  |  |       add_tab_ent(Lit,Clause,Tcl0,Tcl) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | return_to_disj_list(Lanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     Node = (Ggoal : Clause), | 
					
						
							|  |  |  |     Clause = rule(Head,all(Body)), | 
					
						
							|  |  |  |     TP0 = (N0 : Tcl0), | 
					
						
							|  |  |  |     negative_return_list(Lanss,Body,NBody,[],N0,N,Tcl0,Tcl), | 
					
						
							|  |  |  |     TP1 = (N : Tcl), | 
					
						
							|  |  |  |     edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | negative_return_list([],_Body,NBody,NBody,N,N,Tcl,Tcl). | 
					
						
							|  |  |  | negative_return_list([d(H,[])|Lanss],Body,NBody0,NBody,N0,N,Tcl0,Tcl) :- | 
					
						
							|  |  |  |     copy_term(Body,[\+Call|Bs]), | 
					
						
							|  |  |  |     H = Call, | 
					
						
							|  |  |  |     ( Bs = [Lit], ground(Lit) -> | 
					
						
							|  |  |  |       NBody0 = [Lit|NBody1], | 
					
						
							|  |  |  |       N1 = N0, Tcl1 = Tcl0 | 
					
						
							|  |  |  |     ; Lit = N0, | 
					
						
							|  |  |  |       N1 is N0+1, | 
					
						
							|  |  |  |       NBody0 = [Lit|NBody1], | 
					
						
							|  |  |  |       Clause = rule(d(Lit,[]),all(Bs)), | 
					
						
							|  |  |  |       add_tab_ent(Lit,Clause,Tcl0,Tcl1) | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     negative_return_list(Lanss,Body,NBody1,NBody,N1,N,Tcl1,Tcl). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) | 
					
						
							|  |  |  |    check if Ggoal and subgoals on top of it on the stack are | 
					
						
							|  |  |  |    completely evaluated. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     ( Dep0 == maxint-maxint -> | 
					
						
							|  |  |  |       process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) | 
					
						
							|  |  |  |     ; update_mins(Ggoal,Dep0,pos,Tab0,Tab1,Gdfn,Gdep), | 
					
						
							|  |  |  |       Gdep = Gpmin-Gnmin, | 
					
						
							|  |  |  |       ( Gdfn @=< Gpmin, Gnmin == maxint -> | 
					
						
							|  |  |  |         process_pos_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) | 
					
						
							|  |  |  |       ; Gdfn @=< Gpmin, Gdfn @=< Gnmin -> | 
					
						
							|  |  |  |         process_neg_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) | 
					
						
							|  |  |  |       ; Tab = Tab1, S0 = S, Dfn = Dfn0, Dep = Gdep, TP = TP0 | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     ( wfs_trace -> | 
					
						
							|  |  |  |       write('Stack: '), nl, display_stack(S0,Tab0), | 
					
						
							|  |  |  |       write('Completed call found: '), write(Ggoal), nl,  | 
					
						
							|  |  |  |       display_table(Tab0), | 
					
						
							|  |  |  |       write('Completing calls ......'), nl, nl | 
					
						
							|  |  |  |     ; true | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     pop_subgoals(Ggoal,S0,S1,[],Scc), | 
					
						
							|  |  |  |     complete_comp(Scc,Tab0,Tab1,Alist,[]), | 
					
						
							|  |  |  |     return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn0,Dfn,maxint-maxint,Dep,TP0,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* pop_subgoals(Ggoal,S0,S,Scc0,Scc) | 
					
						
							|  |  |  |    pop off the stack subgoals up to and including Ggoal | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | pop_subgoals(Ggoal,S0,S,Scc0,Scc) :- | 
					
						
							|  |  |  |     S0 = [Sent|S1], | 
					
						
							|  |  |  |     ( Ggoal == Sent -> | 
					
						
							|  |  |  |       S = S1,  | 
					
						
							|  |  |  |       Scc = [Sent|Scc0] | 
					
						
							|  |  |  |     ; pop_subgoals(Ggoal,S1,S,[Sent|Scc0],Scc) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* complete_comp(Scc,Tab0,Tab,Alist0,Alist): | 
					
						
							|  |  |  |    process the list Scc of subgoals that are  | 
					
						
							|  |  |  |    completely evaluated. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | complete_comp([],Tab,Tab,Alist,Alist). | 
					
						
							|  |  |  | complete_comp([Ggoal|Scc],Tab0,Tab,Alist0,Alist) :- | 
					
						
							|  |  |  |     complete_one(Ggoal,Tab0,Tab1,Alist0,Alist1), | 
					
						
							|  |  |  |     complete_comp(Scc,Tab1,Tab,Alist1,Alist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* complete_one(Ggoal,Tab0,Tab,Alist0,Alist) | 
					
						
							|  |  |  |    process one subgoal that has been completely  | 
					
						
							|  |  |  |    evaluated: | 
					
						
							|  |  |  |    1. set its Nodes and Negs to [] and Comp to true; | 
					
						
							|  |  |  |    2. simplify its answers and set up links | 
					
						
							|  |  |  |       for further simplification later; | 
					
						
							|  |  |  |    3. use the truth value of Ggoal to simplify | 
					
						
							|  |  |  |       answers of other complete subgoals (possibly  | 
					
						
							|  |  |  |       including itself). | 
					
						
							|  |  |  |    4. set Alist0/Alist: a list of negation nodes with | 
					
						
							|  |  |  |       universal disjunctions with associated answers | 
					
						
							|  |  |  |       for the selected negative literal. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | complete_one(Ggoal,Tab0,Tab,Alist0,Alist) :- | 
					
						
							|  |  |  |     updatevs(Tab0,Ggoal,Ent0,Ent,Tab1), | 
					
						
							|  |  |  |     Ent0 = e(_Nodes,ANegs,Anss0,Delay,_Comp,Gdfn,Slist0), | 
					
						
							|  |  |  |     Ent = e([],[],Anss,Delay,true,Gdfn,Slist), | 
					
						
							|  |  |  |     ( Delay == true -> | 
					
						
							|  |  |  |       reduce_ans(Anss0,Anss,Tab0), | 
					
						
							|  |  |  |       setup_simp_links(Anss,Ggoal,Slist0,Slist1,Tab1,Tab2) | 
					
						
							|  |  |  |     ; % Delay == false | 
					
						
							|  |  |  |       Anss = Anss0, | 
					
						
							|  |  |  |       Tab2 = Tab1, | 
					
						
							|  |  |  |       Slist1 = Slist0 | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     extract_known(Ggoal,Anss,Slist1,Slist,Klist), | 
					
						
							|  |  |  |     simplify(Klist,Tab2,Tab,[]), | 
					
						
							|  |  |  |     ( ANegs == [] -> | 
					
						
							|  |  |  |       Alist0 = Alist | 
					
						
							|  |  |  |     ; Alist0 = [(Anss,Ggoal)-ANegs|Alist] | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | setup_simp_links([],_,Slist,Slist,Tab,Tab). | 
					
						
							|  |  |  | setup_simp_links(l(GH,Lanss),Ggoal,Slist0,Slist,Tab0,Tab) :- | 
					
						
							|  |  |  |     setup_simp_links_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab). | 
					
						
							|  |  |  | setup_simp_links(n2(T1,_,T2),Ggoal,Slist0,Slist,Tab0,Tab) :- | 
					
						
							|  |  |  |     setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1), | 
					
						
							|  |  |  |     setup_simp_links(T2,Ggoal,Slist1,Slist,Tab1,Tab). | 
					
						
							|  |  |  | setup_simp_links(n3(T1,_,T2,_,T3),Ggoal,Slist0,Slist,Tab0,Tab) :- | 
					
						
							|  |  |  |     setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1), | 
					
						
							|  |  |  |     setup_simp_links(T2,Ggoal,Slist1,Slist2,Tab1,Tab2), | 
					
						
							|  |  |  |     setup_simp_links(T3,Ggoal,Slist2,Slist,Tab2,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* setup_simp_link_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab) | 
					
