242 lines
6.0 KiB
Perl
242 lines
6.0 KiB
Perl
|
% Thom Fruehwirth, LMU, 980129ff, 980312, 980611, 980711
|
||
|
|
||
|
:- use_module( library(chr)).
|
||
|
|
||
|
handler interval.
|
||
|
|
||
|
option(debug_compile,off).
|
||
|
option(already_in_store, off).
|
||
|
option(check_guard_bindings, off).
|
||
|
option(already_in_heads, off).
|
||
|
|
||
|
% for domain constraints
|
||
|
operator( 700,xfx,'::').
|
||
|
%operator( 600,xfx,':'). % operator already defined in Sicstus Prolog
|
||
|
|
||
|
% for inequality constraints
|
||
|
%operator( 700,xfx,lt). % not implemented
|
||
|
operator( 700,xfx,le).
|
||
|
operator( 700,xfx,ne).
|
||
|
operator( 700,xfx,eq).
|
||
|
|
||
|
constraints (::)/2, le/2, eq/2, ne/2, add/3, mult/3.
|
||
|
% X::Min:Max - X is between the numbers Min and Max, inclusively
|
||
|
% X must always be a unbound variable (!), and Min and Max evaluable
|
||
|
% (i.e. ground) arithmetic expressions (or numbers)
|
||
|
constraints int/1.
|
||
|
% int(X) says that X is an integer (default is a real)
|
||
|
constraints bool/1.
|
||
|
% bool(X) says that X is a boolean (default is a real)
|
||
|
|
||
|
constraints browse/1.
|
||
|
% watch how domain of X evolves
|
||
|
browse(X), X::A:B ==> write((X::A:B)),nl.
|
||
|
|
||
|
% define the smallest intervals you want to get:
|
||
|
% the smaller, the more precise, the longer the computation
|
||
|
small(A:B):- A+2.0e-05>=B.
|
||
|
|
||
|
% Intersection -------------------------------
|
||
|
|
||
|
redundant @ X::A:B \ X::C:D <=> %var(X),
|
||
|
(C=<A, B=<D ; A<B,small(A:B), C<D,small(C:D))
|
||
|
|
|
||
|
true.
|
||
|
|
||
|
intersect @ X::A:B , X::C:D <=> %var(X) |
|
||
|
X::max(A,C):min(B,D).
|
||
|
|
||
|
% Special Cases -------------------------------
|
||
|
|
||
|
failure @ X::A:B <=> A>B | fail.
|
||
|
|
||
|
compute @ X::A:B <=> \+ (number(A),number(B)) | C is A, D is B, X::C:D.
|
||
|
|
||
|
integer @ int(X), X::A:B ==> \+ (integer(A),integer(B)) |
|
||
|
C is integer(ceiling(float(A))), D is integer(floor(float(B))), X::C:D.
|
||
|
|
||
|
bool @ bool(X), X::A:B ==> B<1 | X::0:0.
|
||
|
bool @ bool(X), X::A:B ==> A>0 | X::1:1.
|
||
|
bool @ bool(X) ==> X::0:1.
|
||
|
|
||
|
% Inequality -------------------------------
|
||
|
|
||
|
(le) @ X le Y, X::A:B, Y::C:D ==> Y::A:D, X::A:D.
|
||
|
(eq) @ X eq Y, X::A:B, Y::C:D ==> Y::A:B, X::C:D.
|
||
|
(ne) @ X ne Y, X::A:A, Y::A:A <=> fail.
|
||
|
|
||
|
(ne_int) @ int(X) \ X ne Y, X::A:B <=> A=Y | X::A+1:B.
|
||
|
(ne_int) @ int(X) \ X ne Y, X::A:B <=> B=Y | X::A:B-1.
|
||
|
(ne_int) @ int(X) \ Y ne X, X::A:B <=> A=Y | X::A+1:B.
|
||
|
(ne_int) @ int(X) \ Y ne X, X::A:B <=> B=Y | X::A:B-1.
|
||
|
|
||
|
% Addition X+Y=Z -------------------------------
|
||
|
|
||
|
add @ add(X,Y,Z), X::A:B, Y::C:D, Z::E:F ==>
|
||
|
X::E-D:F-C, Y::E-B:F-A, Z::A+C:B+D.
