This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/arith2.c

1760 lines
35 KiB
C
Raw Normal View History

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: arith2.c *
* Last rev: *
* mods: *
* comments: arithmetical expression evaluation *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
/*
* This file implements unary arithmetic operations in YAP
*
*/
#include "Yap.h"
#include "Yatom.h"
#include "Heap.h"
#include "eval.h"
#define E_FUNC blob_type
#define E_ARGS , arith_retptr o
#define USE_E_ARGS , o
#define RINT(v) (o)->Int = v; return(long_int_e)
#define RFLOAT(v) (o)->dbl = v; return(double_e)
#define RBIG(v) (o)->big = v; return(big_int_e)
#define RERROR() return(db_ref_e)
#define ArithIEval(t,v) Eval(t,v)
inline static Functor
AritFunctorOfTerm(Term t) {
if (IsVarTerm(t)) {
return(FunctorPortray);
}
if (IsApplTerm(t)) {
return(FunctorOfTerm(t));
} else {
if (IsIntTerm(t))
return(FunctorLongInt);
else
return(FunctorDBRef);
}
}
inline static Term
EvalToTerm(blob_type f, union arith_ret *res)
{
switch (f) {
case long_int_e:
return(MkIntegerTerm(res->Int));
case double_e:
return(MkFloatTerm(res->dbl));
#ifdef USE_GMP
case big_int_e:
return(MkBigIntTerm(res->big));
#endif
default:
return(TermNil);
}
}
typedef blob_type (*f_binexp)(Term, Term, arith_retptr);
typedef struct init_bin_eval {
char *OpName;
f_binexp f;
} InitBinEntry;
#include "arith2.h"
/*
module mod
*/
static E_FUNC
p_mod(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case (CELL)long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case (CELL)long_int_e:
/* two integers */
{
Int i2 = IntegerOfTerm(t2);
if (i2 == 0) goto zero_divisor;
RINT(IntegerOfTerm(t1) % i2);
}
case (CELL)double_e:
Error(TYPE_ERROR_INTEGER, t2, "mod/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case (CELL)big_int_e:
/* I know the term is much larger, so: */
RINT(IntegerOfTerm(t1));
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case (CELL)double_e:
Error(TYPE_ERROR_INTEGER, t1, "mod/2");
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case (CELL)big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* modulo between bignum and integer */
{
Int i2 = IntegerOfTerm(t2);
MP_INT *l1 = BigIntOfTerm(t1);
if (i2 > 0) {
MP_INT *new = PreAllocBigNum();
Int r = mpz_mod_ui(new, l1, i2);
CleanBigNum();
RINT((mpz_sgn(l1) ? r : -r));
} else if (i2 == 0) {
goto zero_divisor;
} else {
MP_INT *new = PreAllocBigNum();
Int r = mpz_mod_ui(new, l1, -i2);
CleanBigNum();
RINT((mpz_sgn(l1) ? r : -r));
}
}
case (CELL)big_int_e:
/* two bignums */
{
MP_INT *new = PreAllocBigNum();
mpz_mod(new, BigIntOfTerm(t1), BigIntOfTerm(t2));
RBIG(new);
}
case double_e:
Error(TYPE_ERROR_INTEGER, t2, "mod/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
/* two integers */
if (v2.Int == 0) goto zero_divisor;
RINT(v1.Int % v2.Int);
case double_e:
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v2.dbl), "mod/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case (CELL)big_int_e:
/* Cool */
RINT(v1.Int);
#endif
default:
/* Error */
RERROR();
}
case double_e:
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v1.dbl), "mod/2");
