711 lines
16 KiB
Perl
711 lines
16 KiB
Perl
|
/*
|
||
|
|
||
|
RIB
|
||
|
|
||
|
Copyright (c) 2011, Fabrizio Riguzzi and Nicola di Mauro
|
||
|
|
||
|
*/
|
||
|
|
||
|
:- module(inference_ib,
|
||
|
[build_network/5,
|
||
|
get_prob/3,get_CL/3,remove_head/2,build_ground_lpad/2,find_ground_atoms/3,get_atoms/2,
|
||
|
find_atoms_head/3,find_deriv_inf1/2]).
|
||
|
|
||
|
:-load_foreign_files(['cplint'],[],init_my_predicates).
|
||
|
|
||
|
:-multifile setting/2.
|
||
|
:-dynamic rule/4,def_rule/4,setting/2.
|
||
|
|
||
|
|
||
|
:-use_module(library(lists)).
|
||
|
|
||
|
/* start of list of parameters that can be set by the user with
|
||
|
set(Parameter,Value) */
|
||
|
setting(epsilon_parsing,0.00001).
|
||
|
setting(save_dot,false).
|
||
|
setting(ground_body,true).
|
||
|
/* available values: true, false
|
||
|
if true, both the head and the body of each clause will be grounded, otherwise
|
||
|
only the head is grounded. In the case in which the body contains variables
|
||
|
not appearing in the head, the body represents an existential event */
|
||
|
|
||
|
/* end of list of parameters */
|
||
|
|
||
|
/* s(GoalsLIst,Prob) compute the probability of a list of goals
|
||
|
GoalsLis can have variables, s returns in backtracking all the solutions with their
|
||
|
corresponding probability */
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
get_atoms([],[]):-!.
|
||
|
|
||
|
get_atoms([\+ H|T],T1):-
|
||
|
builtin(H),!,
|
||
|
get_atoms(T,T1).
|
||
|
|
||
|
get_atoms([H|T],T1):-
|
||
|
builtin(H),!,
|
||
|
get_atoms(T,T1).
|
||
|
|
||
|
|
||
|
get_atoms([\+ H|T],[H1|T1]):-!,
|
||
|
H=..[P,_|Rest],
|
||
|
H1=..[P|Rest],
|
||
|
get_atoms(T,T1).
|
||
|
|
||
|
get_atoms([H|T],[H1|T1]):-
|
||
|
H=..[P,_|Rest],
|
||
|
H1=..[P|Rest],
|
||
|
get_atoms(T,T1).
|
||
|
|
||
|
lookup_gvars([],_AV,[]):-!.
|
||
|
|
||
|
lookup_gvars([\+ H|T],AV,[HV|T1]):- !,
|
||
|
avl_lookup(H,HV,AV),
|
||
|
lookup_gvars(T,AV,T1).
|
||
|
|
||
|
lookup_gvars([H|T],AV,[HV|T1]):-
|
||
|
avl_lookup(H,HV,AV),
|
||
|
lookup_gvars(T,AV,T1).
|
||
|
|
||
|
get_prob(ChoiceVar,Vars,Distr):-
|
||
|
clpbn:call_solver([ChoiceVar], Vars),
|
||
|
clpbn_display:get_atts(ChoiceVar, [posterior(_Vs,_Vals,Distr,_AllDiffs)]).
|
||
|
|
||
|
get_CL(Goal,Vars,CL):-
|
||
|
clpbn:call_solver([Goal], Vars),
|
||
|
clpbn_display:get_atts(Goal, [posterior(_Vs,_Vals,[_P,CL],_AllDiffs)]).
|
||
|
|
||
|
|
||
|
remove_head([],[]).
|
||
|
|
||
|
remove_head([d(R,S)|T],[d(R,S)|T1]):-
|
||
|
%write(n),
|
||
|
remove_head(T,T1).
|
||
|
|
||
|
remove_head([(_N,R,S)|T],[(R,S)|T1]):-
|
||
|
%write(n),
|
||
|
remove_head(T,T1).
|
||
|
|
||
|
append_all([],L,L):-!.
|
||
|
|
||
|
append_all([LIntH|IntT],IntIn,IntOut):-
|
||
|
append(IntIn,LIntH,Int1),
|
||
|
append_all(IntT,Int1,IntOut).
