This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CLPBN/learning/learn_utils.yap

101 lines
2.3 KiB
Plaintext
Raw Normal View History

%
% Utilities for learning
%
:- module(clpbn_learn_utils, [run_all/1,
clpbn_vars/2,
normalise_counts/2,
compute_likelihood/3,
soften_sample/2,
soften_sample/3]).
:- use_module(library(clpbn),
[clpbn_flag/2]).
:- use_module(library('clpbn/table'),
[clpbn_reset_tables/0]).
:- use_module(library(matrix),
[matrix_agg_lines/3,
matrix_op_to_lines/4,
matrix_agg_cols/3,
matrix_op_to_cols/4,
matrix_to_logs/2,
matrix_op/4,
matrix_sum/2,
matrix_to_list/2,
matrix_op_to_all/4]).
:- meta_predicate run_all(:).
run_all([]).
run_all([G|Gs]) :-
call(G),
run_all(Gs).
run_all(M:Gs) :-
clpbn_reset_tables,
run_all(Gs,M).
run_all([],_).
run_all([G|Gs],M) :-
( call(M:G) -> true ; writeln(bad:M:G), break),
run_all(Gs,M).
clpbn_vars(Vs,BVars) :-
get_clpbn_vars(Vs,CVs),
keysort(CVs,KVs),
merge_vars(KVs,BVars).
get_clpbn_vars([],[]).
get_clpbn_vars([V|GVars],[K-V|CLPBNGVars]) :-
clpbn:get_atts(V, [key(K)]), !,
get_clpbn_vars(GVars,CLPBNGVars).
get_clpbn_vars([_|GVars],CLPBNGVars) :-
get_clpbn_vars(GVars,CLPBNGVars).
merge_vars([],[]).
merge_vars([K-V|KVs],[V|BVars]) :-
get_var_has_same_key(KVs,K,V,KVs0),
merge_vars(KVs0,BVars).
get_var_has_same_key([K-V|KVs],K,V,KVs0) :- !,
get_var_has_same_key(KVs,K,V,KVs0).
get_var_has_same_key(KVs,_,_,KVs).
soften_sample(T0,T) :-
clpbn_flag(parameter_softening, Soften),
soften_sample(Soften, T0, T).
soften_sample(no,T,T).
soften_sample(m_estimate(M), T0, T) :-
2008-11-26 09:56:55 +00:00
matrix_agg_cols(T0,+,Cols),
matrix_op_to_all(Cols, *, M, R),
2008-11-26 09:56:55 +00:00
matrix_op_to_cols(T0,R,+,T).
soften_sample(auto_m, T0,T) :-
2008-11-26 09:56:55 +00:00
matrix_agg_cols(T0,+,Cols),
matrix_sum(Cols,TotM),
M is sqrt(TotM),
matrix_op_to_all(Cols, *, M, R),
2008-11-26 09:56:55 +00:00
matrix_op_to_cols(T0,R,+,T).
soften_sample(laplace,T0,T) :-
matrix_op_to_all(T0, +, 1, T).
normalise_counts(MAT,NMAT) :-
matrix_agg_lines(MAT, +, Sum),
matrix_op_to_lines(MAT, Sum, /, NMAT).
compute_likelihood(Table0, NewTable, DeltaLik) :-
matrix_to_logs(NewTable, Logs),
matrix_to_list(Table0,L1),
matrix_to_list(Logs,L2),
sum_prods(L1,L2,0,DeltaLik).
sum_prods([],[],DeltaLik,DeltaLik).
sum_prods([0.0|L1],[_|L2],DeltaLik0,DeltaLik) :- !,
sum_prods(L1,L2,DeltaLik0,DeltaLik).
sum_prods([Count|L1],[Log|L2],DeltaLik0,DeltaLik) :- !,
DeltaLik1 is DeltaLik0+Count*Log,
sum_prods(L1,L2,DeltaLik1,DeltaLik).