This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CLPQR/clpr/store.pl

280 lines
7.4 KiB
Perl
Raw Normal View History

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% clp(q,r) version 1.3.3 %
% %
% (c) Copyright 1992,1993,1994,1995 %
% Austrian Research Institute for Artificial Intelligence (OFAI) %
% Schottengasse 3 %
% A-1010 Vienna, Austria %
% %
% File: store.pl %
% Author: Christian Holzbaur christian@ai.univie.ac.at %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% All constants to canonical rep.
%
normalize_scalar( S, [N,Z]) :-
arith_normalize( S, N),
arith_eval( 0, Z).
renormalize( List, Lin) :-
decompose( List, Hom, R, I),
length( Hom, Len),
renormalize_log( Len, Hom, [], Lin0),
add_linear_11( [I,R], Lin0, Lin).
renormalize_log( 1, [Term|Xs], Xs, Lin) :- !,
Term = X*_,
renormalize_log_one( X, Term, Lin).
renormalize_log( 2, [A,B|Xs], Xs, Lin) :- !,
A = X*_,
B = Y*_,
renormalize_log_one( X, A, LinA),
renormalize_log_one( Y, B, LinB),
add_linear_11( LinA, LinB, Lin).
renormalize_log( N, L0, L2, Lin) :-
P is N>>1,
Q is N-P,
renormalize_log( P, L0, L1, Lp),
renormalize_log( Q, L1, L2, Lq),
add_linear_11( Lp, Lq, Lin).
renormalize_log_one( X, Term, Res) :- var(X),
arith_eval( 0, Z),
Res = [Z,Z,Term].
renormalize_log_one( X, Term, Res) :- nonvar(X),
Term = X*K,
arith_eval( X*K, Xk),
normalize_scalar( Xk, Res).
% ----------------------------- sparse vector stuff ---------------------------- %
add_linear_ff( LinA, Ka, LinB, Kb, LinC) :-
decompose( LinA, Ha, Ra, Ia),
decompose( LinB, Hb, Rb, Ib),
decompose( LinC, Hc, Rc, Ic),
arith_eval( Ia*Ka+Ib*Kb, Ic),
arith_eval( Ra*Ka+Rb*Kb, Rc),
add_linear_ffh( Ha, Ka, Hb, Kb, Hc).
add_linear_ffh( [], _, Ys, Kb, Zs) :- mult_hom( Ys, Kb, Zs).
add_linear_ffh( [X*Kx|Xs], Ka, Ys, Kb, Zs) :-
add_linear_ffh( Ys, X, Kx, Xs, Zs, Ka, Kb).
add_linear_ffh( [], X, Kx, Xs, Zs, Ka, _) :- mult_hom( [X*Kx|Xs], Ka, Zs).
add_linear_ffh( [Y*Ky|Ys], X, Kx, Xs, Zs, Ka, Kb) :-
nf_ordering( X, Y, Rel),
( Rel = =, arith_eval( Kx*Ka+Ky*Kb, Kz),
( arith_eval(Kz=:=0) ->
add_linear_ffh( Xs, Ka, Ys, Kb, Zs)
;
Zs = [X*Kz|Ztail],
add_linear_ffh( Xs, Ka, Ys, Kb, Ztail)
)
; Rel = <, Zs = [X*Kz|Ztail],
arith_eval( Kx*Ka, Kz),
add_linear_ffh( Xs, Y, Ky, Ys, Ztail, Kb, Ka)
; Rel = >, Zs = [Y*Kz|Ztail],
arith_eval( Ky*Kb, Kz),
add_linear_ffh( Ys, X, Kx, Xs, Ztail, Ka, Kb)
).
add_linear_f1( LinA, Ka, LinB, LinC) :-
decompose( LinA, Ha, Ra, Ia),
decompose( LinB, Hb, Rb, Ib),
decompose( LinC, Hc, Rc, Ic),
arith_eval( Ia*Ka+Ib, Ic),
arith_eval( Ra*Ka+Rb, Rc),
add_linear_f1h( Ha, Ka, Hb, Hc).
add_linear_f1h( [], _, Ys, Ys).
add_linear_f1h( [X*Kx|Xs], Ka, Ys, Zs) :-
add_linear_f1h( Ys, X, Kx, Xs, Zs, Ka).
add_linear_f1h( [], X, Kx, Xs, Zs, Ka) :- mult_hom( [X*Kx|Xs], Ka, Zs).
add_linear_f1h( [Y*Ky|Ys], X, Kx, Xs, Zs, Ka) :-
nf_ordering( X, Y, Rel),
( Rel = =, arith_eval( Kx*Ka+Ky, Kz),
( arith_eval(Kz=:=0) ->
add_linear_f1h( Xs, Ka, Ys, Zs)
;
Zs = [X*Kz|Ztail],
add_linear_f1h( Xs, Ka, Ys, Ztail)
)
; Rel = <, Zs = [X*Kz|Ztail],
arith_eval( Kx*Ka, Kz),
add_linear_f1h( Xs, Ka, [Y*Ky|Ys], Ztail)
; Rel = >, Zs = [Y*Ky|Ztail],
add_linear_f1h( Ys, X, Kx, Xs, Ztail, Ka)
).
add_linear_11( LinA, LinB, LinC) :-
decompose( LinA, Ha, Ra, Ia),
decompose( LinB, Hb, Rb, Ib),
decompose( LinC, Hc, Rc, Ic),
arith_eval( Ia+Ib, Ic),
arith_eval( Ra+Rb, Rc),
add_linear_11h( Ha, Hb, Hc).
add_linear_11h( [], Ys, Ys).