						
							|  |  |  |    Ggoal-GH is to tell what portion of answers of Ggoal can be  | 
					
						
							|  |  |  |    simplified. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | setup_simp_links_list([],_,_,Slist,Slist,Tab,Tab). | 
					
						
							|  |  |  | setup_simp_links_list([d(_,D)|Anss],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :- | 
					
						
							|  |  |  |     ( D = all(Ds) -> | 
					
						
							|  |  |  |       true | 
					
						
							|  |  |  |     ; Ds = D | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     links_from_one_delay(Ds,GHead,Ggoal,Slist0,Slist1,Tab0,Tab1), | 
					
						
							|  |  |  |     setup_simp_links_list(Anss,GHead,Ggoal,Slist1,Slist,Tab1,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* A link ((Ggoal-GH):Lit) in an entry for Ngoal means that  | 
					
						
							|  |  |  |    the literal Lit in an answer with head GH in Ggoal can  | 
					
						
							|  |  |  |    be potentially simplified if we know answers for Ngoal. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | links_from_one_delay([],_,_,Slist,Slist,Tab,Tab). | 
					
						
							|  |  |  | links_from_one_delay([D|Ds],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :- | 
					
						
							|  |  |  |     ( D = (\+ Ngoal) -> | 
					
						
							|  |  |  |       ( Ggoal == Ngoal -> | 
					
						
							|  |  |  |         Tab1 = Tab0, | 
					
						
							|  |  |  | 	Slist1 = [GHead:D|Slist0] | 
					
						
							|  |  |  |       ; add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1), | 
					
						
							|  |  |  | 	Slist1 = Slist0 | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; D = (Ngoal-_) -> | 
					
						
							|  |  |  |       ( Ggoal == Ngoal -> | 
					
						
							|  |  |  |         Slist1 = [GHead:D|Slist0], | 
					
						
							|  |  |  |         Tab1 = Tab0 | 
					
						
							|  |  |  |       ; Slist1 = Slist0, | 
					
						
							|  |  |  |         add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     links_from_one_delay(Ds,GHead,Ggoal,Slist1,Slist,Tab1,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* extract_known(Ggoal,Anss,Links,Slist,Klist): | 
					
						
							|  |  |  |    Given Ggoal and its answers Anss, and its  | 
					
						
							|  |  |  |    simplification Links, it partitioned Links  | 
					
						
							|  |  |  |    into Slist and Klist of links, where Klist  | 
					
						
							|  |  |  |    is a list of links that are known to be either | 
					
						
							|  |  |  |    true or false. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    Klist is either of the form Val-Links, or a | 
					
						
							|  |  |  |    list of the form Val-Link. In case of non-ground | 
					
						
							|  |  |  |    calls, the corresponding portion of Anss has to  | 
					
						
							|  |  |  |    be searched. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | extract_known(Ggoal,Anss,Links,Slist,Klist) :- | 
					
						
							|  |  |  |     ( failed(Anss) -> | 
					
						
							|  |  |  |       Klist = fail-Links, | 
					
						
							|  |  |  |       Slist = [] | 
					
						
							|  |  |  |     ; Anss = l(GH,Lanss) -> | 
					
						
							|  |  |  |       ( Ggoal == GH ->       % Ground or most general call | 
					
						
							|  |  |  | 	( memberchk(d(_,[]),Lanss) -> | 
					
						
							|  |  |  | 	  Klist = succ-Links, | 
					
						
							|  |  |  | 	  Slist = [] | 
					
						
							|  |  |  |         ; Klist = [], | 
					
						
							|  |  |  | 	  Slist = Links | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; % non-ground call | 
					
						
							|  |  |  | 	extract_known_anss(Links,Anss,[],Slist,[],Klist) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; % non-ground call | 
					
						
							|  |  |  |       extract_known_anss(Links,Anss,[],Slist,[],Klist) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  | extract_known_anss([],_,Slist,Slist,Klist,Klist). | 
					
						
							|  |  |  | extract_known_anss([Link|Links],Anss,Slist0,Slist,Klist0,Klist) :- | 
					
						
							|  |  |  |     Link = (_:Lit), | 
					
						
							|  |  |  |     extract_lit_val(Lit,Anss,true,Val), | 
					
						
							|  |  |  |     ( Val == undefined -> | 
					
						
							|  |  |  |       Slist1 = [Link|Slist0], | 
					
						
							|  |  |  |       Klist1 = Klist0 | 
					
						
							|  |  |  |     ; Slist1 = Slist0, | 
					
						
							|  |  |  |       Klist1 = [Val-Link|Klist0] | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     extract_known_anss(Links,Anss,Slist1,Slist,Klist1,Klist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* extract_lit_val(Lit,Anss,Comp,Val): | 
					
						
							|  |  |  |    extract the truth value of Lit according to Anss and Comp. | 
					
						
							|  |  |  |    In case of a non-ground calls, the corresponding portion | 
					
						
							|  |  |  |    of Anss has to be searched. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | extract_lit_val(Lit,Anss,Comp,Val) :- | 
					
						
							|  |  |  |     ( Lit = (\+ _) -> | 
					
						
							|  |  |  |       ( succeeded(Anss) -> | 
					
						
							|  |  |  |         Val = fail | 
					
						
							|  |  |  |       ; failed(Anss), Comp == true -> | 
					
						
							|  |  |  |         Val = succ | 
					
						
							|  |  |  |       ; Val = undefined | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; Lit = (_ - (\+GH)) -> | 
					
						
							|  |  |  |       ( find(Anss,GH,Lanss) -> | 
					
						
							|  |  |  |         ( (\+ \+ memberchk(d(GH,[]),Lanss)) -> | 
					
						
							|  |  |  |           Val = fail | 
					
						
							|  |  |  |         ; Lanss == [], Comp == true -> | 
					
						
							|  |  |  | 	  Val = succ | 
					
						
							|  |  |  |         ; Val = undefined | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; ( Comp == true -> | 
					
						
							|  |  |  | 	  Val = succ | 
					
						
							|  |  |  |         ; Val = undefined | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; Lit = (_-GH) -> | 
					
						
							|  |  |  |       ( find(Anss,GH,Lanss) -> | 
					
						
							|  |  |  |         ( (\+ \+ memberchk(d(GH,[]),Lanss)) -> | 
					
						
							|  |  |  |           Val = succ | 
					
						
							|  |  |  |         ; Lanss == [], Comp == true -> | 
					
						
							|  |  |  | 	  Val = fail | 
					
						
							|  |  |  |         ; Val = undefined | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; ( Comp == true -> | 
					
						
							|  |  |  | 	  Val = fail | 
					
						
							|  |  |  |         ; Val = undefined | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* simplify(KnownLinks,Tab0,Tab,Abd): | 
					
						
							|  |  |  |    Given a list of KnownLinks, Tab0 and Abd, | 
					
						
							|  |  |  |    it tries to simplify answers according to | 
					
						
							|  |  |  |    KnownLinks. When a subgoal is found to be | 
					
						
							|  |  |  |    true or false according to answers,  | 
					
						
							|  |  |  |    consistency with assumed truth values in Abd | 
					
						
							|  |  |  |    is checked. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | simplify([],Tab,Tab,_Abd). | 
					
