2010-08-26 13:40:50 +01:00
|
|
|
%%% -*- Mode: Prolog; -*-
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%
|
2010-12-16 13:30:50 +00:00
|
|
|
% $Date: 2010-12-02 15:20:15 +0100 (Thu, 02 Dec 2010) $
|
|
|
|
% $Revision: 5043 $
|
2010-08-26 13:40:50 +01:00
|
|
|
%
|
|
|
|
% This file is part of ProbLog
|
|
|
|
% http://dtai.cs.kuleuven.be/problog
|
|
|
|
%
|
|
|
|
% ProbLog was developed at Katholieke Universiteit Leuven
|
|
|
|
%
|
|
|
|
% Copyright 2008, 2009, 2010
|
|
|
|
% Katholieke Universiteit Leuven
|
|
|
|
%
|
|
|
|
% Main authors of this file:
|
|
|
|
% Theofrastos Mantadelis, Dimitar Sht. Shterionov
|
|
|
|
%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%
|
|
|
|
% Artistic License 2.0
|
|
|
|
%
|
|
|
|
% Copyright (c) 2000-2006, The Perl Foundation.
|
|
|
|
%
|
|
|
|
% Everyone is permitted to copy and distribute verbatim copies of this
|
|
|
|
% license document, but changing it is not allowed. Preamble
|
|
|
|
%
|
|
|
|
% This license establishes the terms under which a given free software
|
|
|
|
% Package may be copied, modified, distributed, and/or
|
|
|
|
% redistributed. The intent is that the Copyright Holder maintains some
|
|
|
|
% artistic control over the development of that Package while still
|
|
|
|
% keeping the Package available as open source and free software.
|
|
|
|
%
|
|
|
|
% You are always permitted to make arrangements wholly outside of this
|
|
|
|
% license directly with the Copyright Holder of a given Package. If the
|
|
|
|
% terms of this license do not permit the full use that you propose to
|
|
|
|
% make of the Package, you should contact the Copyright Holder and seek
|
|
|
|
% a different licensing arrangement. Definitions
|
|
|
|
%
|
|
|
|
% "Copyright Holder" means the individual(s) or organization(s) named in
|
|
|
|
% the copyright notice for the entire Package.
|
|
|
|
%
|
|
|
|
% "Contributor" means any party that has contributed code or other
|
|
|
|
% material to the Package, in accordance with the Copyright Holder's
|
|
|
|
% procedures.
|
|
|
|
%
|
|
|
|
% "You" and "your" means any person who would like to copy, distribute,
|
|
|
|
% or modify the Package.
|
|
|
|
%
|
|
|
|
% "Package" means the collection of files distributed by the Copyright
|
|
|
|
% Holder, and derivatives of that collection and/or of those files. A
|
|
|
|
% given Package may consist of either the Standard Version, or a
|
|
|
|
% Modified Version.
|
|
|
|
%
|
|
|
|
% "Distribute" means providing a copy of the Package or making it
|
|
|
|
% accessible to anyone else, or in the case of a company or
|
|
|
|
% organization, to others outside of your company or organization.
|
|
|
|
%
|
|
|
|
% "Distributor Fee" means any fee that you charge for Distributing this
|
|
|
|
% Package or providing support for this Package to another party. It
|
|
|
|
% does not mean licensing fees.
|
|
|
|
%
|
|
|
|
% "Standard Version" refers to the Package if it has not been modified,
|
|
|
|
% or has been modified only in ways explicitly requested by the
|
|
|
|
% Copyright Holder.
|
|
|
|
%
|
|
|
|
% "Modified Version" means the Package, if it has been changed, and such
|
|
|
|
% changes were not explicitly requested by the Copyright Holder.
|
|
|
|
%
|
|
|
|
% "Original License" means this Artistic License as Distributed with the
|
|
|
|
% Standard Version of the Package, in its current version or as it may
|
|
|
|
% be modified by The Perl Foundation in the future.
|
|
|
|
%
|
|
|
|
% "Source" form means the source code, documentation source, and
|
|
|
|
% configuration files for the Package.
|
|
|
|
%
|
|
|
|
% "Compiled" form means the compiled bytecode, object code, binary, or
|
|
|
|
% any other form resulting from mechanical transformation or translation
|
|
|
|
% of the Source form.
|
|
|
|
%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%
|
|
|
|
% Permission for Use and Modification Without Distribution
|
|
|
|
%
|
|
|
|
% (1) You are permitted to use the Standard Version and create and use
|
|
|
|
% Modified Versions for any purpose without restriction, provided that
|
|
|
|
% you do not Distribute the Modified Version.