|
||
|
|
||
|
process_goals([],[],[]):-!.
|
||
|
|
||
|
process_goals([H|T],[HG|TG],[HV|TV]):-
|
||
|
H=..[F,HV|Rest],
|
||
|
HG=..[F|Rest],
|
||
|
process_goals(T,TG,TV).
|
||
|
|
||
|
build_ground_lpad([],[]):-!.
|
||
|
|
||
|
build_ground_lpad([(R,S)|T],[(R,S,Head,Body)|T1]):-
|
||
|
user:rule_by_num(R,S,_,Head,Body),
|
||
|
build_ground_lpad(T,T1).
|
||
|
|
||
|
|
||
|
add_ev([],_AV):-!.
|
||
|
|
||
|
add_ev([\+ H|T],AV):-!,
|
||
|
H=..[F,_|R],
|
||
|
H1=..[F|R],
|
||
|
avl_lookup(H1,V,AV),
|
||
|
clpbn:put_atts(V,evidence(0)),
|
||
|
add_ev(T,AV).
|
||
|
|
||
|
add_ev([H|T],AV):-
|
||
|
H=..[F,_|R],
|
||
|
H1=..[F|R],
|
||
|
avl_lookup(H1,V,AV),
|
||
|
clpbn:put_atts(V,evidence(1)),
|
||
|
add_ev(T,AV).
|
||
|
|
||
|
|
||
|
|
||
|
lookup_gvars([],_AV,[],S,S):-!.
|
||
|
|
||
|
lookup_gvars([\+ H|T],AV,[HV|T1],Sign0,Sign2):- !,
|
||
|
avl_lookup(H,HV,AV),
|
||
|
clpbn:get_atts(HV, [key(K)]),
|
||
|
avl_insert(K,f,Sign0,Sign1),
|
||
|
lookup_gvars(T,AV,T1,Sign1,Sign2).
|
||
|
|
||
|
lookup_gvars([H|T],AV,[HV|T1],Sign0,Sign2):-
|
||
|
avl_lookup(H,HV,AV),
|
||
|
clpbn:get_atts(HV, [key(K)]),
|
||
|
avl_insert(K,t,Sign0,Sign1),
|
||
|
lookup_gvars(T,AV,T1,Sign1,Sign2).
|
||
|
|
||
|
|
||
|
build_table_conj(R,Table):-
|
||
|
build_col_conj(R,t,f,[],Row1),
|
||
|
build_col_conj(R,t,t,Row1,Table).
|
||
|
|
||
|
build_col_conj([],Tr,Final,Row0,Row1):-!,
|
||
|
(Tr=Final->
|
||
|
append(Row0,[0.999],Row1)
|
||
|
;
|
||
|
append(Row0,[0.001],Row1)
|
||
|
).
|
||
|
|
||
|
build_col_conj([\+_H|RP],Tr,Final,Row0,Row2):-!,
|
||
|
build_col_conj(RP,Tr,Final,Row0,Row1),
|
||
|
build_col_conj(RP,f,Final,Row1,Row2).
|
||
|
|
||
|
build_col_conj([_H|RP],Tr,Final,Row0,Row2):-
|
||
|
build_col_conj(RP,f,Final,Row0,Row1),
|
||
|
build_col_conj(RP,Tr,Final,Row1,Row2).
|
||
|
|
||
|
build_table_atoms(H,R,Table):-
|
||
|
build_col(H,R,f,f,[],Row1),
|
||
|
build_col(H,R,t,f,Row1,Table).
|
||
|
|
||
|
build_col(_A,[],Tr,Found,Row0,Row1):-!,
|
||
|
(Tr=Found->
|
||
|
append(Row0,[0.999],Row1)
|
||
|
;
|
||
|
append(Row0,[0.001],Row1)
|
||
|
).
|
||
|
|
||
|
build_col(A,[(_N,_S,H)|RP],Tr,Found,Row0,Row1):-
|
||
|
build_col_cycle(A,H,RP,Tr,Found,Row0,Row1).
|
||
|
|
||
|
build_col_cycle(_A,[],_RP,_Tr,_Found,Row,Row).