						
							|  |  |  | simplify([Val-Link|Klist],Tab0,Tab,Abd) :- | 
					
						
							|  |  |  |     simplify_one(Val,Link,Tab0,Tab1,Abd), | 
					
						
							|  |  |  |     simplify(Klist,Tab1,Tab,Abd). | 
					
						
							|  |  |  | simplify(Val-Links,Tab0,Tab,Abd) :- | 
					
						
							|  |  |  |     simplify_list(Links,Val,Tab0,Tab,Abd). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | simplify_list([],_,Tab,Tab,_Abd). | 
					
						
							|  |  |  | simplify_list([Link|Links],Val,Tab0,Tab,Abd) :- | 
					
						
							|  |  |  |     Link = (_ : Lit), | 
					
						
							|  |  |  |     ( ( Lit = (\+_); Lit = (_ - (\+_)) ) -> | 
					
						
							|  |  |  |       ( Val = fail -> LVal = succ; LVal = fail ) | 
					
						
							|  |  |  |     ; LVal = Val | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     simplify_one(LVal,Link,Tab0,Tab1,Abd), | 
					
						
							|  |  |  |     simplify_list(Links,Val,Tab1,Tab,Abd). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | simplify_one(Val,Link,Tab0,Tab,Abd) :- | 
					
						
							|  |  |  |     Link = ((Ngoal - GH) : Lit), | 
					
						
							|  |  |  |     updatevs(Tab0,Ngoal,Ent0,Ent,Tab1), | 
					
						
							|  |  |  |     Ent0 = e(Nodes,ANegs,Anss0,Delay,Comp,Dfn,Slist0), | 
					
						
							|  |  |  |     Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), | 
					
						
							|  |  |  |     ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) -> | 
					
						
							|  |  |  |       simplify_anss(Lanss0,Val,Lit,[],Lanss,C), | 
					
						
							|  |  |  |       ( C == true -> | 
					
						
							|  |  |  | 	( find(Abd,GH,Aval) -> | 
					
						
							|  |  |  | 	  ( Aval == true, Lanss == [] -> % deduced result inconsistent with assumption | 
					
						
							|  |  |  | 	    fail | 
					
						
							|  |  |  | 	  ; Aval == false, memberchk( d(_ , []), Lanss) -> | 
					
						
							|  |  |  | 	    fail | 
					
						
							|  |  |  | 	  ; true | 
					
						
							|  |  |  |           ) | 
					
						
							|  |  |  | 	; true | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         extract_known(Ngoal,Anss,Slist0,Slist,Klist), | 
					
						
							|  |  |  |         simplify(Klist,Tab1,Tab,Abd) | 
					
						
							|  |  |  |       ; Tab = Tab0 | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; Tab = Tab0 | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* simplify_anss(List,Val,Lit,Lanss0,Lanss,C): | 
					
						
							|  |  |  |    Given a List of answers, Val of Lit, it  | 
					
						
							|  |  |  |    simplifies the List and construct a new list | 
					
						
							|  |  |  |    Lanss0/Lanss of answers. C is unified with true | 
					
						
							|  |  |  |    if some simplification is carried out. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    As soon as a true answer is detected, all | 
					
						
							|  |  |  |    other answers with the same head are deleted. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | simplify_anss([],_,_,Anss,Anss,_). | 
					
						
							|  |  |  | simplify_anss([Ans|Rest],Val,Lit,Anss0,Anss,C) :- | 
					
						
							|  |  |  |     ( simplified_ans(Ans,Val,Lit,NewAns,C) -> | 
					
						
							|  |  |  |       ( NewAns = d(_,[]) -> | 
					
						
							|  |  |  |         Anss = [NewAns] | 
					
						
							|  |  |  |       ; Anss1 = [NewAns|Anss0], | 
					
						
							|  |  |  |         simplify_anss(Rest,Val,Lit,Anss1,Anss,C) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; C = true, | 
					
						
							|  |  |  |       simplify_anss(Rest,Val,Lit,Anss0,Anss,C) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | simplified_ans(Ans,Val,Lit,NewAns,C) :- | 
					
						
							|  |  |  |     Ans = d(H,Ds), | 
					
						
							|  |  |  |     ( Ds == [] -> | 
					
						
							|  |  |  |       NewAns = Ans | 
					
						
							|  |  |  |     ; Ds = all(Dlist) -> | 
					
						
							|  |  |  |       ( Val == fail -> | 
					
						
							|  |  |  |         delete_lit(Dlist,Lit,NewDlist,[],C), | 
					
						
							|  |  |  |         ( NewDlist == [] -> | 
					
						
							|  |  |  |           fail | 
					
						
							|  |  |  |         ; NewAns = d(H,all(NewDlist)) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; % Val == succ -> | 
					
						
							|  |  |  |         ( memberchk(Lit,Dlist) -> | 
					
						
							|  |  |  |           NewAns = d(H,[]), | 
					
						
							|  |  |  |           C = true | 
					
						
							|  |  |  |         ; NewAns = Ans | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; % Ds is a conjunction | 
					
						
							|  |  |  |       ( Val == fail -> | 
					
						
							|  |  |  |         ( memberchk(Lit,Ds) -> | 
					
						
							|  |  |  |           fail | 
					
						
							|  |  |  |         ; NewAns = Ans | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; % Val == succ -> | 
					
						
							|  |  |  |         delete_lit(Ds,Lit,NewDs,[],C), | 
					
						
							|  |  |  |         NewAns = d(H,NewDs) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* delete_lit(Delays,Lit,Ds0,Ds,C): | 
					
						
							|  |  |  |    deletes Lit from Delays. Delays is  | 
					
						
							|  |  |  |    a list of delayed literals and it | 
					
						
							|  |  |  |    is guaranteed to have no duplicates. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | delete_lit([],_,Ds,Ds,_). | 
					
						
							|  |  |  | delete_lit([D|Rest],Lit,Ds0,Ds,C) :- | 
					
						
							|  |  |  |     ( D == Lit -> | 
					
						
							|  |  |  |       Ds0 = Rest, | 
					
						
							|  |  |  |       C = true | 
					
						
							|  |  |  |     ; Ds0 = [D|Ds1], | 
					
						
							|  |  |  |       delete_lit(Rest,Lit,Ds1,Ds,C) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % return answers to negative nodes within universal disjunctions | 
					
						
							|  |  |  | return_aneg_nodes([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | return_aneg_nodes([(Anss,Ngoal)-ANegs|Alist],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     map_anegs(ANegs,Anss,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | map_anegs([],_Anss,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | map_anegs([Node|ANegs],Anss,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     return_to_disj(Anss,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     map_anegs(ANegs,Anss,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* process a component of subgoals that may be involved in  | 
					
						
							|  |  |  |    negative loops. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | process_neg_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     ( wfs_trace -> | 
					
						
							|  |  |  |       write('Stack: '), nl, display_stack(S0,Tab0), | 
					
						
							|  |  |  |       write('Possible negative loop: '), write(Ggoal), nl,  | 
					
						
							|  |  |  |       display_table(Tab0) | 
					
						
							|  |  |  |     ; true | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     extract_subgoals(Ggoal,S0,Scc,[]), | 
					
						
							|  |  |  |     reset_nmin(Scc,Tab0,Tab1,Ds,[]), | 
					
						
							|  |  |  |     ( wfs_trace -> | 
					
						
							|  |  |  |       write('Delaying: '), display_dlist(Ds) | 
					
						
							|  |  |  |     ; true | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     delay_and_cont(Ds,Tab1,Tab2,S0,S1,Dfn0,Dfn1,maxint-maxint,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     recomp_scc(Scc,Tab2,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* extract_subgoals(Ggoal,S0,Scc0,Scc) | 
					
						
							|  |  |  |    extract subgoals that may be involved in negative loops, | 
					
						
							|  |  |  |    but leave the stack of subgoals intact. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | extract_subgoals(Ggoal,[Sent|S],[Sent|Scc0],Scc) :- | 
					