|
|
|
|
%
|
|
|
|
% Permissions for Redistribution of the Standard Version
|
|
|
|
%
|
|
|
|
% (2) You may Distribute verbatim copies of the Source form of the
|
|
|
|
% Standard Version of this Package in any medium without restriction,
|
|
|
|
% either gratis or for a Distributor Fee, provided that you duplicate
|
|
|
|
% all of the original copyright notices and associated disclaimers. At
|
|
|
|
% your discretion, such verbatim copies may or may not include a
|
|
|
|
% Compiled form of the Package.
|
|
|
|
%
|
|
|
|
% (3) You may apply any bug fixes, portability changes, and other
|
|
|
|
% modifications made available from the Copyright Holder. The resulting
|
|
|
|
% Package will still be considered the Standard Version, and as such
|
|
|
|
% will be subject to the Original License.
|
|
|
|
%
|
|
|
|
% Distribution of Modified Versions of the Package as Source
|
|
|
|
%
|
|
|
|
% (4) You may Distribute your Modified Version as Source (either gratis
|
|
|
|
% or for a Distributor Fee, and with or without a Compiled form of the
|
|
|
|
% Modified Version) provided that you clearly document how it differs
|
|
|
|
% from the Standard Version, including, but not limited to, documenting
|
|
|
|
% any non-standard features, executables, or modules, and provided that
|
|
|
|
% you do at least ONE of the following:
|
|
|
|
%
|
|
|
|
% (a) make the Modified Version available to the Copyright Holder of the
|
|
|
|
% Standard Version, under the Original License, so that the Copyright
|
|
|
|
% Holder may include your modifications in the Standard Version. (b)
|
|
|
|
% ensure that installation of your Modified Version does not prevent the
|
|
|
|
% user installing or running the Standard Version. In addition, the
|
|
|
|
% modified Version must bear a name that is different from the name of
|
|
|
|
% the Standard Version. (c) allow anyone who receives a copy of the
|
|
|
|
% Modified Version to make the Source form of the Modified Version
|
|
|
|
% available to others under (i) the Original License or (ii) a license
|
|
|
|
% that permits the licensee to freely copy, modify and redistribute the
|
|
|
|
% Modified Version using the same licensing terms that apply to the copy
|
|
|
|
% that the licensee received, and requires that the Source form of the
|
|
|
|
% Modified Version, and of any works derived from it, be made freely
|
|
|
|
% available in that license fees are prohibited but Distributor Fees are
|
|
|
|
% allowed.
|
|
|
|
%
|
|
|
|
% Distribution of Compiled Forms of the Standard Version or
|
|
|
|
% Modified Versions without the Source
|
|
|
|
%
|
|
|
|
% (5) You may Distribute Compiled forms of the Standard Version without
|
|
|
|
% the Source, provided that you include complete instructions on how to
|
|
|
|
% get the Source of the Standard Version. Such instructions must be
|
|
|
|
% valid at the time of your distribution. If these instructions, at any
|
|
|
|
% time while you are carrying out such distribution, become invalid, you
|
|
|
|
% must provide new instructions on demand or cease further
|
|
|
|
% distribution. If you provide valid instructions or cease distribution
|
|
|
|
% within thirty days after you become aware that the instructions are
|
|
|
|
% invalid, then you do not forfeit any of your rights under this
|
|
|
|
% license.
|
|
|
|
%
|
|
|
|
% (6) You may Distribute a Modified Version in Compiled form without the
|
|
|
|
% Source, provided that you comply with Section 4 with respect to the
|
|
|
|
% Source of the Modified Version.
|
|
|
|
%
|
|
|
|
% Aggregating or Linking the Package
|
|
|
|
%
|
|
|
|
% (7) You may aggregate the Package (either the Standard Version or
|
|
|
|
% Modified Version) with other packages and Distribute the resulting
|
|
|
|
% aggregation provided that you do not charge a licensing fee for the
|
|
|
|
% Package. Distributor Fees are permitted, and licensing fees for other
|
|
|
|
% components in the aggregation are permitted. The terms of this license
|
|
|
|
% apply to the use and Distribution of the Standard or Modified Versions
|
|
|
|
% as included in the aggregation.
|
|
|
|
%
|
|
|
|
% (8) You are permitted to link Modified and Standard Versions with
|
|
|
|
% other works, to embed the Package in a larger work of your own, or to
|
|
|
|
% build stand-alone binary or bytecode versions of applications that
|
|
|
|
% include the Package, and Distribute the result without restriction,
|
|
|
|
% provided the result does not expose a direct interface to the Package.
|
|
|
|
%
|
|
|
|
% Items That are Not Considered Part of a Modified Version
|
|
|
|
%
|
|
|
|
% (9) Works (including, but not limited to, modules and scripts) that
|
|
|
|
% merely extend or make use of the Package, do not, by themselves, cause
|
|
|
|
% the Package to be a Modified Version. In addition, such works are not
|
|
|
|
% considered parts of the Package itself, and are not subject to the
|
|
|
|
% terms of this license.