|
||
|
|
||
|
build_col_cycle(A,[A:_P|T],RP,Tr,Found,Row0,Row2):-!,
|
||
|
build_col(A,RP,Tr,t,Row0,Row1),
|
||
|
build_col_cycle(A,T,RP,Tr,Found,Row1,Row2).
|
||
|
|
||
|
build_col_cycle(A,[_|T],RP,Tr,Found,Row0,Row2):-
|
||
|
build_col(A,RP,Tr,Found,Row0,Row1),
|
||
|
build_col_cycle(A,T,RP,Tr,Found,Row1,Row2).
|
||
|
|
||
|
parents([],_CV,[]):-!.
|
||
|
|
||
|
parents([(N,S,_H)|T],CV,[V|T1]):-
|
||
|
avl_lookup(ch(N,S),V,CV),
|
||
|
parents(T,CV,T1).
|
||
|
|
||
|
find_rules_with_atom(_A,[],[]):-!.
|
||
|
|
||
|
find_rules_with_atom(A,[(N,S,Head,_Body)|T],[(N,S,Head)|R]):-
|
||
|
member(A:_P,Head),!,
|
||
|
find_rules_with_atom(A,T,R).
|
||
|
|
||
|
find_rules_with_atom(A,[_H|T],R):-
|
||
|
find_rules_with_atom(A,T,R).
|
||
|
|
||
|
|
||
|
build_table([P],L,Row):-!,
|
||
|
build_col(L,t,P,0.999,Row).
|
||
|
|
||
|
build_table([HP|TP],L,Tab):-
|
||
|
build_col(L,t,HP,0.001,Row),
|
||
|
append(Row,Row1,Tab),
|
||
|
build_table(TP,L,Row1).
|
||
|
|
||
|
build_col([],t,HP,_PNull,[HP]):-!.
|
||
|
|
||
|
build_col([],f,_HP,PNull,[PNull]):-!.
|
||
|
|
||
|
|
||
|
build_col([\+ _H|T],Truth,P,PNull,Row):-!,
|
||
|
build_col(T,Truth,P,PNull,Row1),
|
||
|
append(Row1,Row2,Row),
|
||
|
build_col(T,f,P,PNull,Row2).
|
||
|
|
||
|
build_col([_H|T],Truth,P,PNull,Row):-
|
||
|
build_col(T,f,P,PNull,Row1),
|
||
|
append(Row1,Row2,Row),
|
||
|
build_col(T,Truth,P,PNull,Row2).
|
||
|
|
||
|
get_parents([],_AV,[]):-!.
|
||
|
|
||
|
get_parents([\+ H|T],AV,[V|T1]):-!,
|
||
|
avl_lookup(H,V,AV),
|
||
|
get_parents(T,AV,T1).
|
||
|
|
||
|
get_parents([H|T],AV,[V|T1]):-!,
|
||
|
avl_lookup(H,V,AV),
|
||
|
get_parents(T,AV,T1).
|
||
|
|
||
|
choice_vars([],Tr,Tr,[]):-!.
|
||
|
|
||
|
choice_vars([(N,S,_H,_B)|T],Tr0,Tr1,[NV|T1]):-
|
||
|
avl_insert(ch(N,S),NV,Tr0,Tr2),
|
||
|
choice_vars(T,Tr2,Tr1,T1).
|
||
|
|
||
|
atom_vars([],Tr,Tr,[]):-!.
|
||
|
|
||
|
atom_vars([H|T],Tr0,Tr1,[VH|VT]):-
|
||
|
avl_insert(H,VH,Tr0,Tr2),
|
||
|
atom_vars(T,Tr2,Tr1,VT).
|
||
|
|
||
|
find_ground_atoms([],GA,GA):-!.
|
||
|
|
||
|
find_ground_atoms([(_N,_S,Head,_Body)|T],GA0,GA1):-
|
||
|
find_atoms_head(Head,AtH,_P),
|
||
|
append(GA0,AtH,GA3),
|
||
|
find_ground_atoms(T,GA3,GA1).
|
||
|
|
||
|
find_atoms_body([],[]):-!.
|
||
|
|
||
|
find_atoms_body([\+H|T],[H|T1]):-!,
|
||
|
find_atoms_body(T,T1).
|
||
|
|
||
|
find_atoms_body([H|T],[H|T1]):-
|
||
|
find_atoms_body(T,T1).