						
							|  |  |  |     ( Ggoal == Sent -> | 
					
						
							|  |  |  |       Scc0 = Scc | 
					
						
							|  |  |  |     ; extract_subgoals(Ggoal,S,Scc0,Scc) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* reset_nmin(Scc,Tab0,Tab,Dnodes0,Dnodes) | 
					
						
							|  |  |  |    reset NegLink and collect all waiting nodes that need to be  | 
					
						
							|  |  |  |    delayed. Dnodes0/Dnodes is a difference list. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | reset_nmin([],Tab,Tab,Ds,Ds). | 
					
						
							|  |  |  | reset_nmin([Ggoal|Scc],Tab0,Tab,Ds0,Ds) :- | 
					
						
							|  |  |  |     get_and_reset_negs(Tab0,Ggoal,ANegs,Tab1), | 
					
						
							|  |  |  |     ( ANegs == [] -> | 
					
						
							|  |  |  |       Ds0 = Ds1 | 
					
						
							|  |  |  |     ; Ds0 = [Ggoal-ANegs|Ds1] | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     reset_nmin(Scc,Tab1,Tab,Ds1,Ds). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | delay_and_cont([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | delay_and_cont([Ggoal-Negs|Dnodes],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     map_nodes(Negs,d(\+Ggoal,[\+Ggoal]),Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     delay_and_cont(Dnodes,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | recomp_scc([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). | 
					
						
							|  |  |  | recomp_scc([Ggoal|Scc],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- | 
					
						
							|  |  |  |     comp_tab_ent(Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), | 
					
						
							|  |  |  |     recomp_scc(Scc,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* routines for incremental update of dependency information | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep) | 
					
						
							|  |  |  |    update the PosLink and NegLink of Ggoal according to  | 
					
						
							|  |  |  |    Dep and Sign | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep) :- | 
					
						
							|  |  |  |     Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep0,Slist), | 
					
						
							|  |  |  |     Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep,Slist), | 
					
						
							|  |  |  |     updatevs(Tab0,Ggoal,Ent0,Ent,Tab), | 
					
						
							|  |  |  |     compute_mins(Gdep0,Dep,Sign,Gdep). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep) | 
					
						
							|  |  |  |    There is a lookup edge (Node) from Ggoal to Ngoal  | 
					
						
							|  |  |  |    with Sign. It adds Node to the corresponding waiting list | 
					
						
							|  |  |  |    in Ngoal and then update the dependencies of Ggoal. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep) :- | 
					
						
							|  |  |  |     updatevs(Tab0,Ngoal,Ent0,Ent,Tab1), | 
					
						
							|  |  |  |     ( Sign == pos -> | 
					
						
							|  |  |  |       pos_to_newent(Ent0,Ent,Node) | 
					
						
							|  |  |  |     ; Sign == aneg -> | 
					
						
							|  |  |  |       aneg_to_newent(Ent0,Ent,Node) | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     Ent0 = e(_,_,_,_,_,_Ndfn:Ndep,_), | 
					
						
							|  |  |  |     compute_mins(Dep0,Ndep,Sign,Dep), | 
					
						
							|  |  |  |     update_mins(Ggoal,Ndep,Sign,Tab1,Tab,_,_). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep) | 
					
						
							|  |  |  |    There is an edge with Sign from Ggoal to Ngoal, where Ngoal is  | 
					
						
							|  |  |  |    a new subgoal. Ndep is the final dependency information of  | 
					
						
							|  |  |  |    Ngoal. Dep0/Dep is for the most recent enclosing new call. | 
					
						
							|  |  |  |    This predicate is called after Ngoal is solved. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep) :- | 
					
						
							|  |  |  |     find(Tab0,Ngoal,Nent), | 
					
						
							|  |  |  |     ent_to_comp(Nent,Ncomp), | 
					
						
							|  |  |  |     ( Ncomp == true -> | 
					
						
							|  |  |  |       ( Ndep == maxint-maxint -> | 
					
						
							|  |  |  |         Tab = Tab0, Dep = Dep0 | 
					
						
							|  |  |  |       ; update_mins(Ggoal,Ndep,pos,Tab0,Tab,_,_), | 
					
						
							|  |  |  |         compute_mins(Dep0,Ndep,pos,Dep) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; update_mins(Ggoal,Ndep,Sign,Tab0,Tab,_,_), | 
					
						
							|  |  |  |       compute_mins(Dep0,Ndep,Sign,Dep) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | compute_mins(Gpmin-Gnmin,Npmin-Nnmin,Sign,Newpmin-Newnmin) :- | 
					
						
							|  |  |  |     ( Sign == pos -> | 
					
						
							|  |  |  |       min(Gpmin,Npmin,Newpmin), | 
					
						
							|  |  |  |       min(Gnmin,Nnmin,Newnmin) | 
					
						
							|  |  |  |     ; % (Sign == neg; Sign == aneg) -> | 
					
						
							|  |  |  |       Newpmin=Gpmin, | 
					
						
							|  |  |  |       min(Gnmin,Npmin,Imin),  | 
					
						
							|  |  |  |       min(Imin,Nnmin,Newnmin) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  | min(X,Y,M) :- ( X @< Y -> M=X; M=Y ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %%%%%%%%%%%%%%% Local table manipulation predicates %%%%%%%%%% | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Table Entry Structure: | 
					
						
							|  |  |  |    For each Call, its table entry is identified with its number-vared | 
					
						
							|  |  |  |    version -- Ggoal. Its value is a term of the form | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     e(Nodes,ANegs,Anss,Delay,Comp,Dfn:Dep,Slist) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    where | 
					
						
							|  |  |  |      Nodes:  positive suspension list | 
					
						
							|  |  |  |      ANegs:  negative suspension list (for universal disjunction clauss) | 
					
						
							|  |  |  |      Anss:   another table. | 
					
						
							|  |  |  |      Delay:  whether Anss contains any answer with delay | 
					
						
							|  |  |  |      Comp:   whether Call is completely evaluated or not | 
					
						
							|  |  |  |      Dfn:    depth-first number of Gcall | 
					
						
							|  |  |  |      Dep:    (PosLink-NegLink) --- dependency information | 
					
						
							|  |  |  |      Slist:  a list of nodes whose answers may be simplified | 
					
						
							|  |  |  |              if the truth value of Ggoal is known. Each element of Slist | 
					
						
							|  |  |  |          is of the form (Ngoal-GH):Literal. | 
					
						
							|  |  |  |    Stack Entry Structure: | 
					
						
							|  |  |  |      Ggoal | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* routines for accessing individual fields of an entry | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | ent_to_nodes(e(Nodes,_,_,_,_,_,_),Nodes). | 
					
						
							|  |  |  | ent_to_anegs(e(_,ANegs,_,_,_,_,_),ANegs). | 
					
						
							|  |  |  | ent_to_anss(e(_,_,Anss,_,_,_,_),Anss). | 
					
						
							|  |  |  | ent_to_delay(e(_,_,_,Delay,_,_,_),Delay). | 
					
						
							|  |  |  | ent_to_comp(e(_,_,_,_,Comp,_,_),Comp). | 
					
						
							|  |  |  | ent_to_dfn(e(_,_,_,_,_,Dfn,_),Dfn). | 
					
						
							|  |  |  | ent_to_slist(e(_,_,_,_,_,_,Slist),Slist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | get_and_reset_negs(Tab0,Ggoal,ANegs,Tab) :- | 
					
						
							|  |  |  |     Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn: (Gpmin - _),Slist), | 
					
						
							|  |  |  |     Ent = e(Nodes,[],Anss,Delay,Comp,Gdfn:Gpmin-maxint,Slist), | 
					
						
							|  |  |  |     updatevs(Tab0,Ggoal,Ent0,Ent,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* adding a new table entry | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | add_tab_ent(Ggoal,Ent,Tab0,Tab) :-  | 
					
