181 lines
4.0 KiB
Plaintext
181 lines
4.0 KiB
Plaintext
|
:- source.
|
||
|
|
||
|
:- style_check(all).
|
||
|
|
||
|
:- module(clpbn_pgrammar,[grammar_prob/2,
|
||
|
grammar_mle/2]).
|
||
|
|
||
|
:- load_files([library(clpbn)],
|
||
|
[ if(not_loaded),
|
||
|
silent(true)
|
||
|
]).
|
||
|
|
||
|
:- use_module([library(lists)],
|
||
|
[ sum_list/2
|
||
|
]).
|
||
|
|
||
|
:- op(600, xfy,'::').
|
||
|
|
||
|
:- dynamic id/4.
|
||
|
|
||
|
:- meta_predicate grammar_prob(:,-).
|
||
|
|
||
|
grammar_prob(M:S, P) :- !,
|
||
|
grammar_prob(S, M, P).
|
||
|
grammar_prob(S, P) :-
|
||
|
source_module(M),
|
||
|
grammar_prob(S, M, P).
|
||
|
|
||
|
grammar_prob(S,M,P) :-
|
||
|
nb_setval(grammar_fast,on),
|
||
|
get_internal(S, InternalS, Proof),
|
||
|
findall(P,path_prob(M:InternalS,Proof,P),Ps),
|
||
|
nb_setval(grammar_fast,off),
|
||
|
sum_list(Ps, P).
|
||
|
|
||
|
path_prob(InternalS,Proof,P) :-
|
||
|
call(InternalS),
|
||
|
extract_probability(Proof, P).
|
||
|
|
||
|
grammar_mle(M:S, P) :- !,
|
||
|
grammar_mle(S, M, P).
|
||
|
grammar_mle(S, P) :-
|
||
|
source_module(M),
|
||
|
grammar_mle(S, M, P).
|
||
|
|
||
|
grammar_mle(S,M,P) :-
|
||
|
nb_setval(grammar_fast,on),
|
||
|
nb_setval(best,p(0.0,_)),
|
||
|
get_internal(S, InternalS, Proof),
|
||
|
call(M:InternalS),
|
||
|
extract_probability(Proof, P),
|
||
|
nb_getval(best,p(P0,_)),
|
||
|
P > P0,
|
||
|
nb_setval(best,p(P,S)),
|
||
|
fail.
|
||
|
grammar_mle(S,_,P) :-
|
||
|
nb_setval(grammar_fast,off),
|
||
|
nb_getval(best,p(P,S)), P > 0.0.
|
||
|
|
||
|
user:term_expansion((P::H --> B), Goal) :-
|
||
|
functor(H,A0,_),
|
||
|
% a-->b to a(p(K,P,C,[Cs])) --> b(Cs)
|
||
|
convert_to_internal(H, B, IH, IB, Id),
|
||
|
expand_term((IH --> IB),(NH :- NB)),
|
||
|
prolog_load_context(module, Mod),
|
||
|
functor(NH,N,A),
|
||
|
functor(EH,N,A),
|
||
|
EH =.. [N|Args],
|
||
|
build_rule_name(A0,NRuleName),
|
||
|
EH1 =.. [NRuleName,Choice|Args],
|
||
|
tail2(Args,LArgs),
|
||
|
Key =.. [A0|LArgs],
|
||
|
Args = [_|RArgs],
|
||
|
H0 =.. [A0|RArgs],
|
||
|
add_to_predicate(Mod:EH1,Mod:EH,Mod:H0,NH,NB,Key,Choice,P,Id,Goal).
|
||
|
|
||
|
add_to_predicate(M:EH1,M:EH,_,NH,NB,Key,Choice,P,Id,(EH1:-NB)) :-
|
||
|
predicate_property(M:EH1,number_of_clauses(I)), !,
|
||
|
Choice is I+1,
|
||
|
assert_static(M:ptab(EH,Choice,P)),
|
||
|
new_id(Key,P,Choice,Id),
|
||
|
EH = NH.
|
||
|
add_to_predicate(M:EH1,M:EH,M:H0,NH,NB,Key,Choice,P,Id,(EH1:-NB)) :-
|
||
|
% interface predicate
|
||
|
assert_static(M:(H0 :- EH)),
|
||
|
% now ensure_tabled works.
