This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CHR/chr/examples/term.pl

416 lines
8.7 KiB
Perl
Raw Normal View History

% Prolog term manipulation as constraints
% 931127 ECRC, thom fruehwirth based on ideas from 9203 and 9104
% 980207, 980312 thom fruehwirth LMU adapted for Sicstus CHR
:- use_module(library(chr)).
handler term.
option(already_in_store, off).
option(already_in_heads, off).
option(check_guard_bindings, off).
operator(100,xfx,unif).
T unif [F|L] :- chr_unif(T,F,L).
constraints chr_functor/3, chr_arg/3, chr_unif/3.
chr_functor(T,F,N) <=> (nonvar(T);nonvar(F),nonvar(N)) | functor(T,F,N).
chr_functor(T,T,N) ==> N=0.
chr_functor(T,F,0) ==> T=F.
chr_functor(T,F,N) ==> chr_nonvar(T).
chr_functor(T,F,N) \ chr_functor(T,F1,N1) <=> F1=F,N1=N.
chr_functor(T,F,N), chr_arg(M,T,A) ==> nonvar(N),nonvar(M) | N>=M,N>0.
chr_arg(0,T,A) <=> fail.
chr_arg(N,T,A) <=> nonvar(N),nonvar(T) | arg(N,T,A).
chr_arg(N,T,A) \ chr_arg(N,T,A1) <=> A1=A.
chr_unif(T,F,L) <=> (nonvar(T);nonvar(F),islist(L)) | T=..[F|L].
chr_unif(T,T,L) ==> L=[].
chr_unif(T,F,[]) ==> T=F.
chr_unif(T,F,L) ==> chr_nonvar(T),chr_nonvar(L).
chr_unif(T,F,L) \ chr_unif(T,F1,L1) <=> F1=F,L1=L.
chr_unif(T,F,L) \ chr_unif(T1,F,L) <=> T1=T.
chr_unif(T,F,L) \ chr_functor(T,F1,N) <=> (nonvar(N);islist(L)) | F1=F,length(L,N).
chr_unif(T,F,L) \ chr_arg(M,T,A) <=> nonvar(M) | nth_member(M,L,A).
nth_member(1,[X|_],X).
nth_member(N,[_|L],X):-
gt(N,1), plus(M,1,N), nth_member(M,L,X).
islist([]) ?- true.
islist([X|L]) ?-
islist(L).
constraints chr_var/1, chr_nonvar/1.
chr_var(X) <=> nonvar(X) | fail.
chr_nonvar(X) <=> nonvar(X) | true.
chr_nonvar(X), chr_var(X) <=> fail.
chr_var(X) \ chr_var(X) <=> true.
chr_nonvar(X) \ chr_nonvar(X) <=> true.
constraints plus/3, gt/2.
plus(A,B,C) <=> nonvar(A),nonvar(B) | C is A+B.
plus(A,B,C) <=> nonvar(A),nonvar(C) | B is C-A.
plus(A,B,C) <=> nonvar(B),nonvar(C) | A is C-B.
gt(A,B) <=> nonvar(A),nonvar(B) | A>B.
% Examples =================================================================
% these standard predicates using term manipulation run now backwards as well
% but sometimes this causes nontermination
% constraints needed in the examples
constraints diff/2, diff_list/2.
diff(X,X) <=> fail.
diff_list(V,[]) <=> true.
diff_list(V,L) <=> member(X,L),V==X | fail.
member(X,[Y|L]):- X=Y ; member(X,L).
% two variants of unification by sterling/shapiro
unify1(X,Y):- chr_var(X),chr_var(Y), X=Y.
unify1(X,Y):- chr_var(X),chr_nonvar(Y), X=Y.
unify1(X,Y):- chr_nonvar(X),chr_var(Y), X=Y.
unify1(X,Y):- % chr_nonvar(X),chr_nonvar(Y),
chr_functor(X,F,N),chr_functor(Y,F,N),
unify_args(N,X,Y).
unify_args(0,X,Y).
unify_args(N,X,Y):-
gt(N,0),
plus(N1,1,N),
chr_arg(N,X,A),chr_arg(N,Y,B),
unify1(A,B),
unify_args(N1,X,Y).
/*
| ?- unify1(a,b).
no
| ?- unify1(A,B).
B = A,
chr_var(A) ? ;
B = A,
chr_nonvar(A),
chr_functor(A,A,0) ? ;
chr_nonvar(A),
chr_nonvar(B),
chr_var(_A),
chr_functor(A,_B,1),
chr_functor(B,_B,1),
chr_arg(1,A,_A),
chr_arg(1,B,_A) ?
| ?- unify1(f(a,B),f(B,C)).
