This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/Logtalk/examples/threads/functions/functions.lgt

264 lines
5.7 KiB
Plaintext
Raw Normal View History

:- protocol(find_rootp).
:- info([
version is 1.1,
author is 'Paulo Moura and Paulo Nunes',
date is 2006/11/26,
comment is 'Default protocol for root find algorithms.']).
:- public(find_root/5).
:- mode(find_root(+object_identifier, +float, +float, +float, -float), one).
:- info(find_root/5, [
comment is 'Find the root of a function in the interval [A, B] given a maximum aproximation error.',
argnames is ['Function', 'A', 'B', 'Error', 'Zero']]).
:- end_protocol.
:- protocol(functionp).
:- info([
version is 1.1,
author is 'Paulo Moura and Paulo Nunes',
date is 2006/11/26,
comment is 'Default protocol for real functions of a single real variable.']).
:- public(eval/2).
:- mode(eval(+float, -float), one).
:- info(eval/2, [
comment is 'Calculates the function value.',
argnames is ['X', 'Fx']]).
:- public(evald/2).
:- mode(evald(+float, -float), one).
:- info(evald/2, [
comment is 'Calculates the value of the function derivative.',
argnames is ['X', 'DFx']]).
:- end_protocol.
:- object(f1,
implements(functionp)).
% x^2 - 4
% 2.0
eval(X, Y) :-
Y is X * X - 4.
evald(X, Y) :-
Y is 2 * X.
:- end_object.
:- object(f2,
implements(functionp)).
% x^7 + 9x^5 - 13x - 17
% 1.29999999999945448
eval(X, Y) :-
Y is X**7 + 9*X**5 - 13*X - 17.
evald(X, Y) :-
Y is 7*X**6 + 45*X**4 - 13.
:- end_object.
:- object(f3,
implements(functionp)).
% (x - sqrt(2))^7
% 1.41421356237309537
eval(X, Y) :-
Y is (X - sqrt(2.0))**8.
evald(X, Y) :-
Y is 8*(X - sqrt(2.0))**7.
:- end_object.
:- object(f4,
implements(functionp)).
% x + x^2*sin(2.0/x)
% 0.0
eval(X, Y) :-
Y is X + (X**2)*sin(2.0/X).
evald(X, Y) :-
Y is 1 + 2*X*sin(2.0/X) - 2*cos(2.0/X).
:- end_object.
:- object(bisection,
implements(find_rootp)).
:- info([
version is 1.2,
author is 'Paulo Moura and Paulo Nunes',
date is 2007/7/7,
comment is 'Bisection algorithm.']).
find_root(Function, A, B, Error, Zero) :-
Function::eval(A, Fa),
Function::eval(B, Fb),
( Fa > 0.0, Fb < 0.0 ->
true
; Fa < 0.0, Fb > 0.0
),
X0 is (A + B) / 2.0,
Function::eval(X0, F0),
bisection(Function, A, B, X0, F0, Error, Zero).
bisection(_, _, _, Xn, Fn, Error, Xn) :-
abs(Fn) < Error,
!.
bisection(Function, An, Bn, _, _, Error, Zero) :-
Xn1 is (An + Bn) / 2.0,
Function::eval(Xn1, Fn1),
Function::eval(An, FAn),
( Fn1*FAn < 0.0 ->
An1 is An,
Bn1 is Xn1
; An1 is Xn1,
Bn1 is Bn
),
bisection(Function, An1, Bn1, Xn1, Fn1, Error, Zero).
:- end_object.
:- object(newton,
implements(find_rootp)).