|
||
|
|
||
|
find_atoms_head([],[],[]).
|
||
|
|
||
|
find_atoms_head(['':P],[''],[P]):-!.
|
||
|
|
||
|
find_atoms_head([H:P|T],[H1|TA],[P|TP]):-
|
||
|
H=..[F,_|R],
|
||
|
H1=..[F|R],
|
||
|
find_atoms_head(T,TA,TP).
|
||
|
|
||
|
find_deriv_inf1(GoalsList,DB,Deriv):-
|
||
|
solve1(GoalsList,DB,[],Deriv).
|
||
|
|
||
|
find_deriv_inf(GoalsList,Deriv):-
|
||
|
solve(GoalsList,[],Deriv).
|
||
|
|
||
|
find_deriv_inf(GoalsList,DB,Deriv):-
|
||
|
solve(GoalsList,DB,[],Deriv).
|
||
|
/* duplicate can appear in the C set because two different unistantiated clauses may become the
|
||
|
same clause when instantiated */
|
||
|
|
||
|
solve1([],_DB,C,C):-!.
|
||
|
|
||
|
solve1([\+ H |T],DB,CIn,COut):-!,
|
||
|
DB > 0,
|
||
|
DB1 is DB-1,
|
||
|
list2and(HL,H),
|
||
|
(setof(D,find_deriv_inf1(HL,DB1,D),L)->
|
||
|
choose_clauses(CIn,L,C1),
|
||
|
solve(T,DB1,C1,COut)
|
||
|
;
|
||
|
solve(T,DB1,CIn,COut)
|
||
|
).
|
||
|
|
||
|
|
||
|
solve1([H|T],DB,CIn,COut):-
|
||
|
DB>0,
|
||
|
DB1 is DB-1,
|
||
|
user:def_rule(H,B,N,S),
|
||
|
append(B,T,NG),
|
||
|
append(CIn,[d(N,S)],CIn1),
|
||
|
solve(NG,DB1,CIn1,COut).
|
||
|
|
||
|
solve1([H|T],DB,CIn,COut):-
|
||
|
DB>0,
|
||
|
DB1 is DB-1,
|
||
|
find_rule(H,(R,S,N),B,CIn),
|
||
|
solve_pres(R,S,N,B,T,DB1,CIn,COut).
|
||
|
|
||
|
|
||
|
solve([],_DB,C,C):-!.
|
||
|
|
||
|
solve([\+ H|T],DB,CIn,COut):-
|
||
|
builtin(H),!,
|
||
|
call(\+ H),
|
||
|
solve(T,DB,CIn,COut).
|
||
|
|
||
|
solve([\+ H|T],DB,CIn,COut):-
|
||
|
functor(H,F,Args),
|
||
|
Args1 is Args-1,
|
||
|
user:input_cw(F/Args1),!,
|
||
|
call(user:neg(H)),
|
||
|
solve(T,DB,CIn,COut).
|
||
|
|
||
|
solve([\+ H|T],DB,CIn,COut):-
|
||
|
functor(H,F,Args),
|
||
|
Args1 is Args-1,
|
||
|
user:input(F/Args1),
|
||
|
call(user:neg(H)),
|
||
|
solve(T,DB,CIn,COut).
|
||
|
|
||
|
|
||
|
solve([\+ H |T],DB,CIn,COut):-!,
|
||
|
DB > 0,
|
||
|
DB1 is DB-1,
|
||
|
list2and(HL,H),
|
||
|
functor(H,F,Args),
|
||
|
Args1 is Args-1,
|
||
|
(user:input(F/Args1)->
|
||
|
call(user:neg(H))
|
||
|
;
|
||
|
true
|
||
|
),
|
||
|
(setof(D,find_deriv_inf(HL,DB1,D),L)->
|
||
|
choose_clauses(CIn,L,C1),
|
||
|
solve(T,DB1,C1,COut)
|
||
|
;
|
||
|
solve(T,DB1,CIn,COut)
|
||
|
).
|
||
|
|
||
|
solve([H|T],DB,CIn,COut):-
|
||
|
builtin(H),!,
|
||
|
call(H),
|
||
|
solve(T,DB,CIn,COut).