B = a,
C = a ? ;
% nontermination
*/
unify2(X,Y):- chr_var(X),chr_var(Y), X=Y.
unify2(X,Y):- chr_var(X),chr_nonvar(Y), X=Y.
unify2(X,Y):- chr_nonvar(X),chr_var(Y), Y=X.
unify2(X,Y):- % chr_nonvar(X),chr_nonvar(Y),
X unif [F|As],Y unif [F|Bs],
unify_list(As,Bs).
unify_list([],[]).
unify_list([A|As],[B|Bs]):-
unify2(A,B),
unify_list(As,Bs).
/*
| ?- unify2(A,B).
B = A,
chr_var(A) ? ;
B = A,
chr_nonvar(A),
chr_unif(A,A,[]) ? ;
B = A,
chr_nonvar(A),
chr_var(_A),
chr_unif(A,_B,[_A]) ? ;
B = A,
chr_nonvar(A),
chr_var(_A),
chr_var(_B),
chr_unif(A,_C,[_A,_B]) ?
| ?- unify2(f(a,B),f(B,C)).
B = a,
C = a ? ;
no
*/
% collecting the variables of a term into a list, groundness and more
varlist(A,Vars):- varlist(A,[],Vars).
varlist(V,L,[V|L]):- chr_var(V),diff_list(V,L).
varlist(V,L,L):- chr_var(V),member(V,L).
varlist(T,L1,L2):-
%chr_nonvar(T),
chr_functor(T,_,N),
varlist(N,T,L1,L2).
varlist(0,T,L,L).
varlist(N,T,L1,L3) :-
gt(N,0),
plus(K,1,N),
chr_arg(N,T,TK),
varlist(TK,L1,L2),
varlist(K,T,L2,L3).
/*
| ?- varlist(f(a,B),L).
L = [B],
chr_var(B) ? ;
L = [],
chr_nonvar(B),
chr_functor(B,B,0) ? ;
L = [_A],
chr_nonvar(B),
chr_var(_A),
chr_functor(B,_B,1),
chr_arg(1,B,_A) ?
| ?- varlist(X,[A,B]).
chr_nonvar(X),
chr_var(B),
chr_var(A),
diff_list(A,[B]),
chr_functor(X,_A,2),
chr_arg(2,X,B),
chr_arg(1,X,A) ? ;
% nontermination
*/
common_var(A,K,V1):-
varlist(A,AV), varlist(K,KV), member(V,AV), member(V,KV).
ground0(A):- varlist(A,[]).
/*
% termination problems
*/
ground1(T):-
%chr_nonvar(T),
chr_functor(T, _, N),
ground1(N, T).
ground1(0, _).
ground1(N, T):-
gt(N,0),
plus(N1,1,N),
chr_arg(N, T, A),
ground1(A),
ground1(N1, T).
/*
| ?- ground1(h(A,b,C)).
chr_nonvar(C),
chr_nonvar(A),
chr_functor(C,C,0),
chr_functor(A,A,0) ? ;
chr_nonvar(C),
chr_nonvar(A),
chr_nonvar(_A),
chr_functor(C,C,0),
chr_functor(A,_B,1),
chr_arg(1,A,_A),
chr_functor(_A,_A,0) ?
*/
ground2(T) :-
%chr_nonvar(T),
T unif [_|Args],
ground2l(Args).
ground2l([]).
ground2l([H|L]) :- ground2(H), ground2l(L).
/*
| ?- ground2(A).
chr_nonvar(A),
chr_unif(A,A,[]) ? ;
chr_nonvar(A),
chr_nonvar(_A),
chr_unif(A,_B,[_A]),
chr_unif(_A,_A,[]) ?
*/
number_vars(Term,N0,N1) :-
var(Term), % chr_var(Term) would fail later
plus(N0,1,N1),
name(N0,Digits),
name('V',[C]),
name(Term,[C|Digits]).
number_vars(Term,N0,N1) :-
%chr_nonvar(Term),
Term unif [_|Args],
number_list(Args,N0,N1).
number_list([],N0,N0).
number_list([H|T],N0,N2) :- number_vars(H,N0,N1), number_list(T,N1,N2).
undupvar(A,B,R,L):- undupvar(A,B,[],R,[],L).
undupvar(V,V,R,[V|R],L,L):- chr_var(V),diff_list(V,R).
undupvar(V,W,R,R,L,[W=V|L]):- chr_var(V),member(V,R).
undupvar(T,S,R1,R3,L1,L3):-
%chr_nonvar(T),chr_nonvar(S),
chr_functor(T,F,N),chr_functor(S,F,N),
undupvar(N,T,S,R1,R3,L1,L3).
undupvar(0,T,S,R,R,L,L).
undupvar(N,T,S,R1,R3,L1,L3):-
gt(N,0),
plus(M,1,N),
chr_arg(N,T,TK),
chr_arg(N,S,TS),
undupvar(TK,TS,R1,R2,L1,L2),
undupvar(M,T,S,R2,R3,L2,L3).
% from comp.lang.prolog on a sequent calculus implementation
% substitute(P, X, Y, Q) substitutes instances of X in P with Y, producing Q.
substitute(P1, K1, K2, P2) :-
P1 = K1, P2 = K2
;
diff(P1,K1),
%chr_nonvar(P1),chr_nonvar(P2),
P1 unif [F|Args1],
P2 unif [F|Args2],
substitute_list(Args1, K1, K2, Args2).
substitute_list([], _, _, []).
substitute_list([H1|T1], K1, K2, [H2|T2]) :-
substitute(H1, K1, K2, H2),
substitute_list(T1, K1, K2, T2).
% from comp.lang.prolog on heaps and trees
% uses is/2
%pos(Head,t(Head,Rel,L,[],0)-[], Nc, N0-N2):- /* leaf node */
% atomic(Head),
% !,
% string_length1(Head,L),
% N2 is N0+L,
% Rel is L//2, /* middle of the node */
% Nc is (N0+N2)//2. /* center over node */
pos(X,t(Head,Rel,L,Centers,Adj)-A, Nc, N0-N2):- /* non-leaf node */
%chr_nonvar(X),
X unif [Head|Args],
pos_list(Args,A,Centers,N0-N1),
string_length1(Head,L),
posdiff(N1-N0,L,Error),
Adj is (Error+((N1-N0) mod 2))//2,
N2 is N1+Error,
Rel is L//2, /* middle of the node */
Nc is (N0+N2)//2.
pos_list([], [], [], N-N).
%pos_list([H], [A], [Center], N-N1) :- !,
% pos(H,A,Center,N-N1).
pos_list([H|T],[A|Args],[C|Centers],N0-Nn):-
pos( H, A, C, N0-N1),
plus(N1,2,N2), %N2 is N1+2,
pos_list(T,Args,Centers,N2-Nn).
string_length1(X,L):- atomic(X), name(X,S), length(S,L).
posdiff(Expr,L,0):- Adj is L-Expr, Adj =< 0.
posdiff(Expr,L,Adj):- Adj is L-Expr, Adj > 0.
% lsu(A,B,G): the least specific unifier of A and B is G
% joachims schimpfs code modified by thom
lsu(A, B, G) :-
map(A, B, G, [], Map),
sort(0, =<, Map, SortedMap),
unify_duplicates(SortedMap).
map(A, B, G, Map, NewMap) :-
%chr_nonvar(A),chr_nonvar(B),
chr_functor(A, Name, Arity),
chr_functor(B, Name, Arity),
chr_functor(G, Name, Arity),
map_arg(A, B, G, Map, NewMap, Arity-0).
map(A, B, G, Map, [subst(A, B, G)| Map]):-
chr_var(A)
;
chr_var(B)
;
%chr_nonvar(A),chr_nonvar(B),
chr_functor(A, Name1, Arity1),
chr_functor(B, Name2, Arity2),
(diff(Name1,Name2);diff(Arity1,Arity2)).
map_arg(A, B, G, Map, NewMap, Ar-N) :-
Ar=N,
Map = NewMap.
map_arg(A, B, G, Map0, NewMap, Ar-N) :-
gt(Ar,N),
plus(N,1,N1),
chr_arg(N1, A, An),
chr_arg(N1, B, Bn),
chr_arg(N1, G, Gn),
map(An, Bn, Gn, Map0, Map1),
map_arg(A, B, G, Map1, NewMap, Ar-N1).
unify_duplicates([subst(A1, B1, G1)|T]) :-
T = [subst(A2, B2, G2)|_],
( A1 = A2, B1 = B2, G1 = G2 ; diff(A1,A2) ; diff(B1,B2)),
unify_duplicates(T).
unify_duplicates([T]).
unify_duplicates([]).
% end of handler term