This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/unify.c

1764 lines
38 KiB
C
Raw Normal View History

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: unify.c *
* Last rev: *
* mods: *
* comments: Unification and other auxiliary routines for absmi *
* *
*************************************************************************/
#include "absmi.h"
STATIC_PROTO(Int OCUnify_complex, (register CELL *, register CELL *, register CELL *));
STATIC_PROTO(int OCUnify, (register CELL, register CELL));
STATIC_PROTO(Int p_ocunify, (void));
#ifdef THREADED_CODE
STATIC_PROTO(int rtable_hash_op, (OPCODE));
STATIC_PROTO(void InitReverseLookupOpcode, (void));
#endif
STATIC_PROTO(Int p_atom, (void));
STATIC_PROTO(Int p_atomic, (void));
STATIC_PROTO(Int p_integer, (void));
STATIC_PROTO(Int p_nonvar, (void));
STATIC_PROTO(Int p_number, (void));
STATIC_PROTO(Int p_var, (void));
STATIC_PROTO(Int p_db_ref, (void));
STATIC_PROTO(Int p_primitive, (void));
STATIC_PROTO(Int p_compound, (void));
STATIC_PROTO(Int p_float, (void));
STATIC_PROTO(Int p_equal, (void));
STATIC_PROTO(Int p_dif, (void));
STATIC_PROTO(Int p_eq, (void));
STATIC_PROTO(Int p_arg, (void));
STATIC_PROTO(Int p_functor, (void));
static int
rational_tree_loop(CELL *pt0, CELL *pt0_end, CELL **to_visit0)
{
CELL **to_visit = to_visit0;
loop:
while (pt0 < pt0_end) {
register CELL *ptd0;
register CELL d0;
ptd0 = ++pt0;
pt0 = ptd0;
d0 = *ptd0;
deref_head(d0, rtree_loop_unk);
rtree_loop_nvar:
{
if (d0 == TermFoundVar)
goto cufail;
if (IsPairTerm(d0)) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)d0;
to_visit += 3;
*pt0 = TermFoundVar;
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
continue;
}
if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor) (*ap2);
/* compare functors */
if (IsExtensionFunctor(f)) {
continue;
}
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)d0;
to_visit += 3;
*pt0 = TermFoundVar;
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
continue;
}
continue;
}
derefa_body(d0, ptd0, rtree_loop_unk, rtree_loop_nvar);
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
goto loop;
}
return (FALSE);
cufail:
#ifdef RATIONAL_TREES
/* we found an infinite term */
while (to_visit > to_visit) {
CELL *pt0;
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
return (TRUE);
}
static inline int
rational_tree(Term d0) {
if (IsPairTerm(d0)) {
CELL *pt0 = RepPair(d0);
CELL **to_visit = (CELL **)H;
return(rational_tree_loop(pt0-1, pt0+1, to_visit));
} else if (IsApplTerm(d0)) {
CELL *pt0 = RepAppl(d0);
Functor f = (Functor)(*pt0);
CELL **to_visit = (CELL **)H;
return(rational_tree_loop(pt0, pt0+ArityOfFunctor(f), to_visit));
} else
return(FALSE);
}
static Int
OCUnify_complex(register CELL *pt0, register CELL *pt0_end,
register CELL *pt1
)
{
register CELL **to_visit;
#if SHADOW_HB
register CELL *HBREG;
HBREG = HB;
#endif
to_visit = (CELL **) H;
loop:
while (pt0 < pt0_end) {
register CELL *ptd0 = ++pt0;
register CELL d0 = *ptd0;
++pt1;
deref_head(d0, unify_comp_unk);
unify_comp_nvar:
{
register CELL *ptd1 = pt1;
register CELL d1 = *ptd1;
deref_head(d1, unify_comp_nvar_unk);
unify_comp_nvar_nvar:
if (d0 == d1) {
if (rational_tree_loop(pt0-1, pt0, to_visit))
goto cufail;
continue;
} if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
goto cufail;
}
/* now link the two structures so that no one else will */
/* come here */
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
/* we want unification of rational trees to fail */
to_visit[3] = (CELL *)d0;
to_visit[4] = (CELL *)d1;
to_visit += 5;
*pt0 = TermFoundVar;
*pt1 = TermFoundVar;
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
pt0_end = RepPair(d0) + 1;
pt1 = RepPair(d1) - 1;
continue;
}
else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2, *ap3;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor) (*ap2);
if (!IsApplTerm(d1)) {
goto cufail;
}
ap3 = RepAppl(d1);
/* compare functors */
if (f != (Functor) *ap3) {
goto cufail;
}
if (IsExtensionFunctor(f)) {
switch((CELL)f) {
case (CELL)FunctorDBRef:
if (d0 == d1) continue;
goto cufail;
case (CELL)FunctorLongInt:
if (ap2[1] == ap3[1]) continue;
goto cufail;