|
|
|
|
%
|
|
|
|
% General Provisions
|
|
|
|
%
|
|
|
|
% (10) Any use, modification, and distribution of the Standard or
|
|
|
|
% Modified Versions is governed by this Artistic License. By using,
|
|
|
|
% modifying or distributing the Package, you accept this license. Do not
|
|
|
|
% use, modify, or distribute the Package, if you do not accept this
|
|
|
|
% license.
|
|
|
|
%
|
|
|
|
% (11) If your Modified Version has been derived from a Modified Version
|
|
|
|
% made by someone other than you, you are nevertheless required to
|
|
|
|
% ensure that your Modified Version complies with the requirements of
|
|
|
|
% this license.
|
|
|
|
%
|
|
|
|
% (12) This license does not grant you the right to use any trademark,
|
|
|
|
% service mark, tradename, or logo of the Copyright Holder.
|
|
|
|
%
|
|
|
|
% (13) This license includes the non-exclusive, worldwide,
|
|
|
|
% free-of-charge patent license to make, have made, use, offer to sell,
|
|
|
|
% sell, import and otherwise transfer the Package with respect to any
|
|
|
|
% patent claims licensable by the Copyright Holder that are necessarily
|
|
|
|
% infringed by the Package. If you institute patent litigation
|
|
|
|
% (including a cross-claim or counterclaim) against any party alleging
|
|
|
|
% that the Package constitutes direct or contributory patent
|
|
|
|
% infringement, then this Artistic License to you shall terminate on the
|
|
|
|
% date that such litigation is filed.
|
|
|
|
%
|
|
|
|
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
|
|
|
|
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
|
|
|
|
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
|
|
|
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
|
|
|
|
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
|
|
|
|
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
:- module(mc_DNF_sampling, [problog_dnf_sampling/3]).
|
|
|
|
|
2010-09-25 03:46:20 +01:00
|
|
|
:- use_module(library(lists), [memberchk/2]).
|
2010-08-26 13:40:50 +01:00
|
|
|
|
2010-09-25 02:24:30 +01:00
|
|
|
:- use_module(variables).
|
2010-08-26 13:40:50 +01:00
|
|
|
:- use_module(sampling, _, [problog_random/1,
|
|
|
|
problog_convergence_check/6]).
|
|
|
|
|
|
|
|
:- use_module(flags, _, [problog_define_flag/5,
|
|
|
|
problog_flag/2]).
|
|
|
|
|
|
|
|
:- use_module(os, _, [convert_filename_to_working_path/2]).
|
|
|
|
|
2010-09-25 02:24:30 +01:00
|
|
|
:- use_module(hash_table).
|
2010-08-26 13:40:50 +01:00
|
|
|
|
2010-09-25 03:46:20 +01:00
|
|
|
:- initialization((
|
|
|
|
problog_define_flag(search_method, problog_flag_validate_in_list([linear, binary]), 'search method for picking proof', binary, monte_carlo_sampling_dnf),
|
|
|
|
problog_define_flag(represent_world, problog_flag_validate_in_list([list, record, array, hash_table]), 'structure that represents sampled world', array, monte_carlo_sampling_dnf),
|
2010-08-26 13:40:50 +01:00
|
|
|
|
2010-09-25 03:46:20 +01:00
|
|
|
problog_var_define(dnf_sampling_time, times, time, messages('DNF Sampling', ':', ' ms')),
|
|
|
|
problog_var_define(probability_lower, result, untyped, messages('Lower probability bound', ' = ', '')),
|
|
|
|
problog_var_define(probability_upper, result, untyped, messages('Upper probability bound', ' = ', ''))
|
|
|
|
)).
|
2010-08-26 13:40:50 +01:00
|
|
|
|
|
|
|
% problog_independed(T, P):-
|
|
|
|
% tries:trie_traverse_first(T, FirstRef), !,
|
|
|
|
% problog_independed(FirstRef, P, 0.0, _, 0).
|
|
|
|
% problog_independed(_T, 0.0).
|
|
|
|
|
|
|
|
problog_independed(T, P, ProofCNT):-
|
|
|
|
tries:trie_traverse_first(T, FirstRef), !,
|
|
|
|
problog_independed(FirstRef, P, 0.0, ProofCNT, 0).
|
|
|
|
problog_independed(_T, 0.0, 0).
|
|
|
|
|
|
|
|
%%% this should be generalized to handle nested tries
|
|
|
|
problog_independed([], P, P, ProofCNT, ProofCNT).
