445 lines
11 KiB
Perl
445 lines
11 KiB
Perl
|
% TEMPORAL REASONING
|
||
|
% thom fruehwirth ECRC 920721
|
||
|
% follows work by Itay Meiri AAAI 1991
|
||
|
% uses path concistency handler pc.chr
|
||
|
% 930908 updated and modified for new CHR version
|
||
|
% Christian Holzbaur mods for SICStus (e.g. delay -> block/when)
|
||
|
|
||
|
:- use_module( library(chr)).
|
||
|
:- use_module( library(lists), [member/2,memberchk/2]).
|
||
|
|
||
|
:- multifile user:goal_expansion/3.
|
||
|
%
|
||
|
user:goal_expansion( once(G), _, (G->true)).
|
||
|
|
||
|
:- ensure_loaded('time-pc'). % get compiled path consistency handler
|
||
|
|
||
|
%% domain specific predicates ------------------------------------------------
|
||
|
|
||
|
|
||
|
inf( 3.40282e38).
|
||
|
minf( -3.40282e38).
|
||
|
sup( 1.0e-45).
|
||
|
msup( -1.0e-45).
|
||
|
|
||
|
path1(1,X,Y,[R],p-p,I):- check_pp(X,Y,R).
|
||
|
path1(1,X,Y,[R],p-i,I):- check_pi(X,Y,R).
|
||
|
path1(1,X,Y,[R],i-p,I):- check_ip(Y,X,R).
|
||
|
path1(1,X,Y,[R],i-i,I):- check_ii(X,Y,R).
|
||
|
|
||
|
:-block empty(-,-,?).
|
||
|
%
|
||
|
empty(0,[],T).
|
||
|
|
||
|
:- block universal(-,?,?), universal(?,-,?), universal(?,?,-).
|
||
|
%
|
||
|
universal(N,L,T):-
|
||
|
(is_quantl(L) ->
|
||
|
inf(Inf), minf(Minf),
|
||
|
L=[A-B],(A=<Minf),(Inf=<B)
|
||
|
;
|
||
|
T=p-p -> % 930212 to account for finite domains
|
||
|
sort(L,[eq, ge, le])
|
||
|
;
|
||
|
size(T,N)
|
||
|
),
|
||
|
!.
|
||
|
|
||
|
size(i-i,13).
|
||
|
size(p-p,3).
|
||
|
size(p-i,5).
|
||
|
size(i-p,5).
|
||
|
size(s-s,5).
|
||
|
|
||
|
:- block equality(?,-), equality(-,?).
|
||
|
%
|
||
|
equality(L,i-i):- !, member(equals,L).
|
||
|
equality(L,s-s):- !, member(eq,L).
|
||
|
equality(L,p-p):-
|
||
|
(is_quall(L) -> % succeeds also if var-case: dirty!!
|
||
|
member(E,L),(E=eq;number(E),E=:=0) % 930212
|
||
|
;
|
||
|
member(A-B,L),
|
||
|
(A=0,B=0 ; (A=<0),(0=<B))
|
||
|
),
|
||
|
!.
|
||
|
|
||
|
|
||
|
unique( L) :- when( ground(L), unique_g(L)).
|
||
|
|
||
|
unique_g([A-B]):- !,(A=:=B).
|
||
|
unique_g([A]).
|
||
|
|
||
|
% 930212 for finite domains
|
||
|
bind_value(X,Y,[R]):- (R=V-_;R=V)->(Y=:=X+V).
|
||
|
|
||
|
shift_interval(X,[],[]).
|
||
|
shift_interval(X,[A-C|L1],[B-D|L2]):- !,
|
||
|
B is A-X, D is C-X,
|
||
|
shift_interval(X,L1,L2).
|
||
|
shift_interval(X,[A|L1],[B|L2]):-
|
||
|
B is A-X,
|
||
|
shift_interval(X,L1,L2).
|
||
|
|
||
|
|
||
|
:- block intersection(-,?,?,?), intersection(?,-,?,?).
|
||
|
%
|
||
|
intersection(L1,L2,L3,T):- qtype(L1,Q1),qtype(L2,Q2),
|
||
|
((Q1==quall,Q2==quall) ->
|
||
|
intersection(L1,L2,L3)
|
||
|
;
|
||
|
qualquant(L1,Q1,LQ1),qualquant(L2,Q2,LQ2),
|
||
|
interint(LQ1,LQ2,L3)
|
||
|
),
|
||
|
!.
|
||
|
|
||
|
intersection([], _, []).