|
||
|
|
||
|
solve([H|T],DB,CIn,COut):-
|
||
|
user:db(H),!,
|
||
|
call(user:H),
|
||
|
solve(T,DB,CIn,COut).
|
||
|
|
||
|
solve([H|T],DB,CIn,COut):-
|
||
|
DB>0,
|
||
|
DB1 is DB-1,
|
||
|
user:def_rule(H,B,N,S),
|
||
|
append(B,T,NG),
|
||
|
append(CIn,[d(N,S)],CIn1),
|
||
|
solve(NG,DB1,CIn1,COut).
|
||
|
|
||
|
solve([H|T],DB,CIn,COut):-
|
||
|
functor(H,F,Args),
|
||
|
Args1 is Args-1,
|
||
|
user:input_cw(F/Args1),!,
|
||
|
call(user:H),
|
||
|
solve(T,DB,CIn,COut).
|
||
|
|
||
|
solve([H|T],DB,CIn,COut):-
|
||
|
functor(H,F,Args),
|
||
|
Args1 is Args-1,
|
||
|
user:input(F/Args1),
|
||
|
call(user:H),
|
||
|
solve(T,DB,CIn,COut).
|
||
|
|
||
|
solve([H|T],DB,CIn,COut):-
|
||
|
DB>0,
|
||
|
DB1 is DB-1,
|
||
|
find_rule(H,(R,S,N),B,CIn),
|
||
|
solve_pres(R,S,N,B,T,DB1,CIn,COut).
|
||
|
|
||
|
solve_pres(R,S,N,B,T,DB,CIn,COut):-
|
||
|
member_eq((N,R,S),CIn),!,
|
||
|
append(B,T,NG),
|
||
|
solve(NG,DB,CIn,COut).
|
||
|
|
||
|
solve_pres(R,S,N,B,T,DB,CIn,COut):-
|
||
|
append(CIn,[(N,R,S)],C1),
|
||
|
append(B,T,NG),
|
||
|
solve(NG,DB,C1,COut).
|
||
|
|
||
|
|
||
|
not_present_with_a_different_head(_N,_R,_S,[]).
|
||
|
|
||
|
not_present_with_a_different_head(N,R,S,[(N,R,S)|T]):-!,
|
||
|
not_present_with_a_different_head(N,R,S,T).
|
||
|
|
||
|
not_present_with_a_different_head(N,R,S,[(_N1,R,S1)|T]):-
|
||
|
S\=S1,!,
|
||
|
not_present_with_a_different_head(N,R,S,T).
|
||
|
|
||
|
not_present_with_a_different_head(N,R,S,[(_N1,R1,_S1)|T]):-
|
||
|
R\=R1,
|
||
|
not_present_with_a_different_head(N,R,S,T).
|
||
|
|
||
|
|
||
|
|
||
|
/* find_rule(G,(R,S,N),Body,C) takes a goal G and the current C set and
|
||
|
returns the index R of a disjunctive rule resolving with G together with
|
||
|
the index N of the resolving head, the substitution S and the Body of the
|
||
|
rule */
|
||
|
find_rule(H,(R,S,N),Body,C):-
|
||
|
user:rule(H,_P,N,R,S,_,_Head,Body),
|
||
|
not_already_present_with_a_different_head(N,R,S,C).
|
||
|
|
||
|
not_already_present_with_a_different_head(_N,_R,_S,[]).
|
||
|
|
||
|
not_already_present_with_a_different_head(N,R,S,[d(_R,_S1)|T]):-!,
|
||
|
not_already_present_with_a_different_head(N,R,S,T).
|
||
|
|
||
|
not_already_present_with_a_different_head(N,R,S,[(N1,R,S1)|T]):-
|
||
|
not_different(N,N1,S,S1),!,
|
||
|
not_already_present_with_a_different_head(N,R,S,T).
|
||
|
|
||
|
not_already_present_with_a_different_head(N,R,S,[(_N1,R1,_S1)|T]):-
|
||
|
R\==R1,
|
||
|
not_already_present_with_a_different_head(N,R,S,T).
|
||
|
|
||
|
not_different(_N,_N1,S,S1):-
|
||
|
S\=S1,!.
|
||
|
|
||
|
not_different(N,N1,S,S1):-
|
||
|
N\=N1,!,
|
||
|
dif(S,S1).