|
|
|
|
problog_independed(ProofRef, P, A, ProofCNT, Index):-
|
|
|
|
tries:trie_get_entry(ProofRef, Proof),
|
|
|
|
calculate_prob_proof(Proof, Pproof),
|
|
|
|
calculate_prob_proof(Proof, Pproof),
|
|
|
|
NA is A + Pproof,
|
|
|
|
NIndex is Index + 1,
|
|
|
|
recordz(problog_mc_dnf, proof(Index, ProofRef, Pproof, NA), _),
|
|
|
|
(tries:trie_traverse_next(ProofRef, NxtProofRef) ->
|
|
|
|
NextProofRef = NxtProofRef
|
|
|
|
;
|
|
|
|
NextProofRef = []
|
|
|
|
),
|
|
|
|
problog_independed(NextProofRef, P, NA, ProofCNT, NIndex).
|
|
|
|
|
|
|
|
|
|
|
|
%%% this should be generalized to handle nested tries
|
|
|
|
calculate_prob_proof([true], 1.0):-!.
|
|
|
|
calculate_prob_proof(Proof, P):-
|
|
|
|
calculate_curr_prob(Proof, 0.0, L),
|
|
|
|
P is exp(L).
|
|
|
|
|
|
|
|
|
|
|
|
calculate_curr_prob([], Acc, Acc).
|
|
|
|
calculate_curr_prob([ID|Rest], AccCurrProb, CurrProb):-
|
|
|
|
get_log_prob_not_check(ID, IDProb),
|
|
|
|
AccCurrProb1 is AccCurrProb + IDProb,
|
|
|
|
calculate_curr_prob(Rest, AccCurrProb1, CurrProb).
|
|
|
|
|
|
|
|
%%%% this should be generalized and go to problog_fact module
|
|
|
|
get_log_prob_not_check(not(ID), IDProb):-
|
|
|
|
!, problog:get_fact_probability(ID, Prob1),
|
|
|
|
Prob2 is 1 - Prob1, IDProb is log(Prob2).
|
|
|
|
get_log_prob_not_check(ID, IDProb):-
|
|
|
|
problog:get_fact_log_probability(ID, IDProb).
|
|
|
|
|
|
|
|
|
|
|
|
problog_mc_DNF(Trie, Delta, P):-
|
|
|
|
problog_flag(mc_batchsize, Samples),
|
|
|
|
problog_independed(Trie, Pind, ProofCNT),
|
|
|
|
(ProofCNT > 1 ->
|
|
|
|
problog_mc_DNF(Trie, Pind, ProofCNT, Delta, Samples, 0, SamplesSoFar, Naccepted, 0, _Epsilon),
|
|
|
|
P is Naccepted / SamplesSoFar * Pind
|
|
|
|
;
|
|
|
|
P is Pind,
|
|
|
|
problog_var_set(probability, P)
|
|
|
|
),
|
|
|
|
eraseall(problog_mc_dnf).
|
|
|
|
|
|
|
|
problog_mc_DNF(_Trie, Pind, _ProofCNT, Delta, Samples, SamplesSoFar, SamplesSoFar, Naccepted, Naccepted, Epsilon):-
|
|
|
|
SamplesSoFar > 0,
|
|
|
|
SamplesSoFar mod Samples =:= 0,
|
|
|
|
P is Naccepted / SamplesSoFar * Pind,
|
|
|
|
problog_timer_pause(dnf_sampling_time, T),
|
|
|
|
problog_timer_resume(dnf_sampling_time),
|
|
|
|
problog_convergence_check(T, P, SamplesSoFar, Delta, Epsilon, Converge),
|
|
|
|
(Converge = true; Converge = terminate), !,
|
|
|
|
problog_var_set(samples, SamplesSoFar),
|
|
|
|
problog_var_set(probability, P),
|
|
|
|
Pl is P - Epsilon,
|
|
|
|
Ph is P + Epsilon,
|
|
|
|
problog_var_set(probability_lower, Pl),
|
|
|
|
problog_var_set(probability_upper, Ph).