|
||
|
intersection([Head|L1tail], L2, L3) :-
|
||
|
memberchk(Head, L2),
|
||
|
!,
|
||
|
L3 = [Head|L3tail],
|
||
|
intersection(L1tail, L2, L3tail).
|
||
|
intersection([_|L1tail], L2, L3) :-
|
||
|
intersection(L1tail, L2, L3).
|
||
|
|
||
|
|
||
|
% interint([1-2,4-5,6-9],[2-3,3-11],L).
|
||
|
interint([],L,[]).
|
||
|
interint(L,[],[]):- L=[_|_].
|
||
|
interint([A|L1],[B|L2],L3):-
|
||
|
(
|
||
|
isless(A,B) -> interint(L1,[B|L2],L3);
|
||
|
isless(B,A) -> interint([A|L1],L2,L3);
|
||
|
overlaps1(A,B,C) -> L3=[C|L3N],interint([A|L1],L2,L3N);
|
||
|
overlaps2(A,B,C) -> L3=[C|L3N],interint(L1,[B|L2],L3N)
|
||
|
).
|
||
|
|
||
|
isless(A-B,C-D):- (B<C).
|
||
|
|
||
|
overlaps1(A-B,C-D,E-F):-
|
||
|
(B>=D),(C=<B),(A=<D),
|
||
|
my_max(A,C,E),my_min(B,D,F).
|
||
|
% E is max(float(A),float(C)), F is min(float(B),float(D)).
|
||
|
overlaps2(A-B,C-D,E-F):-
|
||
|
(D>=B),(C=<B),(A=<D),
|
||
|
my_max(A,C,E),my_min(B,D,F).
|
||
|
% E is max(float(A),float(C)), F is min(float(B),float(D)).
|
||
|
|
||
|
my_max(X,Y,Z):- (X>=Y),!,X=Z.
|
||
|
my_max(X,Y,Y).
|
||
|
|
||
|
my_min(X,Y,Z):- (X=<Y),!,X=Z.
|
||
|
my_min(X,Y,Y).
|
||
|
|
||
|
:- block transl(-,-,?,?), transl(-,?,-,?), transl(?,-,-,?).
|
||
|
%
|
||
|
transl(A,B,C,T):-
|
||
|
qtype(A,QA),qtype(B,QB),qtype(C,QC),
|
||
|
(
|
||
|
(T=p-p-p,(QA==quantl;QB==quantl;QC==quantl) ) -> % at least one quantl
|
||
|
qualquant(A,QA,A1),qualquant(B,QB,B1),qualquant(C,QC,C1),
|
||
|
transl(A1,B1,C1,T,quantl)
|
||
|
;
|
||
|
quantqual(A,QA,A1),quantqual(B,QB,B1),quantqual(C,QC,C1),
|
||
|
transl(A1,B1,C1,T,quall)
|
||
|
),
|
||
|
!.
|
||
|
|
||
|
transl(L1,L2,L3,T,Q):- var(L3),!,
|
||
|
setof(C,A^B^(member(A,L1),member(B,L2),trans(A,B,C,T,Q)),L3N),
|
||
|
mergerel(L3N,L3,T,Q).
|
||
|
transl(L1,L2,L3,T,Q):- var(L2),!,
|
||
|
setof(B,A^C^(member(A,L1),member(C,L3),trans(A,B,C,T,Q)),L2N),
|
||
|
mergerel(L2N,L2,T,Q).
|
||
|
transl(L1,L2,L3,T,Q):- var(L1),!,
|
||
|
setof(A,B^C^(member(B,L2),member(C,L3),trans(A,B,C,T,Q)),L1N),
|
||
|
mergerel(L1N,L1,T,Q).
|
||
|
|
||
|
mergerel(L1,L2,T,Q):-
|
||
|
(Q==quantl -> mergerel(L1,L2) ; L1=L2),
|
||
|
!.
|
||
|
mergerel([],[]).
|
||
|
mergerel([A-B,C-D|L1],L2):-
|
||
|
sup(Sup),
|
||
|
(B+Sup>=C), % +sup added 921029
|
||
|
!,
|
||
|
my_min(A,C,Min), % min, max added 920129
|
||
|
my_max(B,D,Max),
|
||
|
mergerel([Min-Max|L1],L2).
|
||
|
mergerel([X|L1],[X|L2]):-
|
||
|
mergerel(L1,L2).
|
||
|
|
||
|
trans(A,B,C,s-s-s,quall):- !,
|
||
|
strans(A,B,C).