:- info([
version is 1.2,
author is 'Paul Crocker... No More Coffee',
date is 2007/07/06,
comment is 'Newton algorithm.']).
find_root(Function, Xa, Xb, Deviation, Zero) :-
Ac is (Xb - Xa) / 2,
newton(Function, Xa, Ac, Deviation, Zero).
newton(_, Zero, Ac, Deviation, Zero) :-
abs(Ac) < Deviation,
!.
newton(Function, X0, Ac, Deviation, Zero):-
Xn1 is X0 + Ac,
Function::eval(Xn1, Fx),
Function::evald(Xn1, DFx),
Ac2 is -(Fx/DFx),
newton(Function, Xn1, Ac2, Deviation, Zero).
:- end_object.
:- object(muller,
implements(find_rootp)).
:- info([
version is 1.2,
author is 'Paulo Moura and Paulo Nunes',
date is 2006/11/26,
comment is 'Muller algorithm.']).
find_root(Function, Xa, Xb, Deviation, Zero) :-
Xc is (Xa + Xb) / 2.0,
muller(Function, Xa, Xc, Xb, Deviation, Zero).
muller(Function, Xa, Xb, Xc, Deviation, Zero) :-
Function::eval(Xa, Ya),
Function::eval(Xb, Yb),
Function::eval(Xc, Yc),
H1 is Xb - Xa,
DDba is (Yb - Ya) / H1,
Ac is Deviation + 1.0,
muller(Function, Xa, Xb, Xc, Deviation, Ya, Yb, Yc, Ac, H1, DDba, Zero).
muller(_, _, _, Xc, Deviation, _, _, _, Ac, _, _, Xc) :-
abs(Ac) < Deviation,
!.
muller(Function, Xa, Xb, Xc, Deviation, _, Yb, Yc, _, _, DDba, Zero) :-
H2n is Xc - Xb,
DDcbn is (Yc - Yb) / H2n,
Cn is (DDcbn - DDba) / (Xc - Xa),
Bn is DDcbn + H2n * Cn,
Rn is Bn * Bn - 4.0 * Yc * Cn,
( Rn < 0.0 ->
fail
; V is sqrt(Rn)
),
( Bn > 0.0 ->
Dn is Bn + V
; Dn is Bn - V
),
Acn is -(2 * Yc / Dn),
Xan is Xb,
Xbn is Xc,
Xcn is Xc + Acn,
Yan is Yb,
Ybn is Yc,
Function::eval(Xcn, Ycn),
H1n is H2n,
DDban is DDcbn,
muller(Function, Xan, Xbn, Xcn, Deviation, Yan, Ybn, Ycn, Acn, H1n, DDban, Zero).
:- end_object.
:- object(function_root,
implements(find_rootp)).
:- info([
version is 2.0,
author is 'Paulo Moura and Paulo Nunes',
date is 2007/07/05,
comment is 'Multi-threading interface to root finding algorithms.']).
:- threaded.
:- public(find_root/6).
:- mode(find_root(+object_identifier, +float, +float, +float, -float, -object_identifier), one).
:- info(find_root/6, [
comment is 'Finds the root of a function in the interval [A, B] given a maximum aproximation error. Returns the method used.',
argnames is ['Function', 'A', 'B', 'Error', 'Zero', 'Method']]).
find_root(Function, A, B, Error, Zero, Algorithm) :-
threaded((
(bisection::find_root(Function, A, B, Error, Zero), Algorithm = bisection)
; (newton::find_root(Function, A, B, Error, Zero), Algorithm = newton)
; (muller::find_root(Function, A, B, Error, Zero), Algorithm = muller)
)).
% an alternative, possibly better definition would be to make the methods simply fail in case of error:
%
% find_root(Function, A, B, Error, Zero, Algorithm) :-
% threaded((
% (catch(bisection::find_root(Function, A, B, Error, Zero), _, fail), Algorithm = bisection)
% ; (catch(newton::find_root(Function, A, B, Error, Zero), _, fail), Algorithm = newton)
% ; (catch(muller::find_root(Function, A, B, Error, Zero), _, fail), Algorithm = muller)
% )).
find_root(Function, A, B, Error, Zero) :-
find_root(Function, A, B, Error, Zero, _).
:- end_object.