add_linear_11h( [X*Kx|Xs], Ys, Zs) :-
add_linear_11h( Ys, X, Kx, Xs, Zs).
add_linear_11h( [], X, Kx, Xs, [X*Kx|Xs]).
add_linear_11h( [Y*Ky|Ys], X, Kx, Xs, Zs) :-
nf_ordering( X, Y, Rel),
( Rel = =, arith_eval( Kx+Ky, Kz),
( arith_eval(Kz=:=0) ->
add_linear_11h( Xs, Ys, Zs)
;
Zs = [X*Kz|Ztail],
add_linear_11h( Xs, Ys, Ztail)
)
; Rel = <, Zs = [X*Kx|Ztail], add_linear_11h( Xs, Y, Ky, Ys, Ztail)
; Rel = >, Zs = [Y*Ky|Ztail], add_linear_11h( Ys, X, Kx, Xs, Ztail)
).
mult_linear_factor( Lin, K, Mult) :-
arith_eval( K=:=1 ), % avoid copy
!,
Mult = Lin.
mult_linear_factor( Lin, K, Res) :-
decompose( Lin, Hom, R, I),
decompose( Res, Mult, Rk, Ik),
arith_eval( I*K, Ik),
arith_eval( R*K, Rk),
mult_hom( Hom, K, Mult).
mult_hom( [], _, []).
mult_hom( [A*Fa|As], F, [A*Fan|Afs]) :-
arith_eval( F*Fa, Fan),
mult_hom( As, F, Afs).
/*
%
% slightly stabilizes clp(r) numerically
%
mult_hom( [], _, []).
mult_hom( [X*Kx|Xs], K, Res) :-
arith_eval( K*Kx, C),
( arith_eval( C=:=0) ->
mult_hom( Xs, K, Res)
;
Res = [X*C|Tail],
mult_hom( Xs, K, Tail)
).
*/
%
% Replace V in H by its new definition, Vh+Vi
%
nf_substitute( V, LinV, LinX, LinX1) :-
delete_factor( V, LinX, LinW, K),
add_linear_f1( LinV, K, LinW, LinX1).
delete_factor( Vid, Lin, Res, Coeff) :-
decompose( Lin, Hom, R, I),
decompose( Res, Hdel, R, I),
delete_factor_hom( Vid, Hom, Hdel, Coeff).
/**/
%
% Makes no use of the nf_ordering and is faster ...
% Depends of course on the price of nf_ordering/3
%
delete_factor_hom( Vid, [Car|Cdr], RCdr, RKoeff) :-
Car = Var*Koeff,
compare( R, Var, Vid),
( R = =, RCdr = Cdr, RKoeff=Koeff
; R = <, RCdr = [Car|RCdr1],
delete_factor_hom( Vid, Cdr, RCdr1, RKoeff)
; R = >, RCdr = [Car|RCdr1],
delete_factor_hom( Vid, Cdr, RCdr1, RKoeff)
).
/**/
/**
%
%
%
delete_factor_hom( Vid, [Car|Cdr], RCdr, RKoeff) :-
Car = Var*Koeff,
nf_ordering( Vid, Var, Rel),
( Rel= =,
RCdr = Cdr, RKoeff=Koeff
; Rel= >,
RCdr = [Car|RCdr1],
delete_factor_hom( Vid, Cdr, RCdr1, RKoeff)
).
**/
% nf_coeff_of( Nf, X, Coeff)
% determine the coeff of variable X in Nf
% fails if X is not a member of the Nf
%
nf_coeff_of( Lin, Vid, Coeff) :-
decompose( Lin, Hom, _, _),
get_atts( Vid, order(OVid)), % pulled out of loop
nf_coeff_hom( Hom, OVid, Coeff), !.
nf_coeff_hom( [Var*K|Vs], Vid, Coeff) :-
% nf_ordering( Vid, Var, Rel),
get_atts( Var, order(OVar)),
compare( Rel, Vid, OVar),
( Rel= =, Coeff = K
; Rel= >, nf_coeff_hom( Vs, Vid, Coeff)
).
nf_rhs_x( Lin, X, Rhs,K) :-
decompose( Lin, Tail, R, I),
get_atts( X, order(Ox)), % pulled out of loop
nf_coeff_hom( Tail, Ox, K),
arith_eval( R+I, Rhs). % late because X may not occur in H
%
% solve for New = Lin1
%
isolate( New, Lin, Lin1) :-
delete_factor( New, Lin, Lin0, Coeff),
arith_eval( -1/Coeff, K),
mult_linear_factor( Lin0, K, Lin1).
indep( Lin, X) :-
decompose( Lin, [Y*K], _, I),
X == Y,
arith_eval( K=:=1),
arith_eval( I=:=0).
nf2sum( [], I, I).
nf2sum( [X|Xs], I, Sum) :-
( arith_eval(I=:=0) ->
X = Var*K,
( arith_eval( K=:=1) ->
hom2sum( Xs, Var, Sum)
; arith_eval( K=:= -1) ->
hom2sum( Xs, -Var, Sum)
;
hom2sum( Xs, K*Var, Sum)
)
;
hom2sum( [X|Xs], I, Sum)
).
hom2sum( [], Term, Term).
hom2sum( [Var*K|Cs], Sofar, Term) :-
( arith_eval( K=:=1) ->
Next = Sofar + Var
; arith_eval( K=:= -1) ->
Next = Sofar - Var
; arith_eval( K < 0) ->
arith_eval( -K, Ka),
Next = Sofar - Ka*Var
;
Next = Sofar + K*Var
),
hom2sum( Cs, Next, Term).