|
|
|
|
/*
|
|
|
|
problog_mc_DNF(_Trie, _Pind, _ProofCNT, _Delta, Samples, SamplesSoFar, _SamplesSoFar, _Naccepted, _Naccepted, _Epsilon):-
|
|
|
|
SamplesSoFar mod Samples =:= 0,
|
|
|
|
fail.*/
|
|
|
|
|
|
|
|
problog_mc_DNF(Trie, Pind, ProofCNT, Delta, Samples, SAcc, SamplesSoFar, Naccepted, NAcc, Epsilon):-
|
|
|
|
NSAcc is SAcc + 1,
|
|
|
|
problog_random(RND),
|
|
|
|
Thr is RND * Pind,
|
|
|
|
tries:trie_traverse_mode(backward),
|
|
|
|
(problog_flag(search_method, binary) ->
|
|
|
|
get_sample_proof_binary(CurRef, Thr, ProofCNT, L_true_pf, L_false_pf)
|
|
|
|
;
|
|
|
|
get_sample_proof_linear(CurRef, Thr, L_true_pf, L_false_pf)
|
|
|
|
),
|
|
|
|
(tries:trie_traverse_next(CurRef, NxtRef) ->
|
|
|
|
NextRef = NxtRef
|
|
|
|
;
|
|
|
|
NextRef = []
|
|
|
|
),
|
|
|
|
(check_sample_proofs(NextRef, L_true_pf, L_false_pf) ->
|
|
|
|
NNAcc is NAcc + 1
|
|
|
|
;
|
|
|
|
NNAcc is NAcc
|
|
|
|
),
|
|
|
|
(problog_flag(represent_world, record) ->
|
|
|
|
eraseall(problog_sample_world)
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, array) ->
|
|
|
|
close_static_array(problog_sample_world)
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, hash_table) ->
|
|
|
|
hash_table_delete(L_true_pf),
|
|
|
|
hash_table_delete(L_false_pf)
|
|
|
|
;
|
|
|
|
true
|
|
|
|
)
|
|
|
|
)
|
|
|
|
),
|
|
|
|
tries:trie_traverse_mode(forward),
|
|
|
|
problog_mc_DNF(Trie, Pind, ProofCNT, Delta, Samples, NSAcc, SamplesSoFar, Naccepted, NNAcc, Epsilon).
|
|
|
|
|
|
|
|
|
|
|
|
get_sample_proof_linear(Ref, Thr, L_true_pf, L_false_pf):-
|
|
|
|
recorded(problog_mc_dnf, proof(_Index, Ref, _Pproof, Ps), _),
|
|
|
|
Thr < Ps,
|
|
|
|
tries:trie_get_entry(Ref, Proof),
|
|
|
|
(problog_flag(represent_world, hash_table) ->
|
|
|
|
make_hash_tables(L_true_pf, L_false_pf),
|
|
|
|
add_proof_to_hash_world(Proof, L_true_pf, L_false_pf)
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, record) ->
|
|
|
|
add_proof_to_rec_world(Proof)
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, array) ->
|
|
|
|
nb_getval(probclause_counter, ProbFactCNT),
|
|
|
|
Size is ProbFactCNT + 1,
|
|
|
|
static_array(problog_sample_world, Size, int),
|
|
|
|
add_proof_to_array_world(Proof)
|
|
|
|
;
|
|
|
|
add_proof_to_list_world(Proof, L_true_pf, L_false_pf)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
).
|
|
|
|
|
|
|
|
get_sample_proof_binary(Ref, Thr, ProofCNT, L_true_pf, L_false_pf):-
|
|
|
|
Last is ProofCNT - 1,
|
|
|
|
binary_search(Thr, 0, Last, Ref), !,
|
|
|
|
tries:trie_get_entry(Ref, Proof),
|
|
|
|
(problog_flag(represent_world, hash_table) ->
|
|
|
|
make_hash_tables(L_true_pf, L_false_pf),
|
|
|
|
add_proof_to_hash_world(Proof, L_true_pf, L_false_pf)
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, record) ->
|
|
|
|
add_proof_to_rec_world(Proof)
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, array) ->
|
|
|
|
nb_getval(probclause_counter, ProbFactCNT),
|
|
|
|
Size is ProbFactCNT + 1,
|
|
|
|
static_array(problog_sample_world, Size, int),
|
|
|
|
add_proof_to_array_world(Proof)
|
|
|
|
;
|
|
|
|
add_proof_to_list_world(Proof, L_true_pf, L_false_pf)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
|
|
binary_search(Thr, From, To, Ref):-
|
|
|
|
1 is To - From, !,
|
|
|
|
recorded(problog_mc_dnf, proof(From, RefF, _Pproof, PsF), _),
|
|
|
|
(Thr > PsF ->
|
|
|
|
recorded(problog_mc_dnf, proof(To, Ref, _PproofTo, _Ps), _)
|
|
|
|
;
|
|
|
|
Ref = RefF
|
|
|
|
).
|
|
|
|
|
|
|
|
binary_search(_Thr, Index, Index, Ref):-
|
|
|
|
!, recorded(problog_mc_dnf, proof(Index, Ref, _Pproof, _Ps), _).