|
||
|
|
||
|
% Multiplication X*Y=Z -------------------------------
|
||
|
|
||
|
mitnull(A:B) :- A=<0, 0=<B.
|
||
|
|
||
|
mult_z @ mult(X,Y,Z), X::A:B, Y::C:D ==>
|
||
|
M1 is A*C, M2 is A*D, M3 is B*C, M4 is B*D,
|
||
|
Z::min(min(M1,M2),min(M3,M4)):max(max(M1,M2),max(M3,M4)).
|
||
|
|
||
|
mult_y @ mult(X,Y,Z), X::A:B, Z::E:F ==>
|
||
|
\+ mitnull(A:B) |
|
||
|
M1 is E/A, M2 is E/B, M3 is F/A, M4 is F/B,
|
||
|
Y::min(min(M1,M2),min(M3,M4)):max(max(M1,M2),max(M3,M4)).
|
||
|
mult_x @ mult(Y,X,Z), X::A:B, Z::E:F ==>
|
||
|
\+ mitnull(A:B) |
|
||
|
M1 is E/A, M2 is E/B, M3 is F/A, M4 is F/B,
|
||
|
Y::min(min(M1,M2),min(M3,M4)):max(max(M1,M2),max(M3,M4)).
|
||
|
|
||
|
mult_xyz @ mult(X,Y,Z), X::A:B, Y::C:D, Z::E:F ==>
|
||
|
mitnull(A:B), mitnull(C:D), \+ mitnull(E:F) |
|
||
|
(A*C<E -> D>0, X::E/D:B ; true),
|
||
|
(B*D<E -> C<0, X::A:E/C ; true),
|
||
|
(F<A*D -> C<0, X::F/C:B ; true),
|
||
|
(F<B*C -> D>0, X::A:F/D ; true).
|
||
|
|
||
|
% Labeling --------------------------------------------------------
|
||
|
|
||
|
constraints split0/1.
|
||
|
constraints split/1.
|
||
|
% repeated split/1:
|
||
|
constraints label/1.
|
||
|
|
||
|
label @ split0(X), X::A:B <=> \+ small(A:B), A<0,0<B |
|
||
|
(X::A:0 ; X::0:B).
|
||
|
|
||
|
label @ split(X), X::A:B <=> \+ small(A:B) |
|
||
|
Half is (A+B)/2,
|
||
|
(X::A:Half ; X::Half:B).
|
||
|
|
||
|
label @ label(X), X::A:B <=> \+ small(A:B) |
|
||
|
Half is (A+B)/2,
|
||
|
(X::A:Half ; X::Half:B),
|
||
|
label(X).
|
||
|
|
||
|
|
||
|
|
||
|
% EXAMPLES ================================================================
|
||
|
|
||
|
/*
|
||
|
|
||
|
?- X::3:5,X::2:4.
|
||
|
|
||
|
X::3:4 ?
|
||
|
|
||
|
?- X::3:5, Y::2:4, X=Y.
|
||
|
|
||
|
Y = X,
|
||
|
X::3:4 ?
|
||
|
|
||
|
?- X::3:3.
|
||
|
|
||
|
X::3:3 ?
|
||
|
|
||
|
?- X le Y, X::3:5,X::2:4.
|
||
|
|
||
|
X le Y,
|
||
|
X::3:4 ?
|
||
|
|
||
|
?- X le Y, X::3:5, Y::3:5.
|
||
|
|
||
|
X le Y,
|
||
|
X::3:5,
|
||
|
Y::3:5 ?
|
||
|
|
||
|
?- X le Y, X::3:5, Y::2:4.
|
||
|
|
||
|
X le Y,
|
||
|
Y::3:4,
|
||
|
X::3:4 ?
|
||
|
|
||
|
?- add(X,Y,Z), X::2:5, Y::3:4, Z::1:7.
|
||
|
|
||
|
Y::3:4,
|
||
|
Z::5:7,
|
||
|
X::2:4,
|
||
|
add(X,Y,Z)?