						
							|  |  |  |     addkey(Tab0,Ggoal,Ent,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* The following three routines are for creating | 
					
						
							|  |  |  |    new calls | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | /* a new call with empty suspensions  | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | new_init_call(Call,Ggoal,Ent,S0,S,Dfn0,Dfn) :- | 
					
						
							|  |  |  |     ground(Call,Ggoal), | 
					
						
							|  |  |  |     S = [Ggoal|S0], | 
					
						
							|  |  |  |     Dfn is Dfn0+1, | 
					
						
							|  |  |  |     Ent = e([],[],[],false,false,Dfn0:Dfn0-maxint,[]). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* a new call with an initial negative suspension from  | 
					
						
							|  |  |  |    inside a universal disjunction | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | new_aneg_call(Ngoal,Neg,Ent,S0,S,Dfn0,Dfn) :- | 
					
						
							|  |  |  |     S = [Ngoal|S0], | 
					
						
							|  |  |  |     Dfn is Dfn0+1, | 
					
						
							|  |  |  |     Ent = e([],[Neg],[],false,false,Dfn0:Dfn0-maxint,[]). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* a new call with an initial positive suspension | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | new_pos_call(Ngoal,Node,Ent,S0,S,Dfn0,Dfn) :- | 
					
						
							|  |  |  |     S = [Ngoal|S0], | 
					
						
							|  |  |  |     Dfn is Dfn0+1, | 
					
						
							|  |  |  |     Ent = e([Node],[],[],false,false,Dfn0:Dfn0-maxint,[]). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* routines for adding more information to a | 
					
						
							|  |  |  |    table entry. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | aneg_to_newent(Ent0,Ent,ANeg) :- | 
					
						
							|  |  |  |     Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), | 
					
						
							|  |  |  |     Ent = e(Nodes,[ANeg|ANegs],Anss,Delay,Comp,Dfn,Slist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | pos_to_newent(Ent0,Ent,Node) :- | 
					
						
							|  |  |  |     Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), | 
					
						
							|  |  |  |     Ent = e([Node|Nodes],ANegs,Anss,Delay,Comp,Dfn,Slist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | add_link_to_ent(Tab0,Ggoal,Link,Tab) :- | 
					
						
							|  |  |  |     updatevs(Tab0,Ggoal,Ent0,Ent,Tab), | 
					
						
							|  |  |  |     link_to_newent(Ent0,Ent,Link). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | link_to_newent(Ent0,Ent,Link) :- | 
					
						
							|  |  |  |     Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), | 
					
						
							|  |  |  |     Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,[Link|Slist]). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* routines for manipulating answers */ | 
					
						
							|  |  |  | ansstree_to_list([],L,L). | 
					
						
							|  |  |  | ansstree_to_list(l(_GH,Lanss),L0,L) :- | 
					
						
							|  |  |  |     attach(Lanss,L0,L). | 
					
						
							|  |  |  | ansstree_to_list(n2(T1,_M,T2),L0,L) :- | 
					
						
							|  |  |  |     ansstree_to_list(T1,L0,L1), | 
					
						
							|  |  |  |     ansstree_to_list(T2,L1,L). | 
					
						
							|  |  |  | ansstree_to_list(n3(T1,_M2,T2,_M3,T3),L0,L) :- | 
					
						
							|  |  |  |     ansstree_to_list(T1,L0,L1), | 
					
						
							|  |  |  |     ansstree_to_list(T2,L1,L2), | 
					
						
							|  |  |  |     ansstree_to_list(T3,L2,L). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | attach([],L,L). | 
					
						
							|  |  |  | attach([d(H,B)|R],[X|L0],L) :- | 
					
						
							|  |  |  |     ( B == [] -> | 
					
						
							|  |  |  |       X = H | 
					
						
							|  |  |  |     ; X = (H <- B) | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     attach(R,L0,L). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | member_anss(Ans,Anss) :- | 
					
						
							|  |  |  | 	member_anss_1(Anss,Ans). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | member_anss_1(l(_,Lanss),Ans) :- | 
					
						
							|  |  |  | 	member(Ans,Lanss). | 
					
						
							|  |  |  | member_anss_1(n2(T1,_,T2),Ans) :- | 
					
						
							|  |  |  | 	( member_anss_1(T1,Ans) | 
					
						
							|  |  |  |         ; member_anss_1(T2,Ans) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | member_anss_1(n3(T1,_,T2,_,T3),Ans) :- | 
					
						
							|  |  |  | 	( member_anss_1(T1,Ans) | 
					
						
							|  |  |  |         ; member_anss_1(T2,Ans) | 
					
						
							|  |  |  |         ; member_anss_1(T3,Ans) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* failed(Anss): Anss is empty */ | 
					
						
							|  |  |  | failed([]). | 
					
						
							|  |  |  | failed(l(_,[])). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* succeeded(Anss): Anss contains a single definite answer */ | 
					
						
							|  |  |  | succeeded(l(_,Lanss)) :- | 
					
						
							|  |  |  | 	memberchk(d(_,[]),Lanss). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* add_ans(Tab0,Goal,Ans,Nodes,Mode,Tab): | 
					
						
							|  |  |  |    If Ans is not subsumed by any existing answer then | 
					
						
							|  |  |  |       Ans is added to Anss(Goal); | 
					
						
							|  |  |  |       If some existing answer also has head H then | 
					
						
							|  |  |  |          Mode = no_new_head | 
					
						
							|  |  |  |       else  | 
					
						
							|  |  |  |          Mode = new_head | 
					
						
							|  |  |  |    else | 
					
						
							|  |  |  |       fail. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab) :- | 
					
						
							|  |  |  |     updatevs(Tab0,Ggoal,Ent0,Ent,Tab), | 
					
						
							|  |  |  |     Ans = d(H,Ds), | 
					
						
							|  |  |  |     ( Ds == [] -> | 
					
						
							|  |  |  |       new_ans_ent(Ent0,Ent,Ans,Nodes,Mode) | 
					
						
							|  |  |  |     ; setof(X,member(X,Ds),NewDs), | 
					
						
							|  |  |  |       new_ans_ent(Ent0,Ent,d(H,NewDs),Nodes,Mode) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | new_ans_ent(Ent0,Ent,Ans,Nodes,Mode) :- | 
					
						
							|  |  |  |     Ent0 = e(Nodes,ANegs,Anss0,Delay0,Comp,Dfn,Slist), | 
					
						
							|  |  |  |     Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), | 
					
						
							|  |  |  |     Ans = d(H,D), | 
					
						
							|  |  |  |     ground(H,GH), | 
					
						
							|  |  |  |     ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) -> | 
					
						
							|  |  |  |       ( D == [] -> | 
					
						
							|  |  |  |         \+(memberchk(d(_,[]),Lanss0)), | 
					
						
							|  |  |  |         Lanss = [Ans] | 
					
						
							|  |  |  |       ; not_subsumed_ans(Ans,Lanss0), | 
					
						
							|  |  |  |         Lanss = [Ans|Lanss0] | 
					
						
							|  |  |  |       ), | 
					
						
							|  |  |  |       Mode = no_new_head | 
					
						
							|  |  |  |     ; addkey(Anss0,GH,[Ans],Anss), | 
					
						
							|  |  |  |       Mode = new_head | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     ( D == [] ->  | 
					
						
							|  |  |  |       Delay = Delay0 | 
					
						
							|  |  |  |     ; Delay = true | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* returned_ans(Ans,Ggoal,RAns): | 
					
						
							|  |  |  |    determines whether SLG resolution or SLG factoring should  | 
					
						
							|  |  |  |    be applied. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | returned_ans(d(H,Tv),Ggoal,d(H,NewTv)) :- | 
					