case (CELL)FunctorDouble:
if (FloatOfTerm(d0) == FloatOfTerm(d1)) continue;
goto cufail;
#ifdef USE_GMP
case (CELL)FunctorBigInt:
if (mpz_cmp(BigIntOfTerm(d0),BigIntOfTerm(d1)) == 0) continue;
goto cufail;
#endif /* USE_GMP */
default:
goto cufail;
}
}
/* now link the two structures so that no one else will */
/* come here */
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)d0;
to_visit[4] = (CELL *)d1;
to_visit += 5;
*pt0 = TermFoundVar;
*pt1 = TermFoundVar;
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
continue;
} else {
if (d0 == d1)
continue;
else goto cufail;
}
derefa_body(d1, ptd1, unify_comp_nvar_unk, unify_comp_nvar_nvar);
/* d1 and pt2 have the unbound value, whereas d0 is bound */
BIND_GLOBAL(ptd1, d0, bind_ocunify1);
#ifdef COROUTINING
DO_TRAIL(ptd1, d0);
if (ptd1 < H0) WakeUp(ptd1);
bind_ocunify1:
#endif
if (rational_tree_loop(ptd1-1, ptd1, to_visit))
goto cufail;
continue;
}
derefa_body(d0, ptd0, unify_comp_unk, unify_comp_nvar);
{
register CELL d1;
register CELL *ptd1 = NULL;
d1 = *(ptd1 = pt1);
/* pt2 is unbound */
deref_head(d1, unify_comp_var_unk);
unify_comp_var_nvar:
/* pt2 is unbound and d1 is bound */
BIND_GLOBAL(ptd0, d1, bind_ocunify2);
#ifdef COROUTINING
DO_TRAIL(ptd0, d1);
if (ptd0 < H0) WakeUp(ptd0);
bind_ocunify2:
#endif
if (rational_tree_loop(ptd0-1, ptd0, to_visit))
goto cufail;
continue;
derefa_body(d1, ptd1, unify_comp_var_unk, unify_comp_var_nvar);
/* ptd0 and ptd1 are unbound */
UnifyGlobalCells(ptd0, ptd1);
}
}
/* Do we still have compound terms to visit */
if (to_visit > (CELL **) H) {
to_visit -= 5;
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
*pt1 = (CELL)to_visit[4];
goto loop;
}
/* successful exit */
return (TRUE);
cufail:
/* failure */
while (to_visit > (CELL **) H) {
CELL *pt0;
to_visit -= 5;
pt0 = to_visit[0];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
*pt1 = (CELL)to_visit[4];
}
/* failure */
return (FALSE);
#if SHADOW_REGS
#if defined(B) || defined(TR)
#undef REGS
#endif /* defined(B) || defined(TR) */
#endif
}
static int
OCUnify(register CELL d0, register CELL d1)
{
register CELL *pt0, *pt1;
#if SHADOW_HB
register CELL *HBREG = HB;
#endif
deref_head(d0, oc_unify_unk);
oc_unify_nvar:
/* d0 is bound */
deref_head(d1, oc_unify_nvar_unk);
oc_unify_nvar_nvar:
if (d0 == d1) {
if (rational_tree(d0))
return(FALSE);
return(TRUE);
}
/* both arguments are bound */
if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
return (FALSE);
}
pt0 = RepPair(d0);
pt1 = RepPair(d1);
return (OCUnify_complex(pt0 - 1, pt0 + 1, pt1 - 1));
}
else if (IsApplTerm(d0)) {
if (!IsApplTerm(d1))
return (FALSE);
pt0 = RepAppl(d0);
d0 = *pt0;
pt1 = RepAppl(d1);
d1 = *pt1;
if (d0 != d1) {
return (FALSE);
} else {
if (IsExtensionFunctor((Functor)d0)) {
switch(d0) {
case (CELL)FunctorDBRef:
return(pt0 == pt1);
case (CELL)FunctorLongInt:
return(pt0[1] == pt1[1]);
case (CELL)FunctorDouble:
return(FloatOfTerm(AbsAppl(pt0)) == FloatOfTerm(AbsAppl(pt1)));
#ifdef USE_GMP
case (CELL)FunctorBigInt:
return(mpz_cmp(BigIntOfTerm(AbsAppl(pt0)),BigIntOfTerm(AbsAppl(pt0))) == 0);
#endif /* USE_GMP */
default:
return(FALSE);
}
}
return (OCUnify_complex(pt0, pt0 + ArityOfFunctor((Functor) d0),
pt1));
}
} else {
return(FALSE);
}
deref_body(d1, pt1, oc_unify_nvar_unk, oc_unify_nvar_nvar);
/* d0 is bound and d1 is unbound */
BIND(pt1, d0, bind_ocunify4);
#ifdef COROUTINING
DO_TRAIL(pt1, d0);
if (pt1 < H0) WakeUp(pt1);
bind_ocunify4:
#endif
if (rational_tree(d0))
return(FALSE);
return (TRUE);
deref_body(d0, pt0, oc_unify_unk, oc_unify_nvar);
/* pt0 is unbound */
deref_head(d1, oc_unify_var_unk);
oc_unify_var_nvar:
/* pt0 is unbound and d1 is bound */
BIND(pt0, d1, bind_ocunify5);
#ifdef COROUTINING
DO_TRAIL(pt0, d1);
if (pt0 < H0) WakeUp(pt0);
bind_ocunify5:
#endif
if (rational_tree(d1))
return(FALSE);
return (TRUE);
deref_body(d1, pt1, oc_unify_var_unk, oc_unify_var_nvar);
/* d0 and pt1 are unbound */
UnifyCells(pt0, pt1, uc1, uc2);
#ifdef COROUTINING
uc1:
DO_TRAIL(pt0, (CELL)pt1);
if (pt0 < H0) WakeUp(pt0);
#endif
return (TRUE);
#ifdef COROUTINING
uc2:
DO_TRAIL(pt1, (CELL)pt0);
if (pt1 < H0) {
WakeUp(pt1);
}
#endif
