153 lines
4.3 KiB
Plaintext
153 lines
4.3 KiB
Plaintext
|
/*************************************************************************
|
||
|
* *
|
||
|
* YAP Prolog *
|
||
|
* *
|
||
|
* Yap Prolog was developed at NCCUP - Universidade do Porto *
|
||
|
* *
|
||
|
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
|
||
|
* *
|
||
|
**************************************************************************
|
||
|
* *
|
||
|
* File: regexp.yap *
|
||
|
* Last rev: 5/15/2000 *
|
||
|
* mods: *
|
||
|
* comments: AVL trees in YAP (from code by M. van Emden, P. Vasey) *
|
||
|
* *
|
||
|
*************************************************************************/
|
||
|
|
||
|
/**
|
||
|
* @file avl.yap
|
||
|
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
|
||
|
* @date Tue Nov 17 00:59:28 2015
|
||
|
*
|
||
|
* @brief Support for constructing AVL trees
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
:- module(avl, [
|
||
|
avl_new/1,
|
||
|
avl_insert/4,
|
||
|
avl_lookup/3
|
||
|
]).
|
||
|
|
||
|
/**
|
||
|
* @defgroup avl AVL Trees
|
||
|
* @ingroup library
|
||
|
@{
|
||
|
Supports constructing AVL trees, available through the directive:
|
||
|
|
||
|
~~~~~~~
|
||
|
:- use_module(library(avl)).
|
||
|
~~~~~~~
|
||
|
|
||
|
It includes the following predicates:
|
||
|
|
||
|
- avl_insert/4
|
||
|
- avl_lookup/3
|
||
|
- avl_new/1
|
||
|
|
||
|
AVL trees are balanced search binary trees. They are named after their
|
||
|
inventors, Adelson-Velskii and Landis, and they were the first
|
||
|
dynamically balanced trees to be proposed. The YAP AVL tree manipulation
|
||
|
predicates library uses code originally written by Martin van Emdem and
|
||
|
published in the Logic Programming Newsletter, Autumn 1981. A bug in
|
||
|
this code was fixed by Philip Vasey, in the Logic Programming
|
||
|
Newsletter, Summer 1982. The library currently only includes routines to
|
||
|
insert and lookup elements in the tree. Please try red-black trees if
|
||
|
you need deletion.
|
||
|
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
/** @pred avl_new(+ _T_)
|
||
|
|
||
|
|
||
|
Create a new tree.
|
||
|
|
||
|
|
||
|
*/
|
||
|
avl_new([]).
|
||
|
|
||
|
/** @pred avl_insert(+ _Key_,? _Value_,+ _T0_,- _TF_)
|
||
|
|
||
|
|
||
|
Add an element with key _Key_ and _Value_ to the AVL tree
|
||
|
_T0_ creating a new AVL tree _TF_. Duplicated elements are
|
||
|
allowed.
|
||
|
|
||
|
|
||
|
*/
|
||
|
avl_insert(Key, Value, T0, TF) :-
|
||
|
insert(T0, Key, Value, TF, _).
|
||
|
|
||
|
insert([], Key, Value, avl([],Key,Value,-,[]), yes).
|
||
|
insert(avl(L,Root,RVal,Bl,R), E, Value, NewTree, WhatHasChanged) :-
|
||
|
E @< Root, !,
|
||
|
insert(L, E, Value, NewL, LeftHasChanged),
|
||
|
adjust(avl(NewL,Root,RVal,Bl,R), LeftHasChanged, left, NewTree, WhatHasChanged).
|
||
|
insert(avl(L,Root,RVal,Bl,R), E, Val, NewTree, WhatHasChanged) :-
|
||
|
% E @>= Root, currently we allow duplicated values, although
|
||
|
% lookup will only fetch the first.
|
||
|
insert(R, E, Val,NewR, RightHasChanged),
|
||
|
adjust(avl(L,Root,RVal,Bl,NewR), RightHasChanged, right, NewTree, WhatHasChanged).
|
||
|
|
||
|
adjust(Oldtree, no, _, Oldtree, no).
|
||
|
adjust(avl(L,Root,RVal,Bl,R), yes, Lor, NewTree, WhatHasChanged) :-
|
||
|
table(Bl, Lor, Bl1, WhatHasChanged, ToBeRebalanced),
|
||
|
rebalance(avl(L, Root, RVal, Bl, R), Bl1, ToBeRebalanced, NewTree).
|
||
|
|
||
|
% balance where balance whole tree to be
|
||
|
% before inserted after increased rebalanced
|
||
|
table(- , left , < , yes , no ).
|
||
|
table(- , right , > , yes , no ).
|
||
|
table(< , left , - , no , yes ).
|
||
|
table(< , right , - , no , no ).
|
||
|
table(> , left , - , no , no ).
|
||
|
table(> , right , - , no , yes ).
|
||
|
|
||
|
rebalance(avl(Lst, Root, RVal, _Bl, Rst), Bl1, no, avl(Lst, Root, RVal, Bl1,Rst)).
|
||
|
rebalance(OldTree, _, yes, NewTree) :-
|
||
|
avl_geq(OldTree,NewTree).
|
||
|
|
||
|
avl_geq(avl(Alpha,A,VA,>,avl(Beta,B,VB,>,Gamma)),
|
||
|
avl(avl(Alpha,A,VA,-,Beta),B,VB,-,Gamma)).
|
||
|
avl_geq(avl(avl(Alpha,A,VA,<,Beta),B,VB,<,Gamma),
|
||
|
avl(Alpha,A,VA,-,avl(Beta,B,VB,-,Gamma))).
|
||
|
avl_geq(avl(Alpha,A,VA,>,avl(avl(Beta,X,VX,Bl1,Gamma),B,VB,<,Delta)),
|
||
|
avl(avl(Alpha,A,VA,Bl2,Beta),X,VX,-,avl(Gamma,B,VB,Bl3,Delta))) :-
|
||
|
table2(Bl1,Bl2,Bl3).
|
||
|
avl_geq(avl(avl(Alpha,A,VA,>,avl(Beta,X,VX,Bl1,Gamma)),B,VB,<,Delta),
|
||
|
avl(avl(Alpha,A,VA,Bl2,Beta),X,VX,-,avl(Gamma,B,VB,Bl3,Delta))) :-
|
||
|
table2(Bl1,Bl2,Bl3).
|
||
|
|
||
|
table2(< ,- ,> ).
|
||
|
table2(> ,< ,- ).
|
||
|
table2(- ,- ,- ).
|
||
|
|
||
|
/** @pred avl_lookup(+ _Key_,- _Value_,+ _T_)
|
||
|
|
||
|
|
||
|
Lookup an element with key _Key_ in the AVL tree
|
||
|
_T_, returning the value _Value_.
|
||
|
|
||
|
*/
|
||
|
|
||
|
avl_lookup(Key, Value, avl(L,Key0,KVal,_,R)) :-
|
||
|
compare(Cmp, Key, Key0),
|
||
|
avl_lookup(Cmp, Value, L, R, Key, KVal).
|
||
|
|
||
|
avl_lookup(=, Value, _, _, _, Value).
|
||
|
avl_lookup(<, Value, L, _, Key, _) :-
|
||
|
avl_lookup(Key, Value, L).
|
||
|
avl_lookup(>, Value, _, R, Key, _) :-
|
||
|
avl_lookup(Key, Value, R).
|
||
|
|
||
|
|
||
|
/**
|
||
|
@}
|
||
|
*/
|