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case (CELL)big_int_e:
switch (bt2) {
case long_int_e:
/* big mod integer */
if (v2.Int > 0) {
MP_INT *new = PreAllocBigNum();
Int r = mpz_mod_ui(new, v1.big, v2.Int);
CleanBigNum();
RINT((mpz_sgn(v1.big) ? r : -r));
} else if (v2.Int == 0) {
goto zero_divisor;
} else {
MP_INT *new = PreAllocBigNum();
Int r = mpz_mod_ui(new, v1.big, -v2.Int);
CleanBigNum();
RINT((mpz_sgn(v1.big) ? r : -r));
}
case double_e:
/* big // float */
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v2.dbl), "mod/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
case (CELL)big_int_e:
/* big * big */
{
MP_INT *new = PreAllocBigNum();
mpz_mod(new, v1.big, v2.big);
RBIG(new);
}
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
zero_divisor:
Error(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is mod 0");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
}
#ifdef USE_GMP
static Float
fdiv_bigint(MP_INT *b1,MP_INT *b2)
{
Float f1 = mpz_get_d(b1);
Float f2 = mpz_get_d(b2);
if (1) {
mpf_t f1,f2;
Float res;
PreAllocBigNum();
mpf_init(f1);
mpf_init(f2);
mpf_set_z(f1, b1);
mpf_set_z(f2, b2);
mpf_div(f1, f1, f2);
res = mpf_get_d(f1);
CleanBigNum();
return(res);
} else {
return(f1/f2);
}
}
#endif
/*
Floating point division: /
*/
static E_FUNC
p_fdiv(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i2 = IntegerOfTerm(t2);
/* two integers */
RFLOAT((((Float)IntegerOfTerm(t1))/(Float)i2));
}
case double_e:
{
/* integer, double */
Float fl1 = (Float)IntegerOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
RFLOAT(fl1/fl2);
}
#ifdef USE_GMP
case (CELL)big_int_e:
{
Int i1 = IntegerOfTerm(t1);
Float f2 = mpz_get_d(BigIntOfTerm(t2));
RFLOAT(i1/f2);
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case double_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* float / integer */
{
Int i2 = IntegerOfTerm(t2);
RFLOAT(FloatOfTerm(t1)/(Float)i2);
}
case double_e:
{
Float f2 = FloatOfTerm(t2);
RFLOAT(FloatOfTerm(t1)/f2);
}
#ifdef USE_GMP
case big_int_e:
{
RFLOAT(FloatOfTerm(t1)/mpz_get_d(BigIntOfTerm(t2)));
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.dbl = FloatOfTerm(t1);
bt1 = double_e;
bt2 = Eval(t2, &v2);
}
break;
#ifdef USE_GMP
case big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
RFLOAT(mpz_get_d(BigIntOfTerm(t1))/(Float)i);
}
case big_int_e:
/* two bignums*/
RFLOAT(fdiv_bigint(BigIntOfTerm(t1),BigIntOfTerm(t2)));
// RFLOAT(mpz_get_d(BigIntOfTerm(t1))/mpz_get_d(BigIntOfTerm(t2)));
case double_e:
{
Float dbl = FloatOfTerm(t2);
RFLOAT(mpz_get_d(BigIntOfTerm(t1))/dbl);
}
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
/* two integers */
RFLOAT((Float)(((float)v1.Int)/(Float)(v2.Int)));
case double_e:
/* integer, double */
RFLOAT(v1.Int/v2.dbl);
#ifdef USE_GMP
case big_int_e:
/* integer, double */
RFLOAT(v1.Int/mpz_get_d(v2.big));
#endif
default:
/* Error */
RERROR();
}
case double_e:
switch (bt2) {
case long_int_e:
/* float / integer */
RFLOAT(v1.dbl/v2.Int);
case double_e:
/* float / float */
RFLOAT(v1.dbl/v2.dbl);
#ifdef USE_GMP
case big_int_e:
/* float / float */
RFLOAT(v1.dbl/mpz_get_d(v2.big));
#endif
default:
/* error */
RERROR();
}
#ifdef USE_GMP
case big_int_e:
switch (bt2) {
case long_int_e:
RFLOAT(mpz_get_d(v1.big)/v2.Int);
case double_e:
/* big / float */
RFLOAT(mpz_get_d(v1.big)/v2.dbl);
case big_int_e:
/* big / big */
RFLOAT(fdiv_bigint(v1.big,v2.big));
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
}
#if USE_GMP
#if !HAVE_MPZ_XOR
static void
mpz_xor(MP_INT *new, MP_INT *r1, MP_INT *r2)
{
MP_INT *n2 = PreAllocBigNum(), *n3 = PreAllocBigNum();
mpz_ior(new, r1, r2);
mpz_com(n2, r1);
mpz_and(n2, n2, new);
mpz_com(n3, r2);
mpz_and(n3, n3, new);
mpz_ior(new, n2, n3);
CleanBigNum();
}
#endif
#endif
/*
xor #
*/
static E_FUNC
p_xor(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* two integers */
RINT(IntegerOfTerm(t1) ^ IntegerOfTerm(t2));
case double_e:
Error(TYPE_ERROR_INTEGER, t2, "#/2");
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
{
MP_INT *new = PreAllocBigNum();
mpz_set_si(new,IntOfTerm(t1));
mpz_xor(new, new, BigIntOfTerm(t2));
RBIG(new);
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case double_e:
Error(TYPE_ERROR_INTEGER, t1, "#/2");
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
MP_INT *new = PreAllocBigNum();
mpz_set_si(new,IntOfTerm(t2));
mpz_xor(new, BigIntOfTerm(t1), new);
RBIG(new);
}
case big_int_e:
/* two bignums */
{
MP_INT *new = PreAllocBigNum();
mpz_xor(new, BigIntOfTerm(t1), BigIntOfTerm(t2));
RBIG(new);
}
case double_e:
Error(TYPE_ERROR_INTEGER, t2, "#/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
RINT(v1.Int ^ v2.Int);
case double_e:
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v2.dbl), "#/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
{
MP_INT *new = PreAllocBigNum();
mpz_set_si(new,v1.Int);
mpz_xor(new, new, v2.big);
RBIG(new);
}
#endif
default:
/* Error */
RERROR();
}
case double_e:
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v1.dbl), "#/2");
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
switch (bt2) {
case long_int_e:
/* anding a bignum with an integer is easy */
{
MP_INT *new = PreAllocBigNum();
mpz_set_si(new,v2.Int);
mpz_xor(new, v1.big, new);
RBIG(new);
}
case double_e:
/* big // float */
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v2.dbl), "\\/ /2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
case big_int_e:
/* big * big */
{
MP_INT *new = PreAllocBigNum();
mpz_xor(new, v1.big, v2.big);
RBIG(new);
}
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
}
/*
atan2: arc tangent x/y
*/
static E_FUNC
p_atan2(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i2 = IntegerOfTerm(t2);
/* two integers */
RFLOAT(atan2(IntegerOfTerm(t1),i2));
}
case double_e:
{
/* integer, double */
Float fl1 = (Float)IntegerOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
RFLOAT(atan2(fl1,fl2));
}
#ifdef USE_GMP
case big_int_e:
{
Int i1 = IntegerOfTerm(t1);
Float f2 = mpz_get_d(BigIntOfTerm(t2));
RFLOAT(atan2(i1,f2));
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case double_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* float / integer */
{
Int i2 = IntegerOfTerm(t2);