						
							|  |  |  |     ( Tv = [] -> | 
					
						
							|  |  |  |       NewTv = [] | 
					
						
							|  |  |  |     ; ground(H,GH), | 
					
						
							|  |  |  |       NewTv = [Ggoal-GH] | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % reduce a list of answers, by reducing delay list, and by subsumption | 
					
						
							|  |  |  | reduce_ans(Anss0,Anss,Tab) :- | 
					
						
							|  |  |  |     reduce_completed_ans(Anss0,Anss,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % simplify all the delay lists in a list of answers. | 
					
						
							|  |  |  | reduce_completed_ans([],[],_Tab). | 
					
						
							|  |  |  | reduce_completed_ans(l(GH,Lanss0),l(GH,Lanss),Tab) :- | 
					
						
							|  |  |  |     reduce_completed_anslist(Lanss0,[],Lanss,Tab). | 
					
						
							|  |  |  | reduce_completed_ans(n2(T1,M,T2),n2(NT1,M,NT2),Tab) :- | 
					
						
							|  |  |  |     reduce_completed_ans(T1,NT1,Tab), | 
					
						
							|  |  |  |     reduce_completed_ans(T2,NT2,Tab). | 
					
						
							|  |  |  | reduce_completed_ans(n3(T1,M2,T2,M3,T3),n3(NT1,M2,NT2,M3,NT3),Tab) :- | 
					
						
							|  |  |  |     reduce_completed_ans(T1,NT1,Tab), | 
					
						
							|  |  |  |     reduce_completed_ans(T2,NT2,Tab), | 
					
						
							|  |  |  |     reduce_completed_ans(T3,NT3,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | reduce_completed_anslist([],Lanss,Lanss,_Tab). | 
					
						
							|  |  |  | reduce_completed_anslist([d(G,D0)|List],Lanss0,Lanss,Tab) :- | 
					
						
							|  |  |  |     ( D0 = all(Dlist1) -> | 
					
						
							|  |  |  |       ( filter_delays(Dlist1,[],Dlist,disj,V,Tab) -> | 
					
						
							|  |  |  |         ( V == true ->       % true answer | 
					
						
							|  |  |  |           Lanss = [d(G,[])] | 
					
						
							|  |  |  |         ; Dlist == [] ->     % false answer, ignore | 
					
						
							|  |  |  |           reduce_completed_anslist(List,Lanss0,Lanss,Tab) | 
					
						
							|  |  |  |         ; reduce_completed_anslist(List,[d(G,all(Dlist))|Lanss0],Lanss,Tab) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; reduce_completed_anslist(List,Lanss0,Lanss,Tab) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; ( filter_delays(D0,[],D,conj,_V,Tab) -> | 
					
						
							|  |  |  | 	( D == [] -> | 
					
						
							|  |  |  | 	  Lanss = [d(G,[])] | 
					
						
							|  |  |  |         ; reduce_completed_anslist(List,[d(G,D)|Lanss0],Lanss,Tab) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |       ; reduce_completed_anslist(List,Lanss0,Lanss,Tab) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % simplify a delay list by the completed table: delete true negations, | 
					
						
							|  |  |  | %    fail if a false one. | 
					
						
							|  |  |  | filter_delays([],Fds,Fds,_DC,_V,_Tab). | 
					
						
							|  |  |  | filter_delays([Lit|Ds],Fds0,Fds,DC,V,Tab) :- | 
					
						
							|  |  |  |     lit_to_call(Lit,Gcall), | 
					
						
							|  |  |  |     find(Tab,Gcall,Gent), | 
					
						
							|  |  |  |     ent_to_comp(Gent,Gcomp), | 
					
						
							|  |  |  |     ent_to_anss(Gent,Ganss), | 
					
						
							|  |  |  |     extract_lit_val(Lit,Ganss,Gcomp,Val), | 
					
						
							|  |  |  |     ( Val == succ -> | 
					
						
							|  |  |  |       ( DC == conj -> | 
					
						
							|  |  |  |         filter_delays(Ds,Fds0,Fds,DC,V,Tab) | 
					
						
							|  |  |  |       ; DC == disj -> | 
					
						
							|  |  |  |         V = true | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; Val == fail -> | 
					
						
							|  |  |  |       ( DC == conj -> | 
					
						
							|  |  |  |         fail | 
					
						
							|  |  |  |       ; DC == disj -> | 
					
						
							|  |  |  |         filter_delays(Ds,Fds0,Fds,DC,V,Tab) | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ; % Val == undefined | 
					
						
							|  |  |  |       filter_delays(Ds,[Lit|Fds0],Fds,DC,V,Tab) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | lit_to_call(\+G,G). | 
					
						
							|  |  |  | lit_to_call(Gcall-_,Gcall). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | not_subsumed_ans(Ans,Lanss0) :- | 
					
						
							|  |  |  |     \+ | 
					
						
							|  |  |  |     ( numbervars(Ans,0,_), | 
					
						
							|  |  |  |       subsumed_ans1(Ans,Lanss0) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % succeed if answer is subsumed by any in list1 or 2. | 
					
						
							|  |  |  | subsumed_ans(Tv,List1,List2) :-  | 
					
						
							|  |  |  |     \+  | 
					
						
							|  |  |  |     (numbervars(Tv,0,_), | 
					
						
							|  |  |  |      \+ subsumed_ans1(Tv,List1), | 
					
						
							|  |  |  |      \+ subsumed_ans1(Tv,List2) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % check if a delay is subsumed one of the element in the list | 
					
						
							|  |  |  | subsumed_ans1(d(T,V),List) :- | 
					
						
							|  |  |  |     member(d(T,V1),List), | 
					
						
							|  |  |  |     ( V1 == [] | 
					
						
							|  |  |  |     ; V = all(LV), V1 = all(LV1) -> | 
					
						
							|  |  |  |       subset(LV,LV1) | 
					
						
							|  |  |  |     ; subset(V1,V) | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /****************** auxiliary routines *******************/ | 
					
						
							|  |  |  | % variantchk/2 finds a variant in a list of atoms. | 
					
						
							|  |  |  | variantchk(G,[G1|_]) :- variant(G,G1), !. | 
					
						
							|  |  |  | variantchk(G,[_|L]) :- variantchk(G,L). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | variant(A, B) :- | 
					
						
							|  |  |  |     A == B | 
					
						
							|  |  |  |      ->    true | 
					
						
							|  |  |  |      ;     subsumes_chk(A, B), | 
					
						
							|  |  |  |            subsumes_chk(B, A), | 
					
						
							|  |  |  |            A = B. | 
					
						
							|  |  |  | /* | 
					
						
							|  |  |  | subsumes_chk(General, Specific) :- | 
					
						
							|  |  |  |         \+ (    numbervars(Specific, 0, _), | 
					
						
							|  |  |  |                 \+ General = Specific | 
					
						
							|  |  |  |          ). | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | ground(O,C) :- ground(O) -> C = O ; copy_term(O,C), numbervars(C,0,_). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | subset([],_). | 
					
						
							|  |  |  | subset([E|L1],L2) :- memberchk(E,L2), subset(L1,L2). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | reverse([],R,R). | 
					
						
							|  |  |  | reverse([Goal|Scc],R0,R) :- reverse(Scc,[Goal|R0],R). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /***************** routines for debugging *******************/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % Debugging help: pretty-prints strongly connected components and local table. | 
					