|
||
|
|
||
|
not_different(N,N,S,S).
|
||
|
|
||
|
|
||
|
member_head(H,[(H:_P)|_T],N,N).
|
||
|
|
||
|
member_head(H,[(_H:_P)|T],NIn,NOut):-
|
||
|
N1 is NIn+1,
|
||
|
member_head(H,T,N1,NOut).
|
||
|
|
||
|
/* choose_clauses(CIn,LC,COut) takes as input the current C set and
|
||
|
the set of C sets for a negative goal and returns a new C set that
|
||
|
excludes all the derivations for the negative goals */
|
||
|
choose_clauses(C,[],C).
|
||
|
|
||
|
choose_clauses(CIn,[D|T],COut):-
|
||
|
member((N,R,S),D),
|
||
|
already_present_with_a_different_head(N,R,S,CIn),!,
|
||
|
choose_a_head(N,R,S,CIn,C1),
|
||
|
choose_clauses(C1,T,COut).
|
||
|
|
||
|
|
||
|
choose_clauses(CIn,[D|T],COut):-
|
||
|
member((N,R,S),D),
|
||
|
new_head(N,R,S,N1),
|
||
|
\+ already_present(N1,R,S,CIn),
|
||
|
impose_dif_cons(R,S,CIn),
|
||
|
choose_clauses([(N1,R,S)|CIn],T,COut).
|
||
|
|
||
|
impose_dif_cons(_R,_S,[]):-!.
|
||
|
|
||
|
impose_dif_cons(R,S,[(_NH,R,SH)|T]):-!,
|
||
|
dif(S,SH),
|
||
|
impose_dif_cons(R,S,T).
|
||
|
|
||
|
impose_dif_cons(R,S,[_H|T]):-
|
||
|
impose_dif_cons(R,S,T).
|
||
|
|
||
|
/* instantiation_present_with_the_same_head(N,R,S,C)
|
||
|
takes rule R with substitution S and selected head N and a C set
|
||
|
and asserts dif constraints for all the clauses in C of which RS
|
||
|
is an instantitation and have the same head selected */
|
||
|
instantiation_present_with_the_same_head(_N,_R,_S,[]).
|
||
|
|
||
|
instantiation_present_with_the_same_head(N,R,S,[(NH,R,SH)|T]):-
|
||
|
\+ \+ S=SH,!,
|
||
|
dif_head_or_subs(N,R,S,NH,SH,T).
|
||
|
|
||
|
instantiation_present_with_the_same_head(N,R,S,[_H|T]):-
|
||
|
instantiation_present_with_the_same_head(N,R,S,T).
|
||
|
|
||
|
dif_head_or_subs(N,R,S,NH,_SH,T):-
|
||
|
dif(N,NH),
|
||
|
instantiation_present_with_the_same_head(N,R,S,T).
|
||
|
|
||
|
dif_head_or_subs(N,R,S,N,SH,T):-
|
||
|
dif(S,SH),
|
||
|
instantiation_present_with_the_same_head(N,R,S,T).
|
||
|
|
||
|
/* case 1 of Select: a more general rule is present in C with
|
||
|
a different head, instantiate it */
|
||
|
choose_a_head(N,R,S,[(NH,R,SH)|T],[(NH,R,SH)|T]):-
|
||
|
S=SH,
|
||
|
dif(N,NH).
|
||
|
|
||
|
/* case 2 of Select: a more general rule is present in C with
|
||
|
a different head, ensure that they do not generate the same
|
||
|
ground clause */
|
||
|
choose_a_head(N,R,S,[(NH,R,SH)|T],[(NH,R,S),(NH,R,SH)|T]):-
|
||
|
\+ \+ S=SH, S\==SH,
|
||
|
dif(N,NH),
|
||
|
dif(S,SH).
|
||
|
|
||
|
choose_a_head(N,R,S,[H|T],[H|T1]):-
|
||
|
choose_a_head(N,R,S,T,T1).
|
||
|
|
||
|
/* select a head different from N for rule R with
|
||
|
substitution S, return it in N1 */
|
||
|
new_head(N,R,S,N1):-
|
||
|
user:rule_by_num(R,S,Numbers,Head,_Body),
|
||
|
Head\=uniform(_,_,_),!,
|
||
|
nth0(N, Numbers, _Elem, Rest),
|
||
|
member(N1,Rest).
