108 lines
3.0 KiB
Perl
108 lines
3.0 KiB
Perl
|
% PATH CONSISTENCY to be used with time.pl
|
||
|
% thom fruehwirth ECRC 921030,930212,930802,930804,930908,931216,931223
|
||
|
% christian holzbaur 961022 more mods for Sicstus
|
||
|
% thom fruehwirth LMU 980206, 980312
|
||
|
|
||
|
:- use_module(library(chr)).
|
||
|
:- use_module( library('chr/ordering'), [globalize/1,var_compare/3]).
|
||
|
|
||
|
nonground( X) :- \+ ground( X).
|
||
|
|
||
|
handler path_consistency.
|
||
|
|
||
|
constraints arc/4, path/6.
|
||
|
% arc(X,Y,L,T) there is an arc in the constraint network between variables X and Y with constraint L of type T
|
||
|
% path(N,X,Y,L,T,I) there is a path in the constraint network between variables X and Y with constraint L of type T
|
||
|
|
||
|
%% start up
|
||
|
add_path @
|
||
|
arc(X,Y,L,T) <=> ground(L),ground(T),length(L,N) |
|
||
|
globalize(X-Y), % attach attribute to vars to have order on them
|
||
|
path(N,X,Y,L,T,1).
|
||
|
|
||
|
%% ground case
|
||
|
ground @
|
||
|
path(N,X,Y,L,T,I) <=> ground(X-Y-L-T) | path1(N,X,Y,L,T,I).
|
||
|
|
||
|
%% simple cases
|
||
|
empty @
|
||
|
path(N,X,Y,L,T,I) <=> empty(N,L,T) | fail.
|
||
|
universal @
|
||
|
path(N,X,Y,L,T,I) <=> universal(N,L,T) | true.
|
||
|
equality @
|
||
|
path(N,X,X,L,T,I) <=> equality(L,T).
|
||
|
unify @
|
||
|
path(1,X,Y,L,T,I) <=> unique(L),equality(L,T) | X=Y. % can cause problems with var order
|
||
|
|
||
|
%% special cases for finite domains
|
||
|
findom_unique @
|
||
|
path(1,X,Y,L,p-p,I) <=> number(X),unique(L) | bind_value(X,Y,L).
|
||
|
findom_x @
|
||
|
path(N,X,Y,L,p-p,I) <=> number(X),X=\=0
|
||
|
|
|
||
|
shift_interval(X,L,L1),
|
||
|
path(N,0,Y,L1,p-p,I).
|
||
|
findom_y @
|
||
|
path(N,Y,X,L,p-p,I) <=> number(X)
|
||
|
|
|
||
|
equality([Eq],p-p),transl(L,L2,[Eq],p-p-p), % invert path
|
||
|
shift_interval(X,L2,L1),
|
||
|
path(N,0,Y,L1,p-p,I).
|
||
|
|
||
|
%% intersection (has to come before transitivity)
|
||
|
intersect_xy_xy @
|
||
|
path(N1, X, Y, L1, U-V, I), path(N2, X, Y, L2, U-V, J) <=> % 10
|
||
|
intersection(L1, L2, L3, U-V),
|
||
|
length(L3, N3),
|
||
|
K is min(I, J),
|
||
|
path(N3, X, Y, L3, U-V, K)
|
||
|
pragma already_in_heads.
|
||
|
intersect_yx_xy @
|
||
|
path(N1, Y, X, L1, U-V, I), path(N2, X, Y, L, V-U, J) <=> % 11
|
||
|
equality([Eq], V-V), transl(L, L2, [Eq], V-U-V), % invert 2nd path
|
||
|
intersection(L1, L2, L3, U-V),
|
||
|
length(L3, N3),
|
||
|
K is min(I, J),
|
||
|
path(N3, Y, X, L3, U-V, K).
|
||
|
|
||
|
%% transitivity
|
||
|
propagate_xy_yz @
|
||
|
path(N1, X, Y, L1, U-V, I), path(N2, Y, Z, L2, V-W, J) ==>
|
||
|
nonground(Y),
|
||
|
J=1, (I=1 -> var_compare( <, X, Z) ; true) % or J=1 or N2=1 or X@<Z
|
||
|
|
|
||
|
transl(L1, L2, L3, U-V-W),
|
||
|
length(L3, M),
|
||
|
K is I+J,
|
||
|
path(M, X, Z, L3, U-W, K).
|
||
|
propagate_xy_xz @
|
||
|
path(N1, X, Y, L1, U-V, I), path(N2, X, Z, L3, U-W, J) ==>
|
||
|
nonground(X),
|
||
|
min(I, J)=:=1, var_compare( <, Y, Z) % or J=1 or N2=1
|
||
|
|
|
||
|
transl(L1, L2, L3, U-V-W),
|
||
|
length(L2, M),
|
||
|
K is I+J,
|
||
|
path(M, Y, Z, L2, V-W, K).
|
||
|
propagate_xy_zy @
|
||
|
path(N1, X, Y, L3, U-V, I), path(N2, Z, Y, L2, W-V, J) ==>
|
||
|
nonground(Y),
|
||
|
min(I, J)=:=1, var_compare( <, X, Z) % or J=1 or N2=1
|
||
|
|
|
||
|
transl(L1, L2, L3, U-W-V),
|
||
|
length(L1, M),
|
||
|
K is I+J,
|
||
|
path(M, X, Z, L1, U-W, K).
|
||
|
|
||
|
|
||
|
%% labeling by choice of primitive relation
|
||
|
constraints labeling/0.
|
||
|
labeling, path(N, X, Y, L, T, I)#Id <=> N>1 |
|
||
|
member(R, L),
|
||
|
path(1, X, Y, [R], T, I),
|
||
|
labeling
|
||
|
pragma passive(Id).
|
||
|
|
||
|
|
||
|
/*--------------- eof pc.chr ------------------------------------------------*/
|