						
							|  |  |  | display_stack(Stack,Tab) :- | 
					
						
							|  |  |  |     reverse(Stack,[],Rstack), | 
					
						
							|  |  |  |     display_st(Rstack,Tab). | 
					
						
							|  |  |  | display_st([],_Tab). | 
					
						
							|  |  |  | display_st([Ggoal|Scc],Tab) :- | 
					
						
							|  |  |  |     find(Tab,Ggoal,Ent), | 
					
						
							|  |  |  |     ent_to_dfn(Ent,Dfn:Pmin-Nmin), | 
					
						
							|  |  |  |     tab(2),  | 
					
						
							|  |  |  |     write(Ggoal-Dfn), | 
					
						
							|  |  |  |     write(':  '), | 
					
						
							|  |  |  |     write('Pmin='), | 
					
						
							|  |  |  |     write(Pmin), | 
					
						
							|  |  |  |     write(';  '), | 
					
						
							|  |  |  |     write('Nmin='), | 
					
						
							|  |  |  |     write(Nmin), | 
					
						
							|  |  |  |     write(';  '), | 
					
						
							|  |  |  |     nl, | 
					
						
							|  |  |  |     display_st(Scc,Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | display_dlist([]) :- nl,nl. | 
					
						
							|  |  |  | display_dlist([Ngoal-_|Dlist]) :- | 
					
						
							|  |  |  |     write(\+ Ngoal),  | 
					
						
							|  |  |  |     write('; '),  | 
					
						
							|  |  |  |     display_dlist(Dlist). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | display_table(Tab) :- | 
					
						
							|  |  |  |     write('Table: '),  | 
					
						
							|  |  |  |     nl, | 
					
						
							|  |  |  |     write_tab(Tab). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | display_final(Tab) :- | 
					
						
							|  |  |  |     write(' Final Set of Answers: '),  | 
					
						
							|  |  |  |     nl, | 
					
						
							|  |  |  |     display_final1(Tab). | 
					
						
							|  |  |  | display_final1([]). | 
					
						
							|  |  |  | display_final1(l(_,e(_,_,Anss,_,_,_,_))) :- | 
					
						
							|  |  |  |     write_anss(Anss). | 
					
						
							|  |  |  | display_final1(n2(X,_,Y)) :-  | 
					
						
							|  |  |  |     display_final1(X), | 
					
						
							|  |  |  |     display_final1(Y). | 
					
						
							|  |  |  | display_final1(n3(X,_,Y,_,Z)) :-  | 
					
						
							|  |  |  |     display_final1(X), | 
					
						
							|  |  |  |     display_final1(Y), | 
					
						
							|  |  |  |     display_final1(Z). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | write_tab([]). | 
					
						
							|  |  |  | write_tab(l(G,e(Nodes,ANegs,Anss,_,Comp,Dfn:_,_))) :- | 
					
						
							|  |  |  |     write(' Entry: '), | 
					
						
							|  |  |  |     write(G-Dfn), | 
					
						
							|  |  |  |     write(': '), | 
					
						
							|  |  |  |     ( Comp == true ->  | 
					
						
							|  |  |  |       write('Complete!') | 
					
						
							|  |  |  |     ; write('Incomplete!')  | 
					
						
							|  |  |  |     ),  | 
					
						
							|  |  |  |     nl, | 
					
						
							|  |  |  |     ( Anss == [] ->  | 
					
						
							|  |  |  |       true | 
					
						
							|  |  |  |     ; write('   Anss: '),  | 
					
						
							|  |  |  |       nl, | 
					
						
							|  |  |  |       write_anss(Anss) | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     ( ( Comp == true; Nodes == []) ->  | 
					
						
							|  |  |  |       true  | 
					
						
							|  |  |  |     ; write('   Nodes: '), | 
					
						
							|  |  |  |       write(Nodes), | 
					
						
							|  |  |  |       nl | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     ( ( Comp == true; ANegs == []) -> | 
					
						
							|  |  |  |       true | 
					
						
							|  |  |  |     ; write('   ANegs: '), | 
					
						
							|  |  |  |       write(ANegs), | 
					
						
							|  |  |  |       nl | 
					
						
							|  |  |  |     ). | 
					
						
							|  |  |  | write_tab(n2(X,_,Y)) :-  | 
					
						
							|  |  |  |     write_tab(X), | 
					
						
							|  |  |  |     write_tab(Y). | 
					
						
							|  |  |  | write_tab(n3(X,_,Y,_,Z)) :-  | 
					
						
							|  |  |  |     write_tab(X), | 
					
						
							|  |  |  |     write_tab(Y), | 
					
						
							|  |  |  |     write_tab(Z). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | write_anss([]). | 
					
						
							|  |  |  | write_anss(l(_,Lanss)) :- | 
					
						
							|  |  |  |     write_anss_list(Lanss). | 
					
						
							|  |  |  | write_anss(n2(T1,_,T2)) :- | 
					
						
							|  |  |  |     write_anss(T1), | 
					
						
							|  |  |  |     write_anss(T2). | 
					
						
							|  |  |  | write_anss(n3(T1,_,T2,_,T3)) :- | 
					
						
							|  |  |  |     write_anss(T1), | 
					
						
							|  |  |  |     write_anss(T2), | 
					
						
							|  |  |  |     write_anss(T3). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | write_anss_list([]). | 
					
						
							|  |  |  | write_anss_list([Ans|Anss]) :- | 
					
						
							|  |  |  |     write_ans(Ans), | 
					
						
							|  |  |  |     write_anss_list(Anss). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | write_ans(d(H,Ds)) :- | 
					
						
							|  |  |  |     write('         '),  | 
					
						
							|  |  |  |     write(H), | 
					
						
							|  |  |  |     ( Ds == [] ->  | 
					
						
							|  |  |  |       true | 
					
						
							|  |  |  |     ; write(' :- '), | 
					
						
							|  |  |  |       ( Ds = all([D|Ds1]) -> | 
					
						
							|  |  |  |         ( D = (_-GH) -> | 
					
						
							|  |  |  |           write(GH) | 
					
						
							|  |  |  |         ; write(D) | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         write_delay(Ds1,'; ') | 
					
						
							|  |  |  |       ; Ds = [D|Ds1], | 
					
						
							|  |  |  |         ( D = (_-GH) -> | 
					
						
							|  |  |  |           write(GH) | 
					
						
							|  |  |  |         ; write(D) | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         write_delay(Ds1,', ') | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  |     ),  | 
					
						
							|  |  |  |     write('.'),  | 
					
						
							|  |  |  |     nl. | 
					
						
							|  |  |  | write_delay([],_). | 
					
						
							|  |  |  | write_delay([D|Ds1],Sep) :- | 
					
						
							|  |  |  |     write(Sep), | 
					
						
							|  |  |  |     ( D = (_Gcall-GH) ->  | 
					
						
							|  |  |  |       write(GH) | 
					
						
							|  |  |  |     ; write(D)  | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     write_delay(Ds1,Sep). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | /*  | 
					
						
							|  |  |  | This is a set of routines that supports indexed tables. Tables | 
					
						
							|  |  |  | are sets of key-value_list pairs. With each key is associated a list | 
					
						
							|  |  |  | of values. It uses 2-3 trees for the index (modified by D.S. Warren | 
					
						
							|  |  |  | from Ivan Bratko: ``Prolog Programming for Artificial | 
					
						
							|  |  |  | Intelligence'', Addison Wesley, 1986). Operations are:  | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Keys must be ground! (so numbervar them) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | addkey(Tree,Key,V,Tree1) adds a new Key with value V, returning  | 
					
						
							|  |  |  |     new Tree1. Fails if the key is already there. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | find(Tree,Key,V) finds the entry with Key and returns associated | 
					
						
							|  |  |  |     values in V. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | updatevs(Tree,Key,OldV,NewV,Tree1) replaces value of entry with key | 
					
						
							|  |  |  |     Key and value OldV with NewV. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | addkey(Tree,X,V,Tree1) :- | 
					
						
							|  |  |  | 	ins2(Tree,X,V,Trees), | 
					
						
							|  |  |  | 	cmb0(Trees,Tree1). | 
					
						
							|  |  |  | addkey([],X,V,l(X,V)). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | find(l(X,V),Xs,V) :- X == Xs. | 
					
