243 lines
4.7 KiB
Plaintext
243 lines
4.7 KiB
Plaintext
|
/**
|
||
|
* @file exo_interval.yap
|
||
|
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
|
||
|
* @date 2013
|
||
|
*
|
||
|
* @brief This file implements a very simple interval solver
|
||
|
* designed to interact with the exo
|
||
|
* data-base.
|
||
|
* It assumes simple queries and a contiguous interval,
|
||
|
* and does not really expect to do non-trivial
|
||
|
* constraint propagation and solving.
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
:- module(exo_interval,
|
||
|
[max/2,
|
||
|
min/2,
|
||
|
any/2,
|
||
|
max/1,
|
||
|
min/1,
|
||
|
maximum/1,
|
||
|
minimum/1,
|
||
|
any/1,
|
||
|
(#<)/2,
|
||
|
(#>)/2,
|
||
|
(#=<)/2,
|
||
|
(#>=)/2,
|
||
|
(#=)/2,
|
||
|
op(700, xfx, (#>)),
|
||
|
op(700, xfx, (#<)),
|
||
|
op(700, xfx, (#>=)),
|
||
|
op(700, xfx, (#=<)),
|
||
|
op(700, xfx, (#=))]).
|
||
|
|
||
|
|
||
|
/**
|
||
|
|
||
|
@defgroup exo_interval Exo Intervals
|
||
|
@ingroup library
|
||
|
@{
|
||
|
|
||
|
This package assumes you use exo-compilation, that is, that you loaded
|
||
|
the pedicate using the `exo` option to load_files/2, In this
|
||
|
case, YAP includes a package for improved search on intervals of
|
||
|
integers.
|
||
|
|
||
|
The package is activated by `udi` declarations that state what is
|
||
|
the argument of interest:
|
||
|
|
||
|
~~~~~{.prolog}
|
||
|
:- udi(diagnoses(exo_interval,?,?)).
|
||
|
|
||
|
:- load_files(db, [consult(exo)]).
|
||
|
~~~~~
|
||
|
It is designed to optimise the following type of queries:
|
||
|
|
||
|
~~~~~{.prolog}
|
||
|
?- max(X, diagnoses(X, 9, Y), X).
|
||
|
|
||
|
?- min(X, diagnoses(X, 9, 36211117), X).
|
||
|
|
||
|
?- X #< Y, min(X, diagnoses(X, 9, 36211117), X ), diagnoses(Y, 9, _).
|
||
|
~~~~~
|
||
|
The first argument gives the time, the second the patient, and the
|
||
|
third the condition code. The first query should find the last time
|
||
|
the patient 9 had any code reported, the second looks for the first
|
||
|
report of code 36211117, and the last searches for reports after this
|
||
|
one. All queries run in constant or log(n) time.
|
||
|
|
||
|
|
||
|
*/
|
||
|
|
||
|
/** @pred max( _X_, _Vs_)
|
||
|
First Argument is the greatest element of a list.
|
||
|
|
||
|
+ lex_order( _Vs_)
|
||
|
All elements must be ordered.
|
||
|
|
||
|
|
||
|
|
||
|
The following predicates control search:
|
||
|
|
||
|
|
||
|
*/
|
||
|
/** @pred max(+ _Expression_)
|
||
|
Maximizes _Expression_ within the current constraint store. This is
|
||
|
the same as computing the supremum and equating the expression to that
|
||
|
supremum.
|
||
|
|
||
|
|
||
|
*/
|
||
|
/** @pred min( _X_, _Vs_)
|
||
|
First Argument is the least element of a list.
|
||
|
|
||
|
|
||
|
*/
|
||
|
/** @pred min(+ _Expression_)
|
||
|
Minimizes _Expression_ within the current constraint store. This is
|
||
|
the same as computing the infimum and equation the expression to that
|
||
|
infimum.
|
||
|
|
||
|
|
||
|
*/
|
||
|
:- meta_predicate max(?,0), min(?,0), any(?,0).
|
||
|
|
||
|
max(X, G) :-
|
||
|
insert_atts(X, i(_,_,max)),
|
||
|
call(G).
|
||
|
|
||
|
min(X, G) :-
|
||
|
insert_atts(X, i(_,_,min)),
|
||
|
call(G).
|
||
|
|
||
|
max(X) :-
|
||
|
insert_atts(X, i(_,_,max)).
|
||
|
|
||
|
maximum(X) :-
|
||
|
insert_atts(X, i(_,_,maximum)).
|
||
|
|
||
|
any(X) :-
|
||
|
insert_atts(X, i(_,_,any)).
|
||
|
|
||
|
min(X) :-
|
||
|
insert_atts(X, i(_,_,min)).
|
||
|
|
||
|
minimum(X) :-
|
||
|
insert_atts(X, i(_,_,minimum)).