|
||
|
trans(A,B,C,p-p-p,quall):- !,
|
||
|
prans(A,B,C).
|
||
|
trans(A,B,C,p-p-p,quantl):- !,
|
||
|
qtrans(A,B,C).
|
||
|
trans(A,B,C,U-V-W,quall):- !,
|
||
|
itrans(U-V-W,A,B,C).
|
||
|
|
||
|
|
||
|
%% qualitative and quantitative constraints interaction
|
||
|
|
||
|
|
||
|
qtype(L,T) :- when( ground(L), qtype_g(L,T)).
|
||
|
|
||
|
qtype_g(L,quantl):- is_quantl(L).
|
||
|
qtype_g(L,quall):- is_quall(L).
|
||
|
|
||
|
is_quantl([X|_]):- is_quant(X).
|
||
|
is_quall([X|_]):- is_qual(X).
|
||
|
|
||
|
:- block is_quant(-).
|
||
|
%
|
||
|
is_quant(A-B). % :- A1 is A,B1 is B,number(A1),number(B1).
|
||
|
|
||
|
:- block is_qual(-).
|
||
|
%
|
||
|
is_qual(A):- atomic(A). % single numbers are treated like atoms 930212
|
||
|
|
||
|
:- block qualquant(-,?,-). % necessary?
|
||
|
qualquant(A,QA,A1):- % hacked for var-case (== versus = below!)
|
||
|
(QA==quall -> qualquant(A,A0),mergerel(A0,A1) ; QA=quantl -> A=A1). % mergrel added 921029
|
||
|
|
||
|
:- block quantqual(-,?,-). % necessary?
|
||
|
quantqual(A,QA,A1):- % hacked for var-case (== versus = below!)
|
||
|
(QA==quantl -> quantqual(A,A1) ; QA=quall -> A=A1).
|
||
|
|
||
|
%path(N,X,Y,L,p-p) +=> qualquant(L,LIN), sort(LIN,LI), path(N,X,Y,LI,p-p).
|
||
|
|
||
|
qualquant([],[]).
|
||
|
qualquant([A|L1],[B|L2]):-
|
||
|
qualquant1(A,B),
|
||
|
qualquant(L1,L2).
|
||
|
|
||
|
qualquant1(le,A-B):- !, sup(A), inf(B).
|
||
|
qualquant1(eq,0-0):- !.
|
||
|
qualquant1(ge,A-B):- !, minf(A), msup(B).
|
||
|
% 930212 to treat single numbers
|
||
|
qualquant1(N,A-A):- A is N. % 'is' used to catch type error
|
||
|
|
||
|
%path(N,X,Y,LI,p-p) +=> N>2 | % quick hack condition for termination
|
||
|
% quantqual(LI,L), length(L,N1), path(N1,X,Y,L,p-p).
|
||
|
|
||
|
quantqual(LI,L):-
|
||
|
findall(X,quantqual1(LI,X),L).
|
||
|
|
||
|
quantqual1(LI,eq):-
|
||
|
once((member(I-J,LI), (I=<0),(0=<J))).
|
||
|
quantqual1(LI,le):-
|
||
|
once((member(I-J,LI), (0<J))).
|
||
|
quantqual1(LI,ge):-
|
||
|
once((member(I-J,LI), (I<0))).
|
||
|
|
||
|
% 930212 to treat single numbers
|
||
|
quantqual1(LI,N):-
|
||
|
once((member(N-M,LI), (N=:=M))).
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
% ALLENS INTERVALS ---------------------------------------------------------
|
||
|
|
||
|
:- ensure_loaded( allentable). % get cons_tri/3 transitivity table for Allens intervals
|
||
|
|
||
|
%[after, before, contains, during, equals, finished_by, finishes, meets, met_by, overlapped_by, overlaps, started_by, starts].
|
||
|
|
||
|
%930212
|
||
|
check_ii(X,Y,R):- interval_point(X,R,Y).
|
||
|
% taken from jonathan lever
|
||
|
interval_point([X,Y],before,[U,V]):- ((Y < U)).
|
||
|
interval_point([X,Y],after,[U,V]):- ((V < X)).
|
||
|
interval_point([X,Y],meets,[U,V]):- ((Y =:= U)).
|
||
|
interval_point([X,Y],met_by,[U,V]):- ((V =:= X)).
|
||
|
interval_point([X,Y],starts,[U,V]):- ((X =:= U, Y < V)).
|
||
|
interval_point([X,Y],started_by,[U,V]):- ((X =:= U, V < Y)).