|
|
|
|
|
|
|
|
binary_search(Thr, From, To, Res):-
|
|
|
|
Look is From + integer((To - From + 1) / 2),
|
|
|
|
recorded(problog_mc_dnf, proof(Look, _Ref, _Pproof, Ps), _), !,
|
|
|
|
(Thr > Ps ->
|
|
|
|
NewFrom is Look + 1,
|
|
|
|
NewTo is To
|
|
|
|
;
|
|
|
|
NewFrom is From,
|
|
|
|
NewTo is Look
|
|
|
|
),
|
|
|
|
binary_search(Thr, NewFrom, NewTo, Res).
|
|
|
|
|
|
|
|
|
|
|
|
%%%%%%%%% This code can be improved and generalized %%%%%%%%%
|
|
|
|
check_sample_proofs([], _, _).
|
|
|
|
|
|
|
|
check_sample_proofs(CurRef, L_true_pf, L_false_pf):-
|
|
|
|
!, tries:trie_get_entry(CurRef, Proof),
|
|
|
|
(problog_flag(represent_world, hash_table) ->
|
|
|
|
check_proof_in_hash_world(Proof, L_true_pf, L_false_pf),
|
|
|
|
NL_true_pf = L_true_pf,
|
|
|
|
NL_false_pf = L_false_pf
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, record) ->
|
|
|
|
check_proof_in_rec_world(Proof),
|
|
|
|
NL_true_pf = L_true_pf,
|
|
|
|
NL_false_pf = L_false_pf
|
|
|
|
;
|
|
|
|
(problog_flag(represent_world, array) ->
|
|
|
|
check_proof_in_array_world(Proof),
|
|
|
|
NL_true_pf = L_true_pf,
|
|
|
|
NL_false_pf = L_false_pf
|
|
|
|
;
|
|
|
|
check_proof_in_list_world(Proof, L_true_pf, NL_true_pf, L_false_pf, NL_false_pf)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
),
|
|
|
|
(tries:trie_traverse_next(CurRef, NxtRef) ->
|
|
|
|
NextRef = NxtRef
|
|
|
|
;
|
|
|
|
NextRef = []
|
|
|
|
),
|
|
|
|
check_sample_proofs(NextRef, NL_true_pf, NL_false_pf).
|
|
|
|
|
|
|
|
add_proof_to_array_world([]).
|
|
|
|
add_proof_to_array_world([not(H)|T]):-
|
|
|
|
!, update_array(problog_sample_world, H, -1), add_proof_to_array_world(T).
|
|
|
|
add_proof_to_array_world([H|T]):-
|
|
|
|
update_array(problog_sample_world, H, 1), add_proof_to_array_world(T).
|
|
|
|
|
|
|
|
|
|
|
|
check_proof_in_array_world([not(F)|_Rest]):-
|
|
|
|
array_element(problog_sample_world, F, 1), !.
|
|
|
|
|
|
|
|
check_proof_in_array_world([not(F)|Rest]):-
|
|
|
|
array_element(problog_sample_world, F, -1), !,
|
|
|
|
check_proof_in_array_world(Rest).
|
|
|
|
|
|
|
|
check_proof_in_array_world([not(F)|Rest]):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
(Dice =< NumProbF ->
|
|
|
|
update_array(problog_sample_world, F, 1)
|
|
|
|
;
|
|
|
|
update_array(problog_sample_world, F, -1),
|
|
|
|
check_proof_in_array_world(Rest)
|
|
|
|
).
|
|
|
|
|
|
|
|
check_proof_in_array_world([F|_Rest]):-
|
|
|
|
array_element(problog_sample_world, F, -1), !.
|
|
|
|
|
|
|
|
check_proof_in_array_world([F|Rest]):-
|
|
|
|
array_element(problog_sample_world, F, 1), !,
|
|
|
|
check_proof_in_array_world(Rest).
|
|
|
|
|
|
|
|
check_proof_in_array_world([F|Rest]):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
(Dice > NumProbF ->
|
|
|
|
update_array(problog_sample_world, F, -1)
|
|
|
|
;
|
|
|
|
update_array(problog_sample_world, F, 1),
|
|
|
|
check_proof_in_array_world(Rest)
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
add_proof_to_rec_world([]).
|
|
|
|
add_proof_to_rec_world([not(H)|T]):-
|
|
|
|
!, recordz(problog_sample_world, false_fact(H), _), add_proof_to_rec_world(T).
|
|
|
|
add_proof_to_rec_world([H|T]):-
|
|
|
|
recordz(problog_sample_world, true_fact(H), _), add_proof_to_rec_world(T).
|
|
|
|
|
|
|
|
check_proof_in_rec_world([not(F)|_Rest]):-
|
|
|
|
recorded(problog_sample_world, true_fact(F), _), !.
