2013-06-13 23:57:55 +01:00
|
|
|
%%% -*- Mode: Prolog; -*-
|
|
|
|
|
|
|
|
|
|
|
|
% This file is part of YAP-LBFGS.
|
|
|
|
% Copyright (C) 2009 Bernd Gutmann
|
|
|
|
%
|
|
|
|
% YAP-LBFGS is free software: you can redistribute it and/or modify
|
|
|
|
% it under the terms of the GNU General Public License as published by
|
|
|
|
% the Free Software Foundation, either version 3 of the License, or
|
|
|
|
% (at your option) any later version.
|
|
|
|
%
|
|
|
|
% YAP-LBFGS is distributed in the hope that it will be useful,
|
|
|
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
% GNU General Public License for more details.
|
|
|
|
%
|
|
|
|
% You should have received a copy of the GNU General Public License
|
|
|
|
% along with YAP-LBFGS. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
:- use_module(library(lbfgs)).
|
2018-09-13 13:35:37 +01:00
|
|
|
:- use_module(library(matrix)).
|
2013-06-13 23:57:55 +01:00
|
|
|
|
|
|
|
|
|
|
|
% This is the call back function which evaluates F and the gradient of F
|
2018-09-13 13:35:37 +01:00
|
|
|
evaluate(FX,X,G,_N,_Step) :-
|
|
|
|
X0 <== X[0],
|
|
|
|
X1 <== X[1],
|
2013-06-13 23:57:55 +01:00
|
|
|
|
|
|
|
FX is (X0-2)*(X0-2) + (X1-1)*(X1-1),
|
|
|
|
G0 is 2*(X0-2),
|
2018-09-13 13:35:37 +01:00
|
|
|
G1 is 2*(X1-2),
|
|
|
|
G[0] <== G0,
|
|
|
|
G[1] <== G1.
|
|
|
|
|
2013-06-13 23:57:55 +01:00
|
|
|
% This is the call back function which is invoked to report the progress
|
2018-09-13 13:35:37 +01:00
|
|
|
% if the last argument is set to anything else than 0, the optimizer will
|
2013-06-13 23:57:55 +01:00
|
|
|
% stop right now
|
2018-09-13 13:35:37 +01:00
|
|
|
progress(FX,X,_G,X_Norm,G_Norm,Step,_N,Iteration,Ls,0) :-
|
|
|
|
X0 <== X[0],
|
|
|
|
X1 <== X[1],
|
2013-06-13 23:57:55 +01:00
|
|
|
format('~d. Iteration : (x0,x1)=(~4f,~4f) f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f~n',[Iteration,X0,X1,FX,X_Norm,G_Norm,Step,Ls]).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo :-
|
|
|
|
format('Optimizing the function f(x0,x1) = (x0-2)^2 + (x1-1)^2~n',[]),
|
2018-09-14 21:17:43 +01:00
|
|
|
optimizer_initialize(2,X,Status),
|
2013-06-13 23:57:55 +01:00
|
|
|
|
|
|
|
|
|
|
|
StartX0 is random*1000-500,
|
|
|
|
StartX1 is random*1000-500,
|
|
|
|
|
|
|
|
format('We start the search at the random position (x0,x1)=(~5f,~5f)~2n',[StartX0,StartX1]),
|
2018-09-13 13:35:37 +01:00
|
|
|
X[0] <== StartX0,
|
|
|
|
X[1] <== StartX1,
|
|
|
|
|
2013-06-13 23:57:55 +01:00
|
|
|
|
2018-09-14 21:17:43 +01:00
|
|
|
optimizer_run(Status,BestF,BestX0, O),
|
2018-09-13 13:35:37 +01:00
|
|
|
BestX0 <== X[0],
|
|
|
|
BestX1 <== X[1],
|
2013-06-13 23:57:55 +01:00
|
|
|
|
|
|
|
optimizer_finalize,
|
|
|
|
format('~2nOptimization done~nWe found a minimum at f(~f,~f)=~f~2nLBFGS Status=~w~n',[BestX0,BestX1,BestF,Status]).
|
|
|
|
|
|
|
|
|