|
||
|
|
||
|
already_present_with_a_different_head(N,R,S,[(NH,R,SH)|_T]):-
|
||
|
\+ \+ S=SH,NH \= N.
|
||
|
|
||
|
already_present_with_a_different_head(N,R,S,[_H|T]):-
|
||
|
already_present_with_a_different_head(N,R,S,T).
|
||
|
|
||
|
|
||
|
/* checks that a rule R with head N and selection S is already
|
||
|
present in C (or a generalization of it is in C) */
|
||
|
already_present(N,R,S,[(N,R,SH)|_T]):-
|
||
|
S=SH.
|
||
|
|
||
|
already_present(N,R,S,[_H|T]):-
|
||
|
already_present(N,R,S,T).
|
||
|
|
||
|
/* rem_dup_lists removes the C sets that are a superset of
|
||
|
another C sets further on in the list of C sets */
|
||
|
/* rem_dup_lists removes the C sets that are a superset of
|
||
|
another C sets further on in the list of C sets */
|
||
|
rem_dup_lists([],L,L).
|
||
|
|
||
|
rem_dup_lists([H|T],L0,L):-
|
||
|
(member_subset(H,T);member_subset(H,L0)),!,
|
||
|
rem_dup_lists(T,L0,L).
|
||
|
|
||
|
rem_dup_lists([H|T],L0,L):-
|
||
|
rem_dup_lists(T,[H|L0],L).
|
||
|
|
||
|
member_subset(E,[H|_T]):-
|
||
|
subset_my(H,E),!.
|
||
|
|
||
|
member_subset(E,[_H|T]):-
|
||
|
member_subset(E,T).
|
||
|
|
||
|
|
||
|
|
||
|
member_eq(A,[H|_T]):-
|
||
|
A==H,!.
|
||
|
|
||
|
member_eq(A,[_H|T]):-
|
||
|
member_eq(A,T).
|
||
|
|
||
|
subset_my([],_).
|
||
|
|
||
|
subset_my([H|T],L):-
|
||
|
member_eq(H,L),
|
||
|
subset_my(T,L).
|
||
|
|
||
|
remove_duplicates_eq([],[]).
|
||
|
|
||
|
remove_duplicates_eq([H|T],T1):-
|
||
|
member_eq(H,T),!,
|
||
|
remove_duplicates_eq(T,T1).
|
||
|
|
||
|
remove_duplicates_eq([H|T],[H|T1]):-
|
||
|
remove_duplicates_eq(T,T1).
|
||
|
|
||
|
builtin(_A is _B).
|
||
|
builtin(_A > _B).
|
||
|
builtin(_A < _B).
|
||
|
builtin(_A >= _B).
|
||
|
builtin(_A =< _B).
|
||
|
builtin(_A =:= _B).
|
||
|
builtin(_A =\= _B).
|
||
|
builtin(true).
|
||
|
builtin(false).
|
||
|
builtin(_A = _B).
|
||
|
builtin(_A==_B).
|
||
|
builtin(_A\=_B).
|
||
|
builtin(_A\==_B).
|
||
|
builtin(length(_L,_N)).
|
||
|
builtin(member(_El,_L)).
|
||
|
builtin(average(_L,_Av)).
|
||
|
builtin(max_list(_L,_Max)).
|
||
|
builtin(min_list(_L,_Max)).
|
||
|
builtin(nth0(_,_,_)).
|
||
|
builtin(nth(_,_,_)).
|
||
|
average(L,Av):-
|
||
|
sum_list(L,Sum),
|
||
|
length(L,N),
|
||
|
Av is Sum/N.
|
||
|
|
||
|
list2or([],true):-!.
|
||
|
|
||
|
list2or([X],X):-
|
||
|
X\=;(_,_),!.
|
||
|
|
||
|
list2or([H|T],(H ; Ta)):-!,
|
||
|
list2or(T,Ta).
|
||
|
|
||
|
list2and([],true):-!.
|
||
|
|
||
|
list2and([X],X):-
|
||
|
X\=(_,_),!.
|
||
|
|
||
|
list2and([H|T],(H,Ta)):-!,
|
||
|
list2and(T,Ta).