RFLOAT(atan2(FloatOfTerm(t1),i2));
}
case double_e:
{
Float f2 = FloatOfTerm(t2);
RFLOAT(atan2(FloatOfTerm(t1),f2));
}
#ifdef USE_GMP
case big_int_e:
{
RFLOAT(atan2(FloatOfTerm(t1),mpz_get_d(BigIntOfTerm(t2))));
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.dbl = FloatOfTerm(t1);
bt1 = double_e;
bt2 = Eval(t2, &v2);
}
break;
#ifdef USE_GMP
case big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
RFLOAT(atan2(mpz_get_d(BigIntOfTerm(t1)),i));
}
case big_int_e:
/* two bignums */
RFLOAT(atan2(mpz_get_d(BigIntOfTerm(t1)),mpz_get_d(BigIntOfTerm(t2))));
case double_e:
{
Float dbl = FloatOfTerm(t2);
RFLOAT(atan2(mpz_get_d(BigIntOfTerm(t1)),dbl));
}
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
/* two integers */
RFLOAT(atan2(v1.Int,v2.Int));
case double_e:
/* integer, double */
RFLOAT(atan2(v1.Int,v2.dbl));
#ifdef USE_GMP
case big_int_e:
/* integer, double */
RFLOAT(atan2(v1.Int,mpz_get_d(v2.big)));
#endif
default:
/* Error */
RERROR();
}
case double_e:
switch (bt2) {
case long_int_e:
/* float / integer */
RFLOAT(atan2(v1.dbl,v2.Int));
case double_e:
/* float / float */
RFLOAT(atan2(v1.dbl,v2.dbl));
#ifdef USE_GMP
case big_int_e:
/* float / float */
RFLOAT(atan2(v1.dbl,mpz_get_d(v2.big)));
#endif
default:
/* error */
RERROR();
}
#ifdef USE_GMP
case big_int_e:
switch (bt2) {
case long_int_e:
RFLOAT(atan2(mpz_get_d(v1.big),v2.Int));
case double_e:
/* big / float */
RFLOAT(atan2(mpz_get_d(v1.big),v2.dbl));
case big_int_e:
/* big / big */
RFLOAT(atan2(mpz_get_d(v1.big),mpz_get_d(v2.big)));
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
}
/*
power: x^y
*/
static E_FUNC
p_power(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i2 = IntegerOfTerm(t2);
/* two integers */
RFLOAT(pow(IntegerOfTerm(t1),i2));
}
case double_e:
{
/* integer, double */
Float fl1 = (Float)IntegerOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
RFLOAT(pow(fl1,fl2));
}
#ifdef USE_GMP
case big_int_e:
{
Int i1 = IntegerOfTerm(t1);
Float f2 = mpz_get_d(BigIntOfTerm(t2));
RFLOAT(pow(i1,f2));
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case double_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* float / integer */
{
Int i2 = IntegerOfTerm(t2);
RFLOAT(pow(FloatOfTerm(t1),i2));
}
case double_e:
{
Float f2 = FloatOfTerm(t2);
RFLOAT(pow(FloatOfTerm(t1),f2));
}
#ifdef USE_GMP
case big_int_e:
{
RFLOAT(pow(FloatOfTerm(t1),mpz_get_d(BigIntOfTerm(t2))));
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.dbl = FloatOfTerm(t1);
bt1 = double_e;
bt2 = Eval(t2, &v2);
}
break;
#ifdef USE_GMP
case big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
RFLOAT(pow(mpz_get_d(BigIntOfTerm(t1)),i));
}
case big_int_e:
/* two bignums */
RFLOAT(pow(mpz_get_d(BigIntOfTerm(t1)),mpz_get_d(BigIntOfTerm(t2))));
case double_e:
{
Float dbl = FloatOfTerm(t2);
RFLOAT(pow(mpz_get_d(BigIntOfTerm(t1)),dbl));
}
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
/* two integers */
RFLOAT(pow(v1.Int,v2.Int));
case double_e:
/* integer, double */
RFLOAT(pow(v1.Int,v2.dbl));
#ifdef USE_GMP
case big_int_e:
/* integer, double */
RFLOAT(pow(v1.Int,mpz_get_d(v2.big)));
#endif