|
|
|
|
|
|
|
|
check_proof_in_rec_world([not(F)|Rest]):-
|
|
|
|
recorded(problog_sample_world, false_fact(F), _), !,
|
|
|
|
check_proof_in_rec_world(Rest).
|
|
|
|
|
|
|
|
check_proof_in_rec_world([not(F)|Rest]):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
(Dice =< NumProbF ->
|
|
|
|
recordz(problog_sample_world, true_fact(F), _)
|
|
|
|
;
|
|
|
|
recordz(problog_sample_world, false_fact(F), _),
|
|
|
|
check_proof_in_rec_world(Rest)
|
|
|
|
).
|
|
|
|
|
|
|
|
check_proof_in_rec_world([F|_Rest]):-
|
|
|
|
recorded(problog_sample_world, false_fact(F), _), !.
|
|
|
|
|
|
|
|
check_proof_in_rec_world([F|Rest]):-
|
|
|
|
recorded(problog_sample_world, true_fact(F), _), !,
|
|
|
|
check_proof_in_rec_world(Rest).
|
|
|
|
|
|
|
|
check_proof_in_rec_world([F|Rest]):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
(Dice > NumProbF ->
|
|
|
|
recordz(problog_sample_world, false_fact(F), _)
|
|
|
|
;
|
|
|
|
recordz(problog_sample_world, true_fact(F), _),
|
|
|
|
check_proof_in_rec_world(Rest)
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
make_hash_tables(TrueHashTable, FalseHashTable):-
|
|
|
|
nb_getval(probclause_counter, ProbFactCNT),
|
|
|
|
hash_table_init(ProbFactCNT, TrueHashTable),
|
|
|
|
hash_table_init(ProbFactCNT, FalseHashTable).
|
|
|
|
|
|
|
|
|
|
|
|
add_proof_to_hash_world([], _TrueHashTable, _FalseHashTable).
|
|
|
|
add_proof_to_hash_world([not(H)|T], TrueHashTable, FalseHashTable):-
|
|
|
|
!, problog_key_to_tuple(H, Tuple),
|
|
|
|
hash_table_lookup(FalseHashTable, Tuple, _),
|
|
|
|
add_proof_to_hash_world(T, TrueHashTable, FalseHashTable).
|
|
|
|
add_proof_to_hash_world([H|T], TrueHashTable, FalseHashTable):-
|
|
|
|
problog_key_to_tuple(H, Tuple),
|
|
|
|
hash_table_lookup(TrueHashTable, Tuple, _),
|
|
|
|
add_proof_to_hash_world(T, TrueHashTable, FalseHashTable).
|
|
|
|
|
|
|
|
|
|
|
|
check_proof_in_hash_world([not(F)|_Rest], TrueHashTable, _FalseHashTable):-
|
|
|
|
problog_key_to_tuple(F, Tuple),
|
|
|
|
hash_table_contains(TrueHashTable, Tuple, _), !.
|
|
|
|
|
|
|
|
check_proof_in_hash_world([not(F)|Rest], TrueHashTable, FalseHashTable):-
|
|
|
|
problog_key_to_tuple(F, Tuple),
|
|
|
|
hash_table_contains(FalseHashTable, Tuple, _), !,
|
|
|
|
check_proof_in_hash_world(Rest, TrueHashTable, FalseHashTable).
|
|
|
|
|
|
|
|
check_proof_in_hash_world([not(F)|Rest], TrueHashTable, FalseHashTable):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
problog_key_to_tuple(F, Tuple),
|
|
|
|
(Dice =< NumProbF ->
|
|
|
|
hash_table_lookup(TrueHashTable, Tuple, _)
|
|
|
|
;
|
|
|
|
hash_table_lookup(FalseHashTable, Tuple, _),
|
|
|
|
check_proof_in_hash_world(Rest, TrueHashTable, FalseHashTable)
|
|
|
|
).
|
|
|
|
|
|
|
|
check_proof_in_hash_world([F|_Rest], _TrueHashTable, FalseHashTable):-
|
|
|
|
problog_key_to_tuple(F, Tuple),
|
|
|
|
hash_table_contains(FalseHashTable, Tuple, _), !.
|
|
|
|
|
|
|
|
check_proof_in_hash_world([F|Rest], TrueHashTable, FalseHashTable):-
|
|
|
|
problog_key_to_tuple(F, Tuple),
|
|
|
|
hash_table_contains(TrueHashTable, Tuple, _), !,
|
|
|
|
check_proof_in_hash_world(Rest, TrueHashTable, FalseHashTable).