|
||
|
|
||
|
/* predicates for building the formula to be converted into a BDD */
|
||
|
|
||
|
/* build_formula(LC,Formula,VarIn,VarOut) takes as input a set of C sets
|
||
|
LC and a list of Variables VarIn and returns the formula and a new list
|
||
|
of variables VarOut
|
||
|
Formula is of the form [Term1,...,Termn]
|
||
|
Termi is of the form [Factor1,...,Factorm]
|
||
|
Factorj is of the form (Var,Value) where Var is the index of
|
||
|
the multivalued variable Var and Value is the index of the value
|
||
|
*/
|
||
|
build_formula([],[],Var,Var,C,C).
|
||
|
|
||
|
build_formula([D|TD],[F|TF],VarIn,VarOut,C0,C1):-
|
||
|
length(D,NC),
|
||
|
C2 is C0+NC,
|
||
|
% reverse(D,D1),
|
||
|
D=D1,
|
||
|
build_term(D1,F,VarIn,Var1),
|
||
|
build_formula(TD,TF,Var1,VarOut,C2,C1).
|
||
|
|
||
|
build_formula([],[],Var,Var).
|
||
|
|
||
|
build_formula([D|TD],[F|TF],VarIn,VarOut):-
|
||
|
build_term(D,F,VarIn,Var1),
|
||
|
build_formula(TD,TF,Var1,VarOut).
|
||
|
|
||
|
|
||
|
build_term([],[],Var,Var).
|
||
|
|
||
|
build_term([(_,pruned,_)|TC],TF,VarIn,VarOut):-!,
|
||
|
build_term(TC,TF,VarIn,VarOut).
|
||
|
|
||
|
build_term([(N,R,S)|TC],[[NVar,N]|TF],VarIn,VarOut):-
|
||
|
(nth0_eq(0,NVar,VarIn,(R,S))->
|
||
|
Var1=VarIn
|
||
|
;
|
||
|
append(VarIn,[(R,S)],Var1),
|
||
|
length(VarIn,NVar)
|
||
|
),
|
||
|
build_term(TC,TF,Var1,VarOut).
|
||
|
|
||
|
/* nth0_eq(PosIn,PosOut,List,El) takes as input a List,
|
||
|
an element El and an initial position PosIn and returns in PosOut
|
||
|
the position in the List that contains an element exactly equal to El
|
||
|
*/
|
||
|
nth0_eq(N,N,[H|_T],El):-
|
||
|
H==El,!.
|
||
|
|
||
|
nth0_eq(NIn,NOut,[_H|T],El):-
|
||
|
N1 is NIn+1,
|
||
|
nth0_eq(N1,NOut,T,El).
|
||
|
|
||
|
/* var2numbers converts a list of couples (Rule,Substitution) into a list
|
||
|
of triples (N,NumberOfHeadsAtoms,ListOfProbabilities), where N is an integer
|
||
|
starting from 0 */
|
||
|
var2numbers([],_N,[]).
|
||
|
|
||
|
var2numbers([(R,S)|T],N,[[N,ValNumber,Probs]|TNV]):-
|
||
|
find_probs(R,S,Probs),
|
||
|
length(Probs,ValNumber),
|
||
|
N1 is N+1,
|
||
|
var2numbers(T,N1,TNV).
|
||
|
|
||
|
find_probs(R,S,Probs):-
|
||
|
user:rule_by_num(R,S,_N,Head,_Body),
|
||
|
get_probs(Head,Probs).
|
||
|
|
||
|
get_probs(uniform(_A:1/Num,_P,_Number),ListP):-
|
||
|
Prob is 1/Num,
|
||
|
list_el(Num,Prob,ListP).
|
||
|
|
||
|
get_probs([],[]).
|
||
|
|
||
|
get_probs([_H:P|T],[P1|T1]):-
|
||
|
P1 is P,
|
||
|
get_probs(T,T1).
|
||
|
|
||
|
list_el(0,_P,[]):-!.
|
||
|
|
||
|
list_el(N,P,[P|T]):-
|
||
|
N1 is N-1,
|
||
|
list_el(N1,P,T).
|
||
|
|
||
|
/* end of predicates for building the formula to be converted into a BDD */
|
||
|
|
||
|
|