						
							|  |  |  | find(n2(T1,M,T2),X,V) :- | 
					
						
							|  |  |  | 	M @=< X | 
					
						
							|  |  |  | 	 ->	find(T2,X,V) | 
					
						
							|  |  |  | 	 ;	find(T1,X,V). | 
					
						
							|  |  |  | find(n3(T1,M2,T2,M3,T3),X,V) :- | 
					
						
							|  |  |  | 	M2 @=< X | 
					
						
							|  |  |  | 	 ->	(M3 @=< X | 
					
						
							|  |  |  | 		 ->	find(T3,X,V) | 
					
						
							|  |  |  | 		 ;	find(T2,X,V) | 
					
						
							|  |  |  | 		) | 
					
						
							|  |  |  | 	 ;	find(T1,X,V). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % updatevs(Tab0,X,Ov,Nv,Tab) updates Tab0 to Tab, by replacing | 
					
						
							|  |  |  | % Ov of entry with key X by Nv. | 
					
						
							|  |  |  | /* | 
					
						
							|  |  |  | updatevs(Tab0,X,Ov,Nv,Tab) :- | 
					
						
							|  |  |  | 	updatevs(Tab0,X,Ov,Nv), | 
					
						
							|  |  |  | 	Tab = Tab0. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | updatevs(Tab,X,Ov,Nv) :- | 
					
						
							|  |  |  | 	( Tab = l(Xs,Ov), Xs == X -> | 
					
						
							|  |  |  | 	  setarg(2,Tab,Nv) | 
					
						
							|  |  |  |         ; Tab = n2(T1,M,T2) -> | 
					
						
							|  |  |  | 	  ( M @=< X -> | 
					
						
							|  |  |  | 	    updatevs(T2,X,Ov,Nv) | 
					
						
							|  |  |  | 	  ; updatevs(T1,X,Ov,Nv) | 
					
						
							|  |  |  |           ) | 
					
						
							|  |  |  |         ; Tab = n3(T1,M2,T2,M3,T3) -> | 
					
						
							|  |  |  | 	  ( M2 @=< X -> | 
					
						
							|  |  |  | 	    ( M3 @=< X -> | 
					
						
							|  |  |  | 	      updatevs(T3,X,Ov,Nv) | 
					
						
							|  |  |  | 	    ; updatevs(T2,X,Ov,Nv) | 
					
						
							|  |  |  | 	    ) | 
					
						
							|  |  |  | 	  ; updatevs(T1,X,Ov,Nv) | 
					
						
							|  |  |  |           ) | 
					
						
							|  |  |  |         ). | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | updatevs(l(X,Ov),Xs,Ov,Nv,l(X,Nv)) :- X == Xs. | 
					
						
							|  |  |  | updatevs(n2(T1,M,T2),X,Ov,Nv,n2(NT1,M,NT2)) :- | 
					
						
							|  |  |  | 	M @=< X | 
					
						
							|  |  |  | 	 ->	NT1=T1, updatevs(T2,X,Ov,Nv,NT2) | 
					
						
							|  |  |  | 	 ;	NT2=T2, updatevs(T1,X,Ov,Nv,NT1). | 
					
						
							|  |  |  | updatevs(n3(T1,M2,T2,M3,T3),X,Ov,Nv,n3(NT1,M2,NT2,M3,NT3)) :- | 
					
						
							|  |  |  | 	M2 @=< X | 
					
						
							|  |  |  | 	 ->	(M3 @=< X | 
					
						
							|  |  |  | 		 ->	NT2=T2, NT1=T1, updatevs(T3,X,Ov,Nv,NT3) | 
					
						
							|  |  |  | 		 ;	NT1=T1, NT3=T3, updatevs(T2,X,Ov,Nv,NT2) | 
					
						
							|  |  |  | 		) | 
					
						
							|  |  |  | 	 ;	NT2=T2, NT3=T3, updatevs(T1,X,Ov,Nv,NT1). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ins2(n2(T1,M,T2),X,V,Tree) :-  | 
					
						
							|  |  |  | 	M @=< X | 
					
						
							|  |  |  | 	 ->	ins2(T2,X,V,Tree1), | 
					
						
							|  |  |  | 		cmb2(Tree1,T1,M,Tree) | 
					
						
							|  |  |  | 	 ;	ins2(T1,X,V,Tree1), | 
					
						
							|  |  |  | 		cmb1(Tree1,M,T2,Tree). | 
					
						
							|  |  |  | ins2(n3(T1,M2,T2,M3,T3),X,V,Tree) :-  | 
					
						
							|  |  |  | 	M2 @=< X | 
					
						
							|  |  |  | 	 ->	(M3 @=< X | 
					
						
							|  |  |  | 		 ->	ins2(T3,X,V,Tree1), | 
					
						
							|  |  |  | 			cmb4(Tree1,T1,M2,T2,M3,Tree) | 
					
						
							|  |  |  | 		 ;	ins2(T2,X,V,Tree1), | 
					
						
							|  |  |  | 			cmb5(Tree1,T1,M2,M3,T3,Tree) | 
					
						
							|  |  |  | 		) | 
					
						
							|  |  |  | 	 ;	ins2(T1,X,V,Tree1), | 
					
						
							|  |  |  | 		cmb3(Tree1,M2,T2,M3,T3,Tree). | 
					
						
							|  |  |  | ins2(l(A,V),X,Vn,Tree) :- | 
					
						
							|  |  |  | 	A @=< X | 
					
						
							|  |  |  | 	 ->	(X @=< A | 
					
						
							|  |  |  | 		 ->	fail | 
					
						
							|  |  |  | 		 ;	Tree = t(l(A,V),X,l(X,Vn)) | 
					
						
							|  |  |  | 		) | 
					
						
							|  |  |  | 	 ;	Tree = t(l(X,Vn),A,l(A,V)). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cmb0(t(Tree),Tree). | 
					
						
							|  |  |  | cmb0(t(T1,M,T2),n2(T1,M,T2)). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cmb1(t(NT1),M,T2,t(n2(NT1,M,T2))). | 
					
						
							|  |  |  | cmb1(t(NT1a,Mb,NT1b),M,T2,t(n3(NT1a,Mb,NT1b,M,T2))). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cmb2(t(NT2),T1,M,t(n2(T1,M,NT2))). | 
					
						
							|  |  |  | cmb2(t(NT2a,Mb,NT2b),T1,M,t(n3(T1,M,NT2a,Mb,NT2b))). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cmb3(t(NT1),M2,T2,M3,T3,t(n3(NT1,M2,T2,M3,T3))). | 
					
						
							|  |  |  | cmb3(t(NT1a,Mb,NT1b),M2,T2,M3,T3,t(n2(NT1a,Mb,NT1b),M2,n2(T2,M3,T3))). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cmb4(t(NT3),T1,M2,T2,M3,t(n3(T1,M2,T2,M3,NT3))). | 
					
						
							|  |  |  | cmb4(t(NT3a,Mb,NT3b),T1,M2,T2,M3,t(n2(T1,M2,T2),M3,n2(NT3a,Mb,NT3b))). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cmb5(t(NT2),T1,M2,M3,T3,t(n3(T1,M2,NT2,M3,T3))). | 
					
						
							|  |  |  | cmb5(t(NT2a,Mb,NT2b),T1,M2,M3,T3,t(n2(T1,M2,NT2a),Mb,n2(NT2b,M3,T3))). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | start_slg:- assertz(( | 
					
						
							|  |  |  | 	term_expansion(X,Y) :- !, | 
					
						
							|  |  |  | 	        do_term_expansion(X,Y) | 
					
						
							|  |  |  | 	    )). | 
					
						
							|  |  |  | 
 |