|
||
|
interval_point([X,Y],finishes,[U,V]):- ((Y =:= V, U < X)).
|
||
|
interval_point([X,Y],finished_by,[U,V]):- ((Y =:= V, X < V)).
|
||
|
interval_point([X,Y],during,[U,V]):- ((U < X, Y < V)).
|
||
|
interval_point([X,Y],contains,[U,V]):- ((X < U, V < Y)).
|
||
|
interval_point([X,Y],overlaps,[U,V]):- ((X < U, U < Y, Y < V)).
|
||
|
interval_point([X,Y],overlapped_by,[U,V]):- ((U < X, X < V, V < Y)).
|
||
|
interval_point([X,Y],equals,[U,V]):- ((X =:= U,Y =:= V)).
|
||
|
|
||
|
|
||
|
itrans(U-V-W,A,B,C):-
|
||
|
encode(U-V,A,X),encode(V-W,B,Y),encode(U-W,C,Z),
|
||
|
cons_tri(X,Y,Z).
|
||
|
|
||
|
:- block encode(?,-,-).
|
||
|
%
|
||
|
encode(i-i,A,B):-!,encode(A,B).
|
||
|
encode(p-i,A,B):-!,pi_ii(A,Y),encode(Y,B).
|
||
|
encode(i-p,A,B):-!,ip_ii(A,Y),encode(Y,B).
|
||
|
encode(p-p,A,B):-!,pp_pi(A,X),pi_ii(X,Y),encode(Y,B).
|
||
|
|
||
|
:- block encode(-,-).
|
||
|
%
|
||
|
encode(before,1).
|
||
|
encode(after,2).
|
||
|
encode(during,3).
|
||
|
encode(contains,4).
|
||
|
encode(overlaps,5).
|
||
|
encode(overlapped_by,6).
|
||
|
encode(meets,7).
|
||
|
encode(met_by,8).
|
||
|
encode(starts,9).
|
||
|
encode(started_by,10).
|
||
|
encode(finishes,11).
|
||
|
encode(finished_by,12).
|
||
|
encode(equals,13).
|
||
|
|
||
|
|
||
|
|
||
|
% POINT ALGEBRA ---------------------------------------------------------------
|
||
|
|
||
|
%[le,eq,ge]
|
||
|
|
||
|
% 930212
|
||
|
check_pp(X,Y,A-B):- !, ((X+A<Y,Y<X+B)).
|
||
|
check_pp(X,Y,N):- number(N),!, (X+N=:=Y).
|
||
|
check_pp(X,Y,T):- \+ member(T,[le,eq,ge]),!, Y=T.
|
||
|
check_pp(X,Y,R):- ((number(X),number(Y))->check_ppn(X,Y,R);check_ppt(X,Y,R)).
|
||
|
|
||
|
check_ppn(X,Y,le):- (X<Y).
|
||
|
check_ppn(X,Y,eq):- (X=:=Y).
|
||
|
check_ppn(X,Y,ge):- (X>Y).
|
||
|
|
||
|
check_ppt(X,Y,le):- (X@<Y).
|
||
|
check_ppt(X,Y,eq):- (X=Y).
|
||
|
check_ppt(X,Y,ge):- (X@>Y).
|
||
|
|
||
|
prans(A,B,C):- (number(A);number(B);number(C)),!,qtrans(A-A,B-B,C-C).
|
||
|
prans(le,le,le).
|
||
|
prans(le,eq,le).
|
||
|
prans(le,ge,le).
|
||
|
prans(le,ge,eq).
|
||
|
prans(le,ge,ge).
|
||
|
prans(eq,le,le).
|
||
|
prans(eq,eq,eq).
|
||
|
prans(eq,ge,ge).
|
||
|
prans(ge,le,le).
|
||
|
prans(ge,le,eq).
|
||
|
prans(ge,le,ge).
|
||
|
prans(ge,eq,ge).
|
||
|
prans(ge,ge,ge).