|
||
|
ensure_tabled(M,H0,EH),
|
||
|
assert_static(M:(EH :-
|
||
|
clpbn_pgrammar:p_rule(M,EH,Key,Choice),
|
||
|
M:EH1)),
|
||
|
Choice = 1,
|
||
|
new_id(Key,P,Choice,Id),
|
||
|
assert_static(M:ptab(EH,Choice,P)),
|
||
|
EH=NH.
|
||
|
|
||
|
p_rule(_,_,_,_) :-
|
||
|
nb_setval(grammar_fast,on), !.
|
||
|
p_rule(M,EH,Key,Choice) :-
|
||
|
all_tabs(M,EH,Dom,Opt),
|
||
|
{ Choice = Key with p(Dom,Opt) }.
|
||
|
|
||
|
ensure_tabled(M,H0,EH) :-
|
||
|
predicate_property(M:H0, tabled), !,
|
||
|
functor(EH,N,Ar),
|
||
|
table(M:N/Ar).
|
||
|
ensure_tabled(_,_,_).
|
||
|
|
||
|
build_internal(N,NInternal) :-
|
||
|
atom_concat(N,'__internal',NInternal).
|
||
|
|
||
|
build_rule_name(N,NRule) :-
|
||
|
atom_concat(N,'__rule',NRule).
|
||
|
|
||
|
convert_to_internal(Head, Body, NH, NBody, Id) :-
|
||
|
convert_body_to_internal(Body, NBody, LGoals, []),
|
||
|
Head =.. [Na|Args],
|
||
|
build_internal(Na,NaInternal),
|
||
|
NH =.. [NaInternal,p(Id,LGoals)|Args].
|
||
|
|
||
|
convert_body_to_internal((B1,B2), (NB1,NB2)) -->
|
||
|
!,
|
||
|
convert_body_to_internal(B1,NB1),
|
||
|
convert_body_to_internal(B2,NB2).
|
||
|
convert_body_to_internal([A], [A]) --> !.
|
||
|
convert_body_to_internal({A}, {A}) --> !.
|
||
|
convert_body_to_internal(B, IB) -->
|
||
|
[V],
|
||
|
{
|
||
|
B =.. [Na|Args],
|
||
|
build_internal(Na,NaInternal),
|
||
|
IB =.. [NaInternal,V|Args]
|
||
|
}.
|
||
|
|
||
|
new_id(Key,P,Choice,Id) :-
|
||
|
(
|
||
|
predicate_property(id(_,_,_,_),number_of_clauses(Id))
|
||
|
->
|
||
|
true
|
||
|
;
|
||
|
Id = 0
|
||
|
),
|
||
|
assert(id(Id,Key,P,Choice)).
|
||
|
|
||
|
all_tabs(M,EH,Dom,Ps) :-
|
||
|
findall(P,M:ptab(EH,_,P),Ps),
|
||
|
build_dom(Dom,1,Ps).
|
||
|
|
||
|
build_dom([],_,[]).
|
||
|
build_dom([I|Dom],I,[_|Ps]) :-
|
||
|
I1 is I+1,
|
||
|
build_dom(Dom,I1,Ps).
|
||
|
|
||
|
tail2([A,B],[A,B]) :- !.
|
||
|
tail2([_|Args],LArgs) :-
|
||
|
tail2(Args,LArgs).
|
||
|
|
||
|
|
||
|
get_internal(S, InternalS, Arg) :-
|
||
|
S =.. [N|Args],
|
||
|
build_internal(N, NInternal),
|
||
|
InternalS =.. [NInternal, Arg|Args].
|
||
|
|
||
|
|
||
|
extract_probability(p(Id,Goals), P) :-
|
||
|
id(Id,_,P0,_),
|
||
|
LogP0 is log(P0),
|
||
|
extract_logprobability(Goals, LogP0, LogP),
|
||
|
P is exp(LogP).
|
||
|
|
||
|
extract_logprobability(p(Id, Goals), LogP) :-
|
||
|
id(Id,_,P0,_),
|
||
|
LogP0 is log(P0),
|
||
|
extract_logprobability(Goals, LogP0, LogP).
|
||
|
|
||
|
extract_logprobability([], LogP, LogP).
|
||
|
extract_logprobability([P1|Ps], LogP0, LogP) :-
|
||
|
extract_logprobability(P1, LogDP),
|
||
|
LogPI is LogDP+LogP0,
|
||
|
extract_logprobability(Ps, LogPI, LogP).
|
||
|
|