|
||
|
|
||
|
?- mult(X,Y,Z), X:: -2:3, Y:: -3:4, Z::7:12.
|
||
|
|
||
|
Z::7:12,
|
||
|
X::1.75:3,
|
||
|
Y::2.3333333333333335:4.0,
|
||
|
mult(X,Y,Z) ? ;
|
||
|
|
||
|
?- mult(X,Y,Z), X:: -2:3, Y:: -3:4, Z:: -12: -9.
|
||
|
|
||
|
?- A::(-3):3, B::(-3):3, C::4:4, mult(A,B,C), A eq B.
|
||
|
|
||
|
?- A::(-3):3, B::(-3):3, C::4:4, mult(A,B,C), A eq B, split(A).
|
||
|
|
||
|
?- int(A), A::(-3):3, B::(-3):3, C::4:4, mult(A,B,C), A eq B, split(A).
|
||
|
|
||
|
?- A::(-3):3, B::(-3):3, C::4:4, mult(A,B,C), A eq B,
|
||
|
split(A),split(A),split(A),split(A).
|
||
|
|
||
|
?- A::(-3):3, B::(-3):3, C::4:4, mult(A,B,C), A eq B, label(A).
|
||
|
|
||
|
?- int(A),int(B),int(C), mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3,
|
||
|
A le C, B le C, C le A, C le B, A le B, B le A.
|
||
|
|
||
|
?- int(A),int(B),int(C), mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3,
|
||
|
A eq B, B eq C.
|
||
|
|
||
|
?- mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3, A eq B, B eq C.
|
||
|
|
||
|
A eq B,
|
||
|
B eq C,
|
||
|
C::0.0:4.304672099999998e-9,
|
||
|
B::0.0:4.304672099999998e-9,
|
||
|
A::0.0:4.304672099999998e-9,
|
||
|
mult(A,B,C) ? ;
|
||
|
|
||
|
?- mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3, A le C.
|
||
|
|
||
|
B::0:0.3,
|
||
|
A le C,
|
||
|
C::0.0:1.9682999999999995e-5,
|
||
|
A::0:1.9682999999999995e-5,
|
||
|
mult(A,B,C) ? ;
|
||
|
|
||
|
?- mult(A,B,C), A::(-0.3):0.3, B::(-0.3):0.3, C::(-0.3):0.3, A eq C.
|
||
|
|
||
|
B:: -0.3:0.3,
|
||
|
A eq C,
|
||
|
C:: -5.9048999999999996e-6:5.9048999999999996e-6,
|
||
|
A:: -5.9048999999999996e-6:5.9048999999999996e-6,
|
||
|
mult(A,B,C) ? ;
|
||
|
|
||
|
?- mult(A,B,C), A::(-3):3, B::(-3):3, C::(-3):3, A eq C.
|
||
|
% solutions A=C=0 or B=1, impossible to enumerate
|
||
|
|
||
|
A:: -3:3,
|
||
|
B:: -3:3,
|
||
|
C:: -3:3,
|
||
|
A eq C,
|
||
|
mult(A,B,C) ? ;
|
||
|
|
||
|
?- mult(A,B,AB), A eq B, add(AB,C,F), F::5:5,
|
||
|
mult(C,D,CD), C eq D, add(CD,A,G), G::3:3,
|
||
|
A:: -10:10, B:: -10:10, C:: -10:10, D:: -10:10,
|
||
|
split0(A),split0(C).
|
||
|
|
||
|
?- int(A),
|
||
|
mult(A,B,AB), A eq B, add(AB,C,F), F::5:5,
|
||
|
mult(C,D,CD), C eq D, add(CD,A,G), G::3:3,
|
||
|
A:: -10:10, B:: -10:10, C:: -10:10, D:: -10:10,
|
||
|
label(A).
|
||
|
|
||
|
?- mult(A,B,AB), A eq B, add(AB,C,F), F::5:5,
|
||
|
mult(C,D,CD), C eq D, add(CD,A,G), G::3:3,
|
||
|
A:: -10:10, B:: -10:10, C:: -10:10, D:: -10:10,
|
||
|
label(A).
|
||
|
|
||
|
*/
|
||
|
|
||
|
% end of handler interval ===================================================
|