|
|
|
|
|
|
|
|
check_proof_in_hash_world([F|Rest], TrueHashTable, FalseHashTable):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
problog_key_to_tuple(F, Tuple),
|
|
|
|
(Dice > NumProbF ->
|
|
|
|
hash_table_lookup(FalseHashTable, Tuple, _)
|
|
|
|
;
|
|
|
|
hash_table_lookup(TrueHashTable, Tuple, _),
|
|
|
|
check_proof_in_hash_world(Rest, TrueHashTable, FalseHashTable)
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
add_proof_to_list_world([], [], []).
|
|
|
|
add_proof_to_list_world([not(H)|T], TrueList, [H|FalseList]):-
|
|
|
|
add_proof_to_list_world(T, TrueList, FalseList).
|
|
|
|
add_proof_to_list_world([H|T], [H|TrueList], FalseList):-
|
|
|
|
add_proof_to_list_world(T, TrueList, FalseList).
|
|
|
|
|
|
|
|
check_proof_in_list_world([not(F)|_Rest], TrueList, TrueList, FalseList, FalseList):-
|
|
|
|
memberchk(F, TrueList), !.
|
|
|
|
|
|
|
|
check_proof_in_list_world([not(F)|Rest], TrueList, NewTrueList, FalseList, NewFalseList):-
|
|
|
|
memberchk(F, FalseList), !,
|
|
|
|
check_proof_in_list_world(Rest, TrueList, NewTrueList, FalseList, NewFalseList).
|
|
|
|
|
|
|
|
check_proof_in_list_world([not(F)|Rest], TrueList, NewTrueList, FalseList, NewFalseList):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
(Dice =< NumProbF ->
|
|
|
|
NewTrueList = [F|TrueList],
|
|
|
|
NewFalseList = FalseList
|
|
|
|
;
|
|
|
|
check_proof_in_list_world(Rest, TrueList, NewTrueList, [F|FalseList], NewFalseList)
|
|
|
|
).
|
|
|
|
|
|
|
|
check_proof_in_list_world([F|_Rest], TrueList, TrueList, FalseList, FalseList):-
|
|
|
|
memberchk(F, FalseList), !.
|
|
|
|
|
|
|
|
check_proof_in_list_world([F|Rest], TrueList, NewTrueList, FalseList, NewFalseList):-
|
|
|
|
memberchk(F, TrueList), !,
|
|
|
|
check_proof_in_list_world(Rest, TrueList, NewTrueList, FalseList, NewFalseList).
|
|
|
|
|
|
|
|
check_proof_in_list_world([F|Rest], TrueList, NewTrueList, FalseList, NewFalseList):-
|
|
|
|
!, problog_random(RND), Dice is RND,
|
|
|
|
problog:get_fact_probability(F, NumProbF),
|
|
|
|
(Dice > NumProbF ->
|
|
|
|
NewTrueList = TrueList,
|
|
|
|
NewFalseList = [F|FalseList]
|
|
|
|
;
|
|
|
|
check_proof_in_list_world(Rest, [F|TrueList], NewTrueList, FalseList, NewFalseList)
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
problog_collect_trie(Goal, Threshold) :-
|
|
|
|
problog:init_problog_low(Threshold),
|
|
|
|
problog:problog_control(off, up),
|
|
|
|
problog:problog_control(on, exact),
|
|
|
|
problog_var_timer_start(sld_time),
|
|
|
|
problog:problog_call(Goal),
|
|
|
|
problog:add_solution,
|
|
|
|
fail.
|
|
|
|
problog_collect_trie(_, _) :-
|
|
|
|
problog:problog_control(off, exact),
|
|
|
|
problog_var_timer_stop(sld_time).
|
|
|
|
|
|
|
|
problog_dnf_sampling(Goal, Delta, P):-
|
|
|
|
% this should be generalized with general log file
|
|
|
|
problog_flag(mc_logfile, File1),
|
|
|
|
convert_filename_to_working_path(File1, File),
|
|
|
|
open(File, write, Log),
|
|
|
|
format(Log,'# goal: ~q~n#delta: ~w~n',[Goal, Delta]),
|
|
|
|
format(Log,'# samples prob low high time~2n',[]),
|
|
|
|
close(Log),
|
|
|
|
|
|
|
|
problog_collect_trie(Goal, 0.0),
|
|
|
|
nb_getval(problog_completed_proofs, Trie_Completed_Proofs),
|
|
|
|
problog_var_timer_start(dnf_sampling_time),
|
|
|
|
problog_mc_DNF(Trie_Completed_Proofs, Delta, P),
|
|
|
|
problog_var_timer_stop(dnf_sampling_time),
|
|
|
|
(problog_flag(verbose, true) ->
|
|
|
|
print:problog_statistics
|
|
|
|
;
|
|
|
|
true
|
|
|
|
),
|
|
|
|
ptree:delete_ptree(Trie_Completed_Proofs),
|
|
|
|
problog:clear_tabling.
|