return (TRUE);
}
static Int
p_ocunify(void)
{
return(OCUnify(ARG1,ARG2));
}
static Int
p_cyclic(void)
{
Term t = Deref(ARG1);
if (IsVarTerm(t))
return(FALSE);
return(rational_tree(t));
}
static Int
p_acyclic(void)
{
Term t = Deref(ARG1);
if (IsVarTerm(t))
return(TRUE);
return(!rational_tree(t));
}
int
IUnify_complex(CELL *pt0, CELL *pt0_end, CELL *pt1)
{
#if SHADOW_REGS
#if defined(B) || defined(TR)
register REGSTORE *regp = &REGS;
#define REGS (*regp)
#endif /* defined(B) || defined(TR) || defined(HB) */
#endif
#if SHADOW_HB
register CELL *HBREG = HB;
#endif /* SHADOW_HB */
CELL **to_visit = (CELL **)AuxSp;
loop:
while (pt0 < pt0_end) {
register CELL *ptd0 = pt0+1;
register CELL d0;
++pt1;
pt0 = ptd0;
d0 = *ptd0;
deref_head(d0, unify_comp_unk);
unify_comp_nvar:
{
register CELL *ptd1 = pt1;
register CELL d1 = *ptd1;
deref_head(d1, unify_comp_nvar_unk);
unify_comp_nvar_nvar:
if (d0 == d1)
continue;
if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
goto cufail;
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 4;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)d0;
*pt0 = d1;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 3;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
}
#endif
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
pt1 = RepPair(d1) - 1;
continue;
}
if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2, *ap3;
if (!IsApplTerm(d1)) {
goto cufail;
}
/* store the terms to visit */
ap2 = RepAppl(d0);
ap3 = RepAppl(d1);
f = (Functor) (*ap2);
/* compare functors */
if (f != (Functor) *ap3)
goto cufail;
if (IsExtensionFunctor(f)) {
if (unify_extension(f, d0, ap2, d1))
continue;
goto cufail;
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 4;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)d0;
*pt0 = d1;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 3;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
continue;
}
goto cufail;
derefa_body(d1, ptd1, unify_comp_nvar_unk, unify_comp_nvar_nvar);
/* d1 and pt2 have the unbound value, whereas d0 is bound */
BIND_GLOBALCELL(ptd1, d0);
}
derefa_body(d0, ptd0, unify_comp_unk, unify_comp_nvar);
/* first arg var */
{
register CELL d1;
register CELL *ptd1;
ptd1 = pt1;
d1 = ptd1[0];
/* pt2 is unbound */
deref_head(d1, unify_comp_var_unk);
unify_comp_var_nvar:
/* pt2 is unbound and d1 is bound */
BIND_GLOBALCELL(ptd0, d1);
derefa_body(d1, ptd1, unify_comp_var_unk, unify_comp_var_nvar);
/* ptd0 and ptd1 are unbound */
UnifyGlobalCells(ptd0, ptd1);
}
}
/* Do we still have compound terms to visit */
if (to_visit < (CELL **) AuxSp) {
#ifdef RATIONAL_TREES
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
to_visit += 4;
#else
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
to_visit += 3;
#endif
goto loop;
}
return (TRUE);
cufail:
#ifdef RATIONAL_TREES
/* failure */
while (to_visit < (CELL **) AuxSp) {
CELL *pt0;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[3];
to_visit += 4;
}
#endif
return (FALSE);
#if SHADOW_REGS
#if defined(B) || defined(TR)
#undef REGS
#endif /* defined(B) || defined(TR) */
#endif
}
int
IUnify(register CELL d0, register CELL d1)
{
#if SHADOW_REGS
#if defined(B) || defined(TR)
register REGSTORE *regp = &REGS;
#define REGS (*regp)
#endif /* defined(B) || defined(TR) */
#endif
#if SHADOW_HB
register CELL *HBREG = HB;
#endif
register CELL *pt0, *pt1;
deref_head(d0, unify_unk);
unify_nvar:
/* d0 is bound */
deref_head(d1, unify_nvar_unk);
unify_nvar_nvar:
/* both arguments are bound */
if (d0 == d1)
return (TRUE);
if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
return (FALSE);
}
pt0 = RepPair(d0);
pt1 = RepPair(d1);
return (IUnify_complex(pt0 - 1, pt0 + 1, pt1 - 1));
}
else if (IsApplTerm(d0)) {
pt0 = RepAppl(d0);
d0 = *pt0;
if (!IsApplTerm(d1))
return (FALSE);
pt1 = RepAppl(d1);
d1 = *pt1;
if (d0 != d1) {
return (FALSE);
} else {
if (IsExtensionFunctor((Functor)d0)) {
switch(d0) {
case (CELL)FunctorDBRef:
return(pt0 == pt1);
case (CELL)FunctorLongInt:
return(pt0[1] == pt1[1]);
case (CELL)FunctorDouble:
return(FloatOfTerm(AbsAppl(pt0)) == FloatOfTerm(AbsAppl(pt1)));
#ifdef USE_GMP
case (CELL)FunctorBigInt:
return(mpz_cmp(BigIntOfTerm(AbsAppl(pt0)),BigIntOfTerm(AbsAppl(pt0))) == 0);
#endif /* USE_GMP */
default:
return(FALSE);
}
}
return (IUnify_complex(pt0, pt0 + ArityOfFunctor((Functor) d0),
pt1));
}
} else {
return (FALSE);
}
deref_body(d1, pt1, unify_nvar_unk, unify_nvar_nvar);
/* d0 is bound and d1 is unbound */
BIND(pt1, d0, bind_unify3);
#ifdef COROUTINING
DO_TRAIL(pt1, d0);
if (pt1 < H0) WakeUp(pt1);
bind_unify3:
#endif
return (TRUE);
deref_body(d0, pt0, unify_unk, unify_nvar);
/* pt0 is unbound */
deref_head(d1, unify_var_unk);
unify_var_nvar:
/* pt0 is unbound and d1 is bound */
BIND(pt0, d1, bind_unify4);
#ifdef COROUTINING
DO_TRAIL(pt0, d1);
if (pt0 < H0) WakeUp(pt0);
bind_unify4:
#endif
return (TRUE);
#if TRAILING_REQUIRES_BRANCH
unify_var_nvar_trail:
DO_TRAIL(pt0);
return (TRUE);
#endif
deref_body(d1, pt1, unify_var_unk, unify_var_nvar);
/* d0 and pt1 are unbound */
UnifyCells(pt0, pt1, uc1, uc2);
#ifdef COROUTINING
DO_TRAIL(pt0, (CELL)pt1);
if (pt0 < H0) WakeUp(pt0);
uc1:
#endif
return (TRUE);
#ifdef COROUTINING
uc2:
DO_TRAIL(pt1, (CELL)pt0);
if (pt1 < H0) {
WakeUp(pt1);
}
return (TRUE);
#endif
#if SHADOW_REGS
#if defined(B) || defined(TR)
#undef REGS
#endif /* defined(B) || defined(TR) */
#endif
}
/**********************************************************************
* *
* Conversion from Label to Op *
* *
**********************************************************************/
#if USE_THREADED_CODE
static inline int
rtable_hash_op(OPCODE opc, int hash_mask) {
return((((CELL)opc) >> 3) & hash_mask);
}
#define OP_HASH_SIZE 2048
/* mask a hash table that allows for fast reverse translation from
instruction address to corresponding opcode */
static void
InitReverseLookupOpcode(void)
{
opentry *opeptr;
op_numbers i;
/* 2 K should be OK */
int hash_size_mask = OP_HASH_SIZE-1;
if (OP_RTABLE == NULL)
OP_RTABLE = (opentry *)AllocCodeSpace(OP_HASH_SIZE*sizeof(struct opcode_tab_entry));
if (OP_RTABLE == NULL) {
Error(FATAL_ERROR, TermNil,
"Couldn't obtain space for the reverse translation opcode table");
}
opeptr = OP_RTABLE;
/* clear up table */
{
int j;
for (j=0; j<=OP_HASH_SIZE; j++) {
opeptr[j].opc = NIL;
opeptr[j].opnum = _Ystop;
}
}
opeptr = OP_RTABLE;
opeptr[rtable_hash_op(opcode(_Ystop),hash_size_mask)].opc
= opcode(_Ystop);
/* now place entries */
for (i = _std_top; i > _Ystop; i--) {
OPCODE opc = opcode(i);
int j = rtable_hash_op(opc,hash_size_mask);
while (opeptr[j].opc != NIL) {
if (++j > hash_size_mask)
j = 0;
}
/* clear entry, no conflict */
opeptr[j].opnum = i;
opeptr[j].opc = opc;
}
}
/* given an opcode find the corresponding opnumber. This should make
switches on ops a much easier operation */
op_numbers
op_from_opcode(OPCODE opc)
{
int j = rtable_hash_op(opc,OP_HASH_SIZE-1);
while (OP_RTABLE[j].opc != opc) {
if (j == OP_HASH_SIZE-1)
j = 0;
else
j++;
}
return(OP_RTABLE[j].opnum);
}
#else
op_numbers
op_from_opcode(OPCODE opc)
{
return((op_numbers)opc);
}
#endif
/**********************************************************************
* *
* Conversion from Op to Label *
* *
**********************************************************************/
int
iequ_complex(register CELL *pt0, register CELL *pt0_end,
register CELL *pt1
)
{
register CELL **to_visit = (CELL **) H;
#ifdef RATIONAL_TREES
register CELL *visited = AuxSp;
#endif
loop:
while (pt0 < pt0_end) {
register CELL *ptd0 = ++pt0;
register CELL d0 = *ptd0;
++pt1;
deref_head(d0, eq_comp_unk);
eq_comp_nvar:
{
register CELL *ptd1 = pt1;
register CELL d1 = *ptd1;
deref_head(d1, eq_comp_nvar_unk);
eq_comp_nvar_nvar:
if (d0 == d1)
continue;
else if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
UNWIND_CUNIF();
return (FALSE);
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
if (d0 > d1) {
visited -= 2;
visited[0] = (CELL) pt0;
visited[1] = *pt0;
*pt0 = d1;
}
else {
visited -= 2;
visited[0] = (CELL) pt1;
visited[1] = *pt1;
*pt1 = d0;
}
#endif
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit += 3;
}
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
pt0_end = RepPair(d0) + 1;
pt1 = RepPair(d1) - 1;
continue;
}
