This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/python/swig/yap4py/prolog/assoc.yap

297 lines
6.2 KiB
Plaintext
Raw Normal View History

2017-05-19 10:03:49 +01:00
/**
* @file assoc.yap
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
* @date Tue Nov 17 13:53:34 2015
*
* @brief Red-Black Implementation of Association Lists.
*
* This file has been included as an YAP library by Vitor Santos Costa, 1999
*
* Note: the keys should be bound, the associated values need not be.
*/
:- module(assoc, [
empty_assoc/1,
assoc_to_list/2,
is_assoc/1,
min_assoc/3,
max_assoc/3,
gen_assoc/3,
get_assoc/3,
get_assoc/5,
get_next_assoc/4,
get_prev_assoc/4,
list_to_assoc/2,
ord_list_to_assoc/2,
map_assoc/2,
map_assoc/3,
put_assoc/4,
del_assoc/4,
assoc_to_keys/2,
del_min_assoc/4,
del_max_assoc/4
]).
/** @defgroup Association_Lists Association Lists
@ingroup library
@{
The following association list manipulation predicates are available
once included with the `use_module(library(assoc))` command. The
original library used Richard O'Keefe's implementation, on top of
unbalanced binary trees. The current code utilises code from the
red-black trees library and emulates the SICStus Prolog interface.
The library exports the following definitions:
- is/assoc/1
*/
:- meta_predicate map_assoc(2, +, -), map_assoc(1, +).
:- use_module(library(rbtrees), [
rb_empty/1,
rb_visit/2,
is_rbtree/1,
rb_min/3,
rb_max/3,
rb_in/3,
rb_lookup/3,
rb_update/5,
rb_next/4,
rb_previous/4,
list_to_rbtree/2,
ord_list_to_rbtree/2,
rb_map/2,
rb_map/3,
rb_keys/2,
rb_update/4,
rb_insert/4,
rb_delete/4,
rb_del_min/4,
rb_del_max/4
]).
/** @pred empty_assoc(+ _Assoc_)
Succeeds if association list _Assoc_ is empty.
*/
empty_assoc(t).
/** @pred assoc_to_list(+ _Assoc_,? _List_)
Given an association list _Assoc_ unify _List_ with a list of
the form _Key-Val_, where the elements _Key_ are in ascending
order.
*/
assoc_to_list(t, L) :- !, L = [].
assoc_to_list(T, L) :-
rb_visit(T, L).
/** @pred is_assoc(+ _Assoc_)
Succeeds if _Assoc_ is an association list, that is, if it is a
red-black tree.
*/
is_assoc(t) :- !.
is_assoc(T) :-
is_rbtree(T).
/** @pred min_assoc(+ _Assoc_,- _Key_,? _Value_)
Given the association list
_Assoc_, _Key_ in the smallest key in the list, and _Value_
the associated value.
*/
min_assoc(T,K,V) :-
rb_min(T,K,V).
/** @pred max_assoc(+ _Assoc_,- _Key_,? _Value_)
Given the association list
_Assoc_, _Key_ in the largest key in the list, and _Value_
the associated value.
*/
max_assoc(T,K,V) :-
rb_max(T,K,V).
/** @pred gen_assoc( ?Key, +Assoc, ?Valu_)
Given the association list _Assoc_, unify _Key_ and _Value_
with a key-value pair in the list. It can be used to enumerate all elements
in the association list.
*/
gen_assoc(K, T, V) :-
rb_in(K,V,T).
/** @pred get_assoc(+ _Key_,+ _Assoc_,? _Value_)
If _Key_ is one of the elements in the association list _Assoc_,
return the associated value.
*/
get_assoc(K,T,V) :-
rb_lookup(K,V,T).
/** @pred get_assoc(+ _Key_,+ _Assoc_,? _Value_,+ _NAssoc_,? _NValue_)
If _Key_ is one of the elements in the association list _Assoc_,
return the associated value _Value_ and a new association list
_NAssoc_ where _Key_ is associated with _NValue_.
*/
get_assoc(K,T,V,NT,NV) :-
rb_update(T,K,V,NV,NT).