|
||
|
|
||
|
least(X) :-
|
||
|
insert_atts(X, i(_,_,least)).
|
||
|
|
||
|
X #> Y :-
|
||
|
( var(X) -> insert_atts(X, i(Y,_,_))
|
||
|
;
|
||
|
( var(Y) -> insert_atts(Y, i(_,X,_) ) ;
|
||
|
true
|
||
|
)
|
||
|
;
|
||
|
var(Y) -> insert_atts(Y, i(_,X,_))
|
||
|
;
|
||
|
X > Y
|
||
|
).
|
||
|
|
||
|
X #>= Y :-
|
||
|
( var(X) -> insert_atts(X, i(Y-1,_,_))
|
||
|
;
|
||
|
X >= Y
|
||
|
).
|
||
|
|
||
|
X #< Y :-
|
||
|
( var(X) -> insert_atts(X, i(_,Y,_))
|
||
|
;
|
||
|
X < Y
|
||
|
).
|
||
|
|
||
|
X #=< Y :-
|
||
|
( var(X) -> insert_atts(X, i(Y+1,_,_))
|
||
|
;
|
||
|
X =< Y
|
||
|
).
|
||
|
|
||
|
X #= Y :-
|
||
|
( var(X) -> insert_atts(X, i(Y-1,Y+1,_)) ;
|
||
|
X =:= Y
|
||
|
).
|
||
|
|
||
|
|
||
|
attribute_goals(X) -->
|
||
|
{ get_attr(X, exo_interval, Op) },
|
||
|
( { Op = max } -> [max(X)] ;
|
||
|
{ Op = min } -> [min(X)] ;
|
||
|
{ Op = '>'(Y) } -> [X #> Y] ;
|
||
|
{ Op = '<'(Y) } -> [X #< Y] ;
|
||
|
{ Op = range(A,B,C) } ->
|
||
|
range_min(A,X),
|
||
|
range_max(B,X),
|
||
|
range_op(C, X)
|
||
|
).
|
||
|
|
||
|
range_min(Y, _X) -->
|
||
|
{ var(Y) }, !,
|
||
|
[].
|
||
|
range_min(Y, X) -->
|
||
|
[X #> Y].
|
||
|
|
||
|
range_max(Y, _X) -->
|
||
|
{ var(Y) }, !,
|
||
|
[].
|
||
|
range_max(Y, X) -->
|
||
|
[X #< Y].
|
||
|
|
||
|
range_op(Y, _X) -->
|
||
|
{ var(Y) }, !,
|
||
|
[].
|
||
|
range_op(Y, X) -->
|
||
|
{ Op =.. [Y, X] },
|
||
|
[Op].
|
||
|
|
||
|
insert_atts(V, Att) :-
|
||
|
( nonvar(V) ->
|
||
|
throw( error(uninstantion_error(V), exo_interval) )
|
||
|
; attvar(V) ->
|
||
|
get_attr(V, exo_interval, Att0),
|
||
|
expand_atts(Att, Att0, NAtt)
|
||
|
;
|
||
|
NAtt = Att
|
||
|
),
|
||
|
put_attr(V, exo_interval, NAtt).
|
||
|
|
||
|
expand_atts(i(A1, B1, C1), i(A2, B2, C2), i(A3,B3,C3)) :-
|
||
|
expand_min(A1, A2, A3),
|
||
|
expand_max(B1, B2, B3),
|
||
|
expand_op(C1, C2, C3).
|
||
|
|
||
|
expand_min(A1, A2, A3) :-
|
||
|
(var(A1) -> A3 = A2;
|
||
|
var(A2) -> A3 = A1;
|
||
|
ground(A1), ground(A2) -> A3 is max(A1,A2) ;
|
||
|
A3 = max(A1,A2)
|
||
|
).
|
||
|
|
||
|
expand_max(A1, A2, A3) :-
|
||
|
(var(A1) -> A3 = A2;
|
||
|
var(A2) -> A3 = A1;
|
||
|
ground(A1), ground(A2) -> A3 is min(A1,A2) ;
|
||
|
A3 = min(A1,A2)
|
||
|
).
|
||
|
|
||
|
expand_op(A1, A2, A3) :-
|
||
|
(var(A1) -> A3 = A2;
|
||
|
var(A2) -> A3 = A1;
|
||
|
A1 == A2 -> A3 = A1;
|
||
|
A1 == unique -> A3 = unique;
|
||
|
A2 == unique -> A3 = unique;
|
||
|
A2 == min, A1 = max -> A3 = unique;
|
||
|
A1 == min, A2 = max -> A3 = unique;
|
||
|
A1 == min -> A3 = min; A2 == min -> A3 = min;
|
||
|
A1 == max -> A3 = max; A2 == max -> A3 = max;
|
||
|
A3 = any
|
||
|
).
|
||
|
%% @}
|
||
|
|