else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2, *ap3;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor) (*ap2);
if (IsExtensionFunctor(f)) {
switch ((CELL)f) {
case (CELL)FunctorDBRef:
if (d0 == d1) continue;
UNWIND_CUNIF();
return (FALSE);
case (CELL)FunctorLongInt:
if (IsLongIntTerm(d1) && (Int)(ap2[1]) == LongIntOfTerm(d1)) continue;
UNWIND_CUNIF();
return (FALSE);
case (CELL)FunctorDouble:
if (IsFloatTerm(d1) && FloatOfTerm(d0) == FloatOfTerm(d1)) continue;
UNWIND_CUNIF();
return (FALSE);
#ifdef USE_GMP
case (CELL)FunctorBigInt:
if (IsBigIntTerm(d1) && mpz_cmp((MP_INT *)(ap2+1),BigIntOfTerm(d1)) == 0) continue;
UNWIND_CUNIF();
return (FALSE);
#endif /* USE_GMP */
default:
break;
}
}
if (!IsApplTerm(d1)) {
UNWIND_CUNIF();
return (FALSE);
}
ap3 = RepAppl(d1);
/* compare functors */
if (f != (Functor) *ap3) {
UNWIND_CUNIF();
return (FALSE);
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
if (d0 > d1) {
visited -= 2;
visited[0] = (CELL) pt0;
visited[1] = *pt0;
*pt0 = d1;
}
else {
visited -= 2;
visited[0] = (CELL) pt1;
visited[1] = *pt1;
*pt1 = d0;
}
#endif
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit += 3;
}
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
continue;
} else {
UNWIND_CUNIF();
return (FALSE);
}
derefa_body(d1, ptd1, eq_comp_nvar_unk, eq_comp_nvar_nvar);
/* d1 and pt2 have the unbound value, whereas d0 is bound */
UNWIND_CUNIF();
return (FALSE);
}
derefa_body(d0, ptd0, eq_comp_unk, eq_comp_nvar);
{
register CELL d1;
register CELL *ptd1;
d1 = *( ptd1 = pt1);
/* pt2 is unbound */
deref_head(d1, eq_comp_var_unk);
eq_comp_var_nvar:
/* pt2 is unbound and d1 is bound */
UNWIND_CUNIF();
return (FALSE);
derefa_body(d1, ptd1, eq_comp_var_unk, eq_comp_var_nvar);
/* pt2 and pt3 are unbound */
if (ptd0 == ptd1)
continue;
UNWIND_CUNIF();
return (FALSE);
}
}
/* Do we still have compound terms to visit */
if (to_visit > (CELL **) H) {
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
goto loop;
}
/* successful exit */
UNWIND_CUNIF();
return (TRUE);
}
static Int
p_atom(void)
{ /* atom(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, atom_unk);
atom_nvar:
if (IsAtomTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, atom_unk, atom_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_atomic(void)
{ /* atomic(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, atomic_unk);
atomic_nvar:
if (IsAtomicTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, atomic_unk, atomic_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_integer(void)
{ /* integer(?,?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, integer_unk);
integer_nvar:
if (IsIntegerTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, integer_unk, integer_nvar);
ENDP(pt0);
return(FALSE);
ENDD(d0);
}
static Int
p_number(void)
{ /* number(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, number_unk);
number_nvar:
if (IsNumTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, number_unk, number_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_db_ref(void)
{ /* db_reference(?,?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, db_ref_unk);
db_ref_nvar:
if (IsDBRefTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, db_ref_unk, db_ref_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_primitive(void)
{ /* primitive(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, primitive_unk);
primitive_nvar:
if (IsPrimitiveTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, primitive_unk, primitive_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_float(void)
{ /* float(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, float_unk);
float_nvar:
if (IsFloatTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, float_unk, float_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_compound(void)
{ /* compound(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, compound_unk);
compound_nvar:
if (IsPairTerm(d0)) {
return(TRUE);
}
else if (IsApplTerm(d0)) {
if (IsExtensionFunctor(FunctorOfTerm(d0))) {
return(FALSE);
}
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, compound_unk, compound_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_nonvar(void)
{ /* nonvar(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, nonvar_unk);
nonvar_nvar:
return(TRUE);
BEGP(pt0);
deref_body(d0, pt0, nonvar_unk, nonvar_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_var(void)
{ /* var(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, var_unk);
var_nvar:
return(FALSE);
BEGP(pt0);
deref_body(d0, pt0, var_unk, var_nvar);
return(TRUE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_equal(void)
{ /* ?=? */
return(IUnify(ARG1, ARG2));
}
static Int
p_eq(void)
{ /* ? == ? */
BEGD(d0);
d0 = ARG1;
deref_head(d0, p_eq_unk1);
p_eq_nvar1:
/* first argument is bound */
BEGD(d1);
d1 = ARG2;
deref_head(d1, p_eq_nvar1_unk2);
p_eq_nvar1_nvar2:
/* both arguments are bound */
if (d0 == d1) {
return(TRUE);
}
if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
return(FALSE);
}
return(iequ_complex(RepPair(d0)-1, RepPair(d0)+1,RepPair(d1)-1));
}
if (IsApplTerm(d0)) {
Functor f0 = FunctorOfTerm(d0);
Functor f1;
if (!IsApplTerm(d1)) {
return(FALSE);
}
f1 = FunctorOfTerm(d1);
if (f0 != f1) {
return(FALSE);
}
if (IsExtensionFunctor(f0)) {
switch ((CELL)f0) {
case (CELL)FunctorDBRef:
return (d0 == d1);
case (CELL)FunctorLongInt:
return(LongIntOfTerm(d0) == LongIntOfTerm(d1));
#ifdef USE_GMP
case (CELL)FunctorBigInt:
return (mpz_cmp(BigIntOfTerm(d0), BigIntOfTerm(d1)) == 0);
#endif
case (CELL)FunctorDouble:
return(FloatOfTerm(d0) == FloatOfTerm(d1));
default:
return(FALSE);
}
}
return(iequ_complex(RepAppl(d0), RepAppl(d0)+ArityOfFunctor(f0), RepAppl(d1)));
}
return(FALSE);
BEGP(pt0);
deref_body(d1, pt0, p_eq_nvar1_unk2, p_eq_nvar1_nvar2);
ENDP(pt0);
/* first argument is bound */
/* second argument is unbound */
/* I don't need to worry about co-routining because an
unbound variable may never be == to a constrained variable!! */
return(FALSE);
ENDD(d1);
BEGP(pt0);
deref_body(d0, pt0, p_eq_unk1, p_eq_nvar1);
BEGD(d1);
d1 = ARG2;
deref_head(d1, p_eq_var1_unk2);
p_eq_var1_nvar2:
/* I don't need to worry about co-routining because an
unbound variable may never be == to a constrained variable!! */
return(FALSE);
BEGP(pt1);
deref_body(d1, pt1, p_eq_var1_unk2, p_eq_var1_nvar2);
/* first argument is unbound */
/* second argument is unbound */
return(pt1 == pt0);
ENDP(pt1);
ENDD(d1);
ENDP(pt0);
ENDD(d0);
}
static Int
p_dif(void)
{ /* ? \= ? */
#if SHADOW_HB
register CELL *HBREG = HB;
#endif
BEGD(d0);
BEGD(d1);
d0 = ARG1;
deref_head(d0, dif_unk1);
dif_nvar1:
/* first argument is bound */
d1 = ARG2;
deref_head(d1, dif_nvar1_unk2);
dif_nvar1_nvar2:
/* both arguments are bound */
if (d0 == d1) {
return(FALSE);
}
if (IsAtomOrIntTerm(d0) || IsAtomOrIntTerm(d1)) {
return(TRUE);
}
{
#ifdef COROUTINING
/*
* We may wake up goals during our attempt to unify the
* two terms. If we are adding to the tail of a list of
* woken goals that should be ok, but otherwise we need
* to restore WokenGoals to its previous value.
*/
CELL OldWokenGoals = ReadTimedVar(WokenGoals);
#endif
/* We will have to look inside compound terms */
BEGP(pt0);
/* store the old value of TR for clearing bindings */
pt0 = (CELL *)TR;
BEGCHO(pt1);
pt1 = B;
/* make B and HB point to H to guarantee all bindings will
* be trailed
*/
HBREG = H;
B = (choiceptr) H;
save_hb();
if (IUnify(d0, d1) == TRUE) {
/* restore B, no need to restore HB */
B = pt1;
return(FALSE);
}
B = pt1;
/* restore B, and later HB */
ENDCHO(pt1);
BEGP(pt1);
/* untrail all bindings made by IUnify */
while (TR != (tr_fr_ptr)pt0) {
pt1 = (CELL *) TrailTerm(--TR);
RESET_VARIABLE(pt1);
}
HBREG = B->cp_h;
ENDP(pt1);
}
#ifdef COROUTINING
/* now restore Woken Goals to its old value */
UpdateTimedVar(WokenGoals, OldWokenGoals);
#endif
return(TRUE);
ENDP(pt0);
BEGP(pt0);
deref_body(d0, pt0, dif_unk1, dif_nvar1);
ENDP(pt0);
/* first argument is unbound */
return(FALSE);
BEGP(pt0);
deref_body(d1, pt0, dif_nvar1_unk2, dif_nvar1_nvar2);
ENDP(pt0);
/* second argument is unbound */
return(FALSE);
ENDD(d1);
ENDD(d0);
}
static Int
p_arg(void)
{ /* arg(?,?,?) */
#if SHADOW_HB
register CELL *HBREG = HB;
#endif
BEGD(d0);
d0 = ARG1;
deref_head(d0, arg_arg1_unk);
arg_arg1_nvar:
/* ARG1 is ok! */
if (IsIntTerm(d0))
d0 = IntOfTerm(d0);
else if (IsLongIntTerm(d0)) {
d0 = LongIntOfTerm(d0);
} else {
Error(TYPE_ERROR_INTEGER,d0,"arg 1 of arg/3");
return(FALSE);
}
/* d0 now got the argument we want */
BEGD(d1);
d1 = ARG2;
deref_head(d1, arg_arg2_unk);
arg_arg2_nvar:
/* d1 now got the structure we want to fetch the argument
* from */
if (IsApplTerm(d1)) {
BEGP(pt0);
pt0 = RepAppl(d1);
d1 = *pt0;
if (IsExtensionFunctor((Functor) d1)) {
return(FALSE);
}
save_hb();
if ((Int)d0 <= 0 ||
(Int)d0 > ArityOfFunctor((Functor) d1) ||
IUnify((CELL)(pt0+d0), ARG3) == FALSE) {
/* don't complain here for Prolog compatibility
if ((Int)d0 <= 0) {
Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO,
MkIntegerTerm(d0),"arg 1 of arg/3");
}
*/
return(FALSE);
}
return(TRUE);
ENDP(pt0);
}
else if (IsPairTerm(d1)) {
BEGP(pt0);
pt0 = RepPair(d1);
if (d0 == 1) {
save_hb();
if (IUnify((CELL)pt0, ARG3) == FALSE) {
return(FALSE);
}
return(TRUE);
}
else if (d0 == 2) {
save_hb();
if (IUnify((CELL)(pt0+1), ARG3) == FALSE) {
return(FALSE);
}
return(TRUE);
}
else {
if ((Int)d0 < 0)
Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO,
MkIntegerTerm(d0),"arg 1 of arg/3");
return(FALSE);
}
ENDP(pt0);
}
else {
Error(TYPE_ERROR_COMPOUND, d1, "arg 2 of arg/3");
return(FALSE);
}
BEGP(pt0);
deref_body(d1, pt0, arg_arg2_unk, arg_arg2_nvar);
Error(INSTANTIATION_ERROR,(CELL)pt0,"arg 2 of arg/3");;
ENDP(pt0);
return(FALSE);
ENDD(d1);
BEGP(pt0);
deref_body(d0, pt0, arg_arg1_unk, arg_arg1_nvar);
Error(INSTANTIATION_ERROR,(CELL)pt0,"arg 1 of arg/3");;
ENDP(pt0);
return(FALSE);
ENDD(d0);
}
static Int
p_functor(void) /* functor(?,?,?) */
{
#if SHADOW_HB
register CELL *HBREG;
#endif
restart:
#if SHADOW_HB
HBREG = HB;
#endif
BEGD(d0);
d0 = ARG1;
deref_head(d0, func_unk);
func_nvar:
/* A1 is bound */
BEGD(d1);
if (IsApplTerm(d0)) {
d1 = *RepAppl(d0);
if (IsExtensionFunctor((Functor) d1)) {
if (d1 == (CELL)FunctorDouble) {
d1 = MkIntTerm(0);
} else if (d1 == (CELL)FunctorLongInt) {
d1 = MkIntTerm(0);
} else
return(FALSE);
} else {
d0 = MkAtomTerm(NameOfFunctor((Functor) d1));
d1 = MkIntTerm(ArityOfFunctor((Functor) d1));
}
}
else if (IsPairTerm(d0)) {
d0 = TermDot;
d1 = MkIntTerm(2);
}
else {
d1 = MkIntTerm(0);
}
/* d1 and d0 now have the two arguments */
/* let's go and bind them */
{
register CELL arity = d1;
d1 = ARG2;
deref_head(d1, func_nvar_unk);
func_nvar_nvar:
/* A2 was bound */
if (d0 != d1) {
return(FALSE);
}
/* have to buffer ENDP and label */
d0 = arity;
goto func_bind_x3;
BEGP(pt0);
deref_body(d1, pt0, func_nvar_unk, func_nvar_nvar);
/* A2 is a variable, go and bind it */
BIND(pt0, d0, bind_func_nvar_var);
#ifdef COROUTINING
DO_TRAIL(pt0, d0);
if (pt0 < H0) WakeUp(pt0);
bind_func_nvar_var:
#endif
/* have to buffer ENDP and label */
d0 = arity;
ENDP(pt0);
/* now let's process A3 */
func_bind_x3:
d1 = ARG3;
deref_head(d1, func_nvar3_unk);
func_nvar3_nvar:
/* A3 was bound */
if (d0 != d1) {
return(FALSE);
}
/* Done */
return(TRUE);
BEGP(pt0);
deref_body(d1, pt0, func_nvar3_unk, func_nvar3_nvar);
/* A3 is a variable, go and bind it */
BIND(pt0, d0, bind_func_nvar3_var);
/* Done */
#ifdef COROUTINING
DO_TRAIL(pt0, d0);
if (pt0 < H0) WakeUp(pt0);
bind_func_nvar3_var:
#endif
return(TRUE);
ENDP(pt0);
}
ENDD(d1);
BEGP(pt0);
deref_body(d0, pt0, func_unk, func_nvar);
/* A1 is a variable */
/* We have to build the structure */
d0 = ARG2;
deref_head(d0, func_var_2unk);
func_var_2nvar:
/* we do, let's get the third argument */
BEGD(d1);
d1 = ARG3;
deref_head(d1, func_var_3unk);
func_var_3nvar:
/* Uuuff, the second and third argument are bound */
if (IsIntTerm(d1))
d1 = IntOfTerm(d1);
else {
Error(TYPE_ERROR_INTEGER,ARG3,"functor/3");
return(FALSE);
}
if (!IsAtomicTerm(d0)) {
Error(TYPE_ERROR_ATOMIC,d0,"functor/3");
return(FALSE);
}
/* We made it!!!!! we got in d0 the name, in d1 the arity and
* in pt0 the variable to bind it to. */
if (d0 == TermDot && d1 == 2) {
RESET_VARIABLE(H);
RESET_VARIABLE(H+1);
d0 = AbsPair(H);
H += 2;
}
else if ((Int)d1 > 0) {
/* now let's build a compound term */
if (!IsAtomTerm(d0)) {
Error(TYPE_ERROR_ATOM,d0,"functor/3");
return(FALSE);
}
BEGP(pt1);
if (!IsAtomTerm(d0)) {
return(FALSE);
}
else
d0 = (CELL) MkFunctor(AtomOfTerm(d0), (Int) d1);
pt1 = H;
*pt1++ = d0;
d0 = AbsAppl(H);
if (pt1+d1 > ENV - CreepFlag) {
gc(3, ENV, P);
goto restart;
}
while (d1-- > 0) {
RESET_VARIABLE(pt1);
pt1++;
}
/* done building the term */
H = pt1;
ENDP(pt1);
} else if ((Int)d1 < 0) {
Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO,MkIntegerTerm(d1),"functor/3");
return(FALSE);
}
/* else if arity is 0 just pass d0 through */
/* Ding, ding, we made it */
BIND(pt0, d0, bind_func_var_3nvar);
#ifdef COROUTINING
DO_TRAIL(pt0, d0);
if (pt0 < H0) WakeUp(pt0);
bind_func_var_3nvar:
#endif
return(TRUE);
BEGP(pt1);
deref_body(d1, pt1, func_var_3unk, func_var_3nvar);
Error(INSTANTIATION_ERROR,(CELL)pt1,"functor/3");
ENDP(pt1);
/* Oops, third argument was unbound */
return(FALSE);
ENDD(d1);
BEGP(pt1);
deref_body(d0, pt1, func_var_2unk, func_var_2nvar);
Error(INSTANTIATION_ERROR,(CELL)pt1,"functor/3");
ENDP(pt1);
/* Oops, second argument was unbound too */
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_cut_by( void)
{
BEGD(d0);
d0 = ARG1;
deref_head(d0, cutby_x_unk);
cutby_x_nvar:
#if SBA
if (!IsIntegerTerm(d0)) {
#else
if (!IsIntTerm(d0)) {
#endif
return(FALSE);
}
BEGCHO(pt0);
#if SBA
pt0 = (choiceptr)IntegerOfTerm(d0);
#else
pt0 = (choiceptr)(LCL0-IntOfTerm(d0));
#endif
if (TopB != NULL && YOUNGER_CP(TopB,pt0)) {
if (DelayedB == NULL || YOUNGER_CP(DelayedB,pt0))
DelayedB = pt0;
pt0 = TopB;
}
/* find where to cut to */
if (pt0 > B) {
/* Wow, we're gonna cut!!! */
#ifdef YAPOR
CUT_prune_to(pt0);
#else
B = pt0;
#endif /* YAPOR */
#ifdef TABLING
abolish_incomplete_subgoals(B);
#endif /* TABLING */
HB = B->cp_h;
/* trim_trail();*/
}
ENDCHO(pt0);
return(TRUE);
BEGP(pt0);
deref_body(d0, pt0, cutby_x_unk, cutby_x_nvar);
/* never cut to a variable */
/* Abort */
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_erroneous_call(void)
{
Error(SYSTEM_ERROR, TermNil, "bad call to internal built-in");
return(FALSE);
}
void
InitUnify(void)
{
InitCPred("unify_with_occurs_check", 2, p_ocunify, SafePredFlag);
InitCPred("cyclic_term", 1, p_cyclic, SafePredFlag|TestPredFlag);
InitCPred("acyclic_term", 1, p_acyclic, SafePredFlag|TestPredFlag);
InitAsmPred("$$cut_by", 1, _cut_by, p_cut_by, SafePredFlag | BasicPredFlag);
InitAsmPred("atom", 1, _atom, p_atom, SafePredFlag | BasicPredFlag);
InitAsmPred("atomic", 1, _atomic, p_atomic, SafePredFlag | BasicPredFlag);
InitAsmPred("integer", 1, _integer, p_integer, SafePredFlag | BasicPredFlag);
InitAsmPred("nonvar", 1, _nonvar, p_nonvar, SafePredFlag | BasicPredFlag);
InitAsmPred("number", 1, _number, p_number, SafePredFlag | BasicPredFlag);
InitAsmPred("var", 1, _var, p_var, SafePredFlag | BasicPredFlag);
InitAsmPred("db_reference", 1, _db_ref, p_db_ref, SafePredFlag | BasicPredFlag);
InitAsmPred("primitive", 1, _primitive, p_primitive, SafePredFlag | BasicPredFlag);
InitAsmPred("compound", 1, _compound, p_compound, SafePredFlag | BasicPredFlag);
InitAsmPred("float", 1, _float, p_float, SafePredFlag | BasicPredFlag);
InitAsmPred("=", 2, _equal, p_equal, SafePredFlag | BasicPredFlag);
InitAsmPred("\\=", 2, _dif, p_dif, SafePredFlag | BasicPredFlag);
InitAsmPred("==", 2, _eq, p_eq, SafePredFlag | BasicPredFlag);
InitAsmPred("arg", 3, _arg, p_arg, SafePredFlag | BasicPredFlag);
InitAsmPred("functor", 3, _functor, p_functor, SafePredFlag | BasicPredFlag);
InitAsmPred("$plus", 3, _plus, p_erroneous_call, SafePredFlag | BasicPredFlag);
InitAsmPred("$minus", 3, _minus, p_erroneous_call, SafePredFlag | BasicPredFlag);
InitAsmPred("$times", 3, _times, p_erroneous_call, SafePredFlag | BasicPredFlag);
InitAsmPred("$div", 3, _div, p_erroneous_call, SafePredFlag | BasicPredFlag);
InitAsmPred("$and", 3, _and, p_erroneous_call, SafePredFlag | BasicPredFlag);
InitAsmPred("$or", 3, _or, p_erroneous_call, SafePredFlag | BasicPredFlag);
InitAsmPred("$sll", 3, _sll, p_erroneous_call, SafePredFlag | BasicPredFlag);
InitAsmPred("$slr", 3, _slr, p_erroneous_call, SafePredFlag | BasicPredFlag);
}
void
InitAbsmi(void)
{
/* initialise access to abstract machine instructions */
#if USE_THREADED_CODE
absmi(1);
InitReverseLookupOpcode();
#endif
}