default:
/* Error */
RERROR();
}
case double_e:
switch (bt2) {
case long_int_e:
/* float / integer */
RFLOAT(pow(v1.dbl,v2.Int));
case double_e:
/* float / float */
RFLOAT(pow(v1.dbl,v2.dbl));
#ifdef USE_GMP
case big_int_e:
/* float / float */
RFLOAT(pow(v1.dbl,mpz_get_d(v2.big)));
#endif
default:
/* error */
RERROR();
}
#ifdef USE_GMP
case big_int_e:
switch (bt2) {
case long_int_e:
RFLOAT(pow(mpz_get_d(v1.big),v2.Int));
case double_e:
/* big / float */
RFLOAT(pow(mpz_get_d(v1.big),v2.dbl));
case big_int_e:
/* big / big */
RFLOAT(pow(mpz_get_d(v1.big),mpz_get_d(v2.big)));
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
}
static Int
gcd(Int m11,Int m21)
{
/* Blankinship algorithm, provided by Miguel Filgueiras */
Int m12=1, m22=0, k;
while (m11>0 && m21>0)
if (m11<m21) {
k = m21/m11; m21 -= k*m11; m22 -= k*m12;
} else {
k=m11/m21; m11 -= k*m21; m12 -= k*m22;
}
if (m11<0 || m21<0) { /* overflow? */
/* Oflow = 1; */
Error(EVALUATION_ERROR_INT_OVERFLOW, MkIntegerTerm(m11),
"gcd/2 with %d and %d", m11, m21);
P = (yamop *)FAILCODE;
return(1);
}
if (m11) return(m11);
return(m21);
}
#ifdef GCD_MULT
Int gcdmult(Int m11,Int m21,Int *pm11) /* *pm11 gets multiplier of m11 */
{
Int m12=1, m22=0, k;
while (m11 && m21)
if (m11<m21) {
k = m21/m11; m21 -= k*m11; m22 -= k*m12;
} else {
k=m11/m21; m11 -= k*m21; m12 -= k*m22;
}
if (m11<0 || m21<0) { /* overflow? */
/* Oflow = 1; */
Error(EVALUATION_ERROR_INT_OVERFLOW, MkIntegerTerm(m11),
"gcdmult/2 with %d and %d", m11, m21);
P = (yamop *)FAILCODE;
return(1);
}
if (m11) {
*pm11 = m12; return(m11);
}
*pm11 = m22;
return(m21);
}
#endif
/*
module gcd
*/
static E_FUNC
p_gcd(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* two integers */
{
Int i1 = IntegerOfTerm(t1), i2 = IntegerOfTerm(t2);
i1 = (i1 >= 0 ? i1 : -i1);
i2 = (i2 >= 0 ? i2 : -i2);
RINT(gcd(i1,i2));
}
case double_e:
Error(TYPE_ERROR_INTEGER, t2, "gcd/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
/* I know the term is much larger, so: */
{
Int i = IntegerOfTerm(t1);
if (i > 0) {
RINT(mpz_gcd_ui(NULL,BigIntOfTerm(t2),i));
} else if (i == 0) {
MP_INT *new = PreAllocBigNum();
mpz_abs(new, BigIntOfTerm(t2));
RBIG(new);
} else {
RINT(mpz_gcd_ui(NULL,BigIntOfTerm(t2),-i));
}
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case double_e:
Error(TYPE_ERROR_INTEGER, t1, "gcd/2");
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* modulo between bignum and integer */
{
Int i = IntegerOfTerm(t2);
if (i > 0) {
RINT(mpz_gcd_ui(NULL,BigIntOfTerm(t1),i));
} else if (i == 0) {
MP_INT *new = PreAllocBigNum();
mpz_abs(new, BigIntOfTerm(t1));
RBIG(new);
} else {
RINT(mpz_gcd_ui(NULL,BigIntOfTerm(t1),-i));
}
}
case big_int_e:
/* two bignums */
{
MP_INT *new = PreAllocBigNum();
mpz_gcd(new, BigIntOfTerm(t1), BigIntOfTerm(t2));
RBIG(new);
}
case double_e:
Error(TYPE_ERROR_INTEGER, t2, "gcd/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
/* two integers */
{
Int i1 = v1.Int, i2 = v2.Int;
i1 = (i1 >= 0 ? i1 : -i1);
i2 = (i2 >= 0 ? i2 : -i2);
RINT(gcd(i1,i2));
}
case double_e:
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v2.dbl), "gcd/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
{
if (v1.Int > 0) {
RINT(mpz_gcd_ui(NULL,v2.big,v1.Int));
} else if (v1.Int == 0) {
MP_INT *new = PreAllocBigNum();
mpz_abs(new, v2.big);
RBIG(new);
} else {
RINT(mpz_gcd_ui(NULL,v2.big,-v1.Int));
}
}
#endif
default:
/* Error */
RERROR();
}
case double_e:
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v1.dbl), "gcd/2");
P = (yamop *)FAILCODE;
RERROR();
#ifdef USE_GMP
case big_int_e:
switch (bt2) {
case long_int_e:
/* big gcd integer */
{
if (v2.Int > 0) {
RINT(mpz_gcd_ui(NULL,v1.big,v2.Int));
} else if (v2.Int == 0) {
MP_INT *new = PreAllocBigNum();
mpz_abs(new, v1.big);
RBIG(new);
} else {
RINT(mpz_gcd_ui(NULL,v1.big,-v2.Int));
}
}
case double_e:
/* big // float */
Error(TYPE_ERROR_INTEGER, MkFloatTerm(v2.dbl), "gcd/2");
/* make GCC happy */
P = (yamop *)FAILCODE;
RERROR();
case big_int_e:
if (v2.Int > 0) {
MP_INT *new = PreAllocBigNum();
mpz_gcd(new, v1.big, v2.big);
RBIG(new);
}
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
}
/*
minimum: min(x,y)
*/
static E_FUNC
p_min(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
RINT((i1 < i2 ? i1 : i2));
}
case double_e:
{
/* integer, double */
Int i = IntegerOfTerm(t1);
Float fl = FloatOfTerm(t2);
if (i <= fl) {
RINT(i);
}
RFLOAT(fl);
}
#ifdef USE_GMP
case big_int_e:
{
Int i = IntegerOfTerm(t1);
MP_INT *b = BigIntOfTerm(t2);
if (mpz_cmp_si(b,i) < 0) {
RBIG(b);
}
RINT(i);
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case double_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* float / integer */
{
Int i = IntegerOfTerm(t2);
Float fl = FloatOfTerm(t1);
if (i <= fl) {
RINT(i);
}
RFLOAT(fl);
}
case double_e:
{
Float fl1 = FloatOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
if (fl1 <= fl2) {
RFLOAT(fl1);
}
RFLOAT(fl2);
}
#ifdef USE_GMP
case big_int_e:
{
Float fl1 = FloatOfTerm(t1);
Float fl2 = mpz_get_d(BigIntOfTerm(t2));
if (fl1 <= fl2) {
RFLOAT(fl1);
}
RFLOAT(fl2);
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.dbl = FloatOfTerm(t1);
bt1 = double_e;
bt2 = Eval(t2, &v2);
}
break;
#ifdef USE_GMP
case big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
MP_INT *b = BigIntOfTerm(t1);
if (mpz_cmp_si(b,i) < 0) {
RBIG(b);
}
RINT(i);
}
case big_int_e:
/* two bignums */
{
MP_INT *b1 = BigIntOfTerm(t1);
MP_INT *b2 = BigIntOfTerm(t2);
if (mpz_cmp(b1,b2) < 0) {
RBIG(b1);
}
RBIG(b2);
}
case double_e:
{
Float fl1 = FloatOfTerm(t2);
Float fl2 = mpz_get_d(BigIntOfTerm(t1));
if (fl1 <= fl2) {
RFLOAT(fl1);
}
RFLOAT(fl2);
}
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
/* two integers */
RINT((v1.Int < v2.Int ? v1.Int : v2.Int));
case double_e:
/* integer, double */
{
if (v1.Int <= v2.dbl) {
RINT(v1.Int);
}
RFLOAT(v2.dbl);
}
#ifdef USE_GMP
case big_int_e:
/* integer, double */
{
if (mpz_cmp_si(v2.big,v1.Int) < 0) {
RBIG(v2.big);
}
RINT(v1.Int);
}
#endif
default:
/* Error */
RERROR();
}
case double_e:
switch (bt2) {
case long_int_e:
/* float / integer */
{
if (v2.Int <= v1.dbl) {
RINT(v2.Int);
}
RFLOAT(v1.dbl);
}
case double_e:
/* float / float */
{
if (v2.dbl <= v1.dbl) {
RFLOAT(v2.dbl);
}
RFLOAT(v1.dbl);
}
#ifdef USE_GMP
case big_int_e:
/* float / big */
{
if (mpz_get_d(v2.big) <= v1.dbl) {
RBIG(v2.big);
}
RFLOAT(v1.dbl);
}
#endif
default:
/* error */
RERROR();
}
#ifdef USE_GMP
case big_int_e:
switch (bt2) {
case long_int_e:
/* integer, double */
{
if (mpz_cmp_si(v1.big,v2.Int) < 0) {
RBIG(v1.big);
}
RINT(v2.Int);
}
case double_e:
/* big / float */
{
if (mpz_get_d(v1.big) <= v2.dbl) {
RBIG(v1.big);
}
RFLOAT(v2.dbl);
}
case big_int_e:
/* big / big */
{
if (mpz_cmp(v1.big,v2.big) < 0) {
RBIG(v1.big);
}
RBIG(v2.big);
}
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
}
/*
maximum: max(x,y)
*/
static E_FUNC
p_max(Term t1, Term t2 E_ARGS)
{
Functor f1 = AritFunctorOfTerm(t1), f2;
blob_type bt1, bt2;
union arith_ret v1, v2;
switch (BlobOfFunctor(f1)) {
case long_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
RINT((i1 > i2 ? i1 : i2));
}
case double_e:
{
/* integer, double */
Int i = IntegerOfTerm(t1);
Float fl = FloatOfTerm(t2);
if (i >= fl) {
RINT(i);
}
RFLOAT(fl);
}
#ifdef USE_GMP
case big_int_e:
{
Int i = IntegerOfTerm(t1);
MP_INT *b = BigIntOfTerm(t2);
if (mpz_cmp_si(b,i) > 0) {
RBIG(b);
}
RINT(i);
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.Int = IntegerOfTerm(t1);
bt1 = long_int_e;
bt2 = Eval(t2, &v2);
}
break;
case double_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
/* float / integer */
{
Int i = IntegerOfTerm(t2);
Float fl = FloatOfTerm(t1);
if (i >= fl) {
RINT(i);
}
RFLOAT(fl);
}
case double_e:
{
Float fl1 = FloatOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
if (fl1 >= fl2) {
RFLOAT(fl1);
}
RFLOAT(fl2);
}
#ifdef USE_GMP
case big_int_e:
{
Float fl1 = FloatOfTerm(t1);
Float fl2 = mpz_get_d(BigIntOfTerm(t2));
if (fl1 >= fl2) {
RFLOAT(fl1);
}
RFLOAT(fl2);
}
#endif
default:
/* we've got a full term, need to evaluate it first */
v1.dbl = FloatOfTerm(t1);
bt1 = double_e;
bt2 = Eval(t2, &v2);
}
break;
#ifdef USE_GMP
case big_int_e:
f2 = AritFunctorOfTerm(t2);
switch (BlobOfFunctor(f2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
MP_INT *b = BigIntOfTerm(t1);
if (mpz_cmp_si(b,i) > 0) {
RBIG(b);
}
RINT(i);
}
case big_int_e:
/* two bignums */
{
MP_INT *b1 = BigIntOfTerm(t1);
MP_INT *b2 = BigIntOfTerm(t2);
if (mpz_cmp(b1,b2) > 0) {
RBIG(b1);
}
RBIG(b2);
}
case double_e:
{
Float fl1 = FloatOfTerm(t2);
Float fl2 = mpz_get_d(BigIntOfTerm(t1));
if (fl1 >= fl2) {
RFLOAT(fl1);
}
RFLOAT(fl2);
}
default:
/* we've got a full term, need to evaluate it first */
v1.big = BigIntOfTerm(t1);
bt1 = big_int_e;
bt2 = Eval(t2, &v2);
break;
}
#endif
default:
/* we've got a full term, need to evaluate it first */
bt1 = Eval(t1, &v1);
/* don't know anything about second */
bt2 = Eval(t2, &v2);
}
/* second case, no need no evaluation */
switch (bt1) {
case long_int_e:
switch (bt2) {
case long_int_e:
/* two integers */
RINT((v1.Int > v2.Int ? v1.Int : v2.Int));
case double_e:
/* integer, double */
{
if (v1.Int >= v2.dbl) {
RINT(v1.Int);
}
RFLOAT(v2.dbl);
}
#ifdef USE_GMP
case big_int_e:
/* integer, double */
{
if (mpz_cmp_si(v2.big,v1.Int) > 0) {
RBIG(v2.big);
}
RINT(v1.Int);
}
#endif
default:
/* Error */
RERROR();
}
case double_e:
switch (bt2) {
case long_int_e:
/* float / integer */
{
if (v2.Int >= v1.dbl) {
RINT(v2.Int);
}
RFLOAT(v1.dbl);
}
case double_e:
/* float / float */
{
if (v2.dbl >= v1.dbl) {
RFLOAT(v2.dbl);
}
RFLOAT(v1.dbl);
}
#ifdef USE_GMP
case big_int_e:
/* float / big */
{
if (mpz_get_d(v2.big) >= v1.dbl) {
RBIG(v2.big);
}
RFLOAT(v1.dbl);
}
#endif
default:
/* error */
RERROR();
}
#ifdef USE_GMP
case big_int_e:
switch (bt2) {
case long_int_e:
/* integer, double */
{
if (mpz_cmp_si(v1.big,v2.Int) > 0) {
RBIG(v1.big);
}
RINT(v2.Int);
}
case double_e:
/* big / float */
{
if (mpz_get_d(v1.big) >= v2.dbl) {
RBIG(v1.big);
}
RFLOAT(v2.dbl);
}
case big_int_e:
/* big / big */
{
if (mpz_cmp(v1.big,v2.big) > 0) {
RBIG(v1.big);
}
RBIG(v2.big);
}
default:
/* error */
RERROR();
}
#endif
default:
/* error */
RERROR();
}
}
static InitBinEntry InitBinTab[] = {
{"+", p_plus},
{"-", p_minus},
{"*", p_times},
{"/", p_fdiv},
{"mod", p_mod},
{"rem", p_mod},
{"//", p_div},
{"<<", p_sll},
{">>", p_slr},
{"/\\", p_and},
{"\\/", p_or},
{"#", p_xor},
{"atan2", p_atan2},
/* C-Prolog exponentiation */
{"^", p_power},
/* ISO-Prolog exponentiation */
{"**", p_power},
/* Quintus exponentiation */
{"exp", p_power},
{"gcd", p_gcd},
{"min", p_min},
{"max", p_max},
{"atan2", p_atan2}
};
static Int
p_binary_is(void)
{ /* X is Y */
Term t = Deref(ARG2);
union arith_ret res;
blob_type f;
if (IsVarTerm(t)) {
Error(INSTANTIATION_ERROR,t, "X is Y");
return(FALSE);
}
if (IsIntTerm(t)) {
blob_type f = InitBinTab[IntOfTerm(t)].f(Deref(ARG3),Deref(ARG4),&res);
return (unify_constant(ARG1,EvalToTerm(f,&res)));
}
if (IsAtomTerm(t)) {
Atom name = AtomOfTerm(t);
ExpEntry *p;
if (EndOfPAEntr(p = RepExpProp(GetExpProp(name, 2)))) {
Term ti[2];
/* error */
ti[0] = t;
ti[1] = MkIntTerm(2);
t = MkApplTerm(MkFunctor(LookupAtom("/"),2), 2, ti);
Error(TYPE_ERROR_EVALUABLE, t,
"functor %s/%d for arithmetic expression",
RepAtom(name)->StrOfAE,2);
P = (yamop *)FAILCODE;
return(FALSE);
}
f = p->FOfEE.binary(Deref(ARG3),Deref(ARG4),&res);
return (unify_constant(ARG1,EvalToTerm(f,&res)));
}
return(FALSE);
}
void
InitBinaryExps(void)
{
unsigned int i;
ExpEntry *p;
for (i = 0; i < sizeof(InitBinTab)/sizeof(InitBinEntry); ++i) {
AtomEntry *ae = RepAtom(LookupAtom(InitBinTab[i].OpName));
WRITE_LOCK(ae->ARWLock);
if (LockedGetExpProp(ae, 2)) {
WRITE_UNLOCK(ae->ARWLock);
break;
}
p = (ExpEntry *) AllocAtomSpace(sizeof(ExpEntry));
p->KindOfPE = ExpProperty;
p->ArityOfEE = 2;
p->ENoOfEE = 2;
p->FOfEE.binary = InitBinTab[i].f;
p->NextOfPE = ae->PropOfAE;
ae->PropOfAE = AbsExpProp(p);
WRITE_UNLOCK(ae->ARWLock);
}
InitCPred("is", 4, p_binary_is, TestPredFlag | SafePredFlag);
}
/* This routine is called from Restore to make sure we have the same arithmetic operators */
int
ReInitBinaryExps(void)
{
unsigned int i;
Prop p;
for (i = 0; i < sizeof(InitBinTab)/sizeof(InitBinEntry); ++i) {
AtomEntry *ae = RepAtom(FullLookupAtom(InitBinTab[i].OpName));
WRITE_LOCK(ae->ARWLock);
if ((p = LockedGetExpProp(ae, 2)) == NULL) {
WRITE_UNLOCK(ae->ARWLock);
return(FALSE);
}
RepExpProp(p)->FOfEE.binary = InitBinTab[i].f;
WRITE_UNLOCK(ae->ARWLock);
}
return(TRUE);
}