/** @pred get_next_assoc(+ _Key_,+ _Assoc_,? _Next_,? _Value_)
If _Key_ is one of the elements in the association list _Assoc_,
return the next key, _Next_, and its value, _Value_.
*/
get_next_assoc(K,T,KN,VN) :-
rb_next(T,K,KN,VN).
/** @pred get_prev_assoc(+ _Key_,+ _Assoc_,? _Next_,? _Value_)
If _Key_ is one of the elements in the association list _Assoc_,
return the previous key, _Next_, and its value, _Value_.
*/
get_prev_assoc(K,T,KP,VP) :-
rb_previous(T,K,KP,VP).
/** @pred list_to_assoc(+ _List_,? _Assoc_)
Given a list _List_ such that each element of _List_ is of the
form _Key-Val_, and all the _Keys_ are unique, _Assoc_ is
the corresponding association list.
*/
list_to_assoc(L, T) :-
list_to_rbtree(L, T).
/** @pred ord_list_to_assoc(+ _List_,? _Assoc_)
Given an ordered list _List_ such that each element of _List_ is
of the form _Key-Val_, and all the _Keys_ are unique, _Assoc_ is
the corresponding association list.
*/
ord_list_to_assoc(L, T) :-
ord_list_to_rbtree(L, T).
/** @pred map_assoc(+ _Pred_,+ _Assoc_)
Succeeds if the unary predicate name _Pred_( _Val_) holds for every
element in the association list.
*/
map_assoc(t, _) :- !.
map_assoc(P, T) :-
yap_flag(typein_module, M0),
extract_mod(P, M0, M, G),
functor(G, Name, 1),
rb_map(T, M:Name).
/** @pred map_assoc(+ _Pred_,+ _Assoc_,? _New_)
Given the binary predicate name _Pred_ and the association list
_Assoc_, _New_ in an association list with keys in _Assoc_,
and such that if _Key-Val_ is in _Assoc_, and _Key-Ans_ is in
_New_, then _Pred_( _Val_, _Ans_) holds.*/
map_assoc(t, T, T) :- !.
map_assoc(P, T, NT) :-
yap_flag(typein_module, M0),
extract_mod(P, M0, M, G),
functor(G, Name, 2),
rb_map(T, M:Name, NT).
extract_mod(G,_,_) :- var(G), !, fail.
extract_mod(M:G, _, FM, FG ) :- !,
extract_mod(G, M, FM, FG ).
extract_mod(G, M, M, G ).
/** @pred put_assoc(+ _Key_,+ _Assoc_,+ _Val_,+ _New_)
The association list _New_ includes and element of association
_key_ with _Val_, and all elements of _Assoc_ that did not
have key _Key_.
*/
put_assoc(K, T, V, NT) :-
rb_update(T, K, V, NT), !.
put_assoc(K, t, V, NT) :- !,
rbtrees:rb_new(K,V,NT).
put_assoc(K, T, V, NT) :-
rb_insert(T, K, V, NT).
/** @pred del_assoc(+ _Key_, + _Assoc_, ? _Val_, ? _NewAssoc_)
Succeeds if _NewAssoc_ is an association list, obtained by removing
the element with _Key_ and _Val_ from the list _Assoc_.
*/
del_assoc(K, T, V, NT) :-
rb_delete(T, K, V, NT).
/** @pred del_min_assoc(+ _Assoc_, ? _Key_, ? _Val_, ? _NewAssoc_)
Succeeds if _NewAssoc_ is an association list, obtained by removing
the smallest element of the list, with _Key_ and _Val_
from the list _Assoc_.
*/
del_min_assoc(T, K, V, NT) :-
rb_del_min(T, K, V, NT).
/** @pred del_max_assoc(+ _Assoc_, ? _Key_, ? _Val_, ? _NewAssoc_)
Succeeds if _NewAssoc_ is an association list, obtained by removing
the largest element of the list, with _Key_ and _Val_ from the
list _Assoc_.
*/
del_max_assoc(T, K, V, NT) :-
rb_del_max(T, K, V, NT).
assoc_to_keys(T, Ks) :-
rb_keys(T, Ks).
/**
@}
*/