2016-08-22 23:03:41 +01:00
|
|
|
|
|
|
|
:- [library(python)].
|
|
|
|
|
|
|
|
main :-
|
|
|
|
Plt = matplotlib.pyplot,
|
|
|
|
:= import( Plt ),
|
|
|
|
:= (
|
2016-08-25 18:10:33 +01:00
|
|
|
Plt.figure(figsize=(10,2.5)),
|
2016-08-22 23:03:41 +01:00
|
|
|
Plt.plot([1,2,3,4]),
|
|
|
|
Plt.ylabel(`some numbers`),
|
|
|
|
Plt.show()
|
|
|
|
).
|
2016-08-25 07:26:11 +01:00
|
|
|
|
2016-08-25 18:10:33 +01:00
|
|
|
|
|
|
|
main2 :-
|
|
|
|
:= ( import( numpy),
|
|
|
|
import( matplotlib.mlab),
|
|
|
|
import( matplotlib.pyplot) ),
|
|
|
|
NP = numpy,
|
|
|
|
Mlab = matplotlib.mlab,
|
|
|
|
Plt = matplotlib.pyplot,
|
|
|
|
|
|
|
|
% example data
|
|
|
|
mu := 100, % mean of distribution,
|
|
|
|
sigma := 15, % standard deviation of distribution,
|
|
|
|
x := mu + sigma * NP.random.randn(10000),
|
|
|
|
|
|
|
|
num_bins := 50,
|
|
|
|
% the histogram of the data
|
|
|
|
(n, bins, patches) := Plt.hist(x, num_bins, normed=1, facecolor= `green`, alpha=0.5),
|
|
|
|
% add a `best fit` line
|
|
|
|
y := Mlab.normpdf(bins, mu, sigma),
|
|
|
|
:= (Plt.plot(bins, y, `r--`),
|
|
|
|
Plt.xlabel(`Smarts`),
|
|
|
|
Plt.ylabel(`Probability`),
|
|
|
|
Plt.title(`Histogram of IQ: $\\mu=100$, $\\sigma=15$`),
|
|
|
|
% Tweak spacing to prevent clipping of ylabel,
|
|
|
|
Plt.subplots_adjust(left=0.15),
|
|
|
|
Plt.show()).
|