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
% QUANTITATIVE ---------------------------------------------------------
|
||
|
|
||
|
% [I1-I2,...In-1-In] ordered Ii=<Ii+1, comparison problem with reals (equality)
|
||
|
|
||
|
qtrans(A-B,C-D,E-F):- ( (var(A),var(B)) -> safe_is(A,E-D), safe_is(B,F-C) ;
|
||
|
(var(C),var(D)) -> safe_is(C,E-B), safe_is(D,F-A) ;
|
||
|
(var(E),var(F)) -> safe_is(E,A+C), safe_is(F,B+D)
|
||
|
).
|
||
|
safe_is(A,X-Y):-
|
||
|
inf(Inf),
|
||
|
minf(Minf),
|
||
|
sup(Sup),
|
||
|
msup(Msup),
|
||
|
(X=:=Minf,Y=:=Inf -> A is Minf
|
||
|
;
|
||
|
X=:=Inf,Y=:=Minf -> A is Inf
|
||
|
;
|
||
|
X=:=Msup,Y=:=Sup -> A is Msup
|
||
|
;
|
||
|
X=:=Sup,Y=:=Msup -> A is Sup
|
||
|
;
|
||
|
A is X-Y).
|
||
|
safe_is(A,X+Y):-
|
||
|
inf(Inf),
|
||
|
minf(Minf),
|
||
|
sup(Sup),
|
||
|
msup(Msup),
|
||
|
(X=:=Inf,Y=:=Inf -> A is Inf
|
||
|
;
|
||
|
X=:=Minf,Y=:=Minf -> A is Minf
|
||
|
;
|
||
|
X=:=Sup,Y=:=Sup -> A is Sup
|
||
|
;
|
||
|
X=:=Msup,Y=:=Msup -> A is Msup
|
||
|
;
|
||
|
A is X+Y).
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
% POINT-INTERVAL ---------------------------------------------------------
|
||
|
|
||
|
% p-i [before,starts,during,finishes,after]
|
||
|
% i-p [after,started_by,contains,finished_by,before]
|
||
|
|
||
|
%930212
|
||
|
check_pi(X,[A,B],before):- ((X<A)).
|
||
|
check_pi(X,[A,B],starts):- ((X=:=A)).
|
||
|
check_pi(X,[A,B],during):- ((A<X,X<B)).
|
||
|
check_pi(X,[A,B],finishes):- ((X=:=B)).
|
||
|
check_pi(X,[A,B],after):- ((B<X)).
|
||
|
|
||
|
check_pi([A,_B],X,after):- ((X<A)).
|
||
|
check_pi([A,_B],X,started_by):- ((X=:=A)).
|
||
|
check_pi([A,B],X,contains):- ((A<X,X<B)).
|
||
|
check_pi([_A,B],X,finished_by):- ((X=:=B)).
|
||
|
check_pi([_A,B],X,before):- ((B<X)).
|
||
|
|
||
|
% trans see itrans for INTERVAL
|
||
|
|
||
|
% pi_ii
|
||
|
:- block pi_ii(-,-).
|
||
|
%
|
||
|
pi_ii(before, before).
|
||
|
pi_ii(before, meets).
|
||
|
pi_ii(before, finished_by).
|
||
|
pi_ii(before, contains).
|
||
|
pi_ii(before, overlaps).
|
||
|
pi_ii(starts, starts).
|
||
|
pi_ii(starts, equals).
|
||
|
pi_ii(starts, started_by).
|
||
|
pi_ii(during, during).
|
||
|
pi_ii(during, finishes).
|
||
|
pi_ii(during, overlaped_by).
|
||
|
pi_ii(finishes, met_by).
|
||
|
pi_ii(after, after).
|
||
|
|
||
|
% ip_ii (inversion of pi_ii)
|
||
|
:- block ip_ii(-,-).
|
||
|
%
|
||
|
ip_ii(before, before).
|
||
|
ip_ii(finished_by, meets).
|
||
|
ip_ii(contains, contains).
|
||
|
ip_ii(contains, overlaps).
|
||
|
ip_ii(contains, finished_by).
|
||
|
ip_ii(started_by, starts).
|
||
|
ip_ii(started_by, equals).
|
||
|
ip_ii(started_by, started_by).
|
||
|
ip_ii(after, during).
|
||
|
ip_ii(after, finishes).
|
||
|
ip_ii(after, overlaped_by).
|
||
|
ip_ii(after, met_by).
|
||
|
ip_ii(after, after).
|
||
|
|
||
|
% pp_pi
|
||
|
:- block pp_pi(-,-).
|
||
|
%
|
||
|
pp_pi(le, before).
|
||
|
pp_pi(eq, starts).
|
||
|
pp_pi(ge, during).
|
||
|
pp_pi(ge, finishes).
|
||
|
pp_pi(ge, after).
|
||
|
|
||
|
% pp_ii
|
||
|
:- block pp_ii(-,-).
|
||
|
%
|
||
|
pp_ii(A,B):- pp_pi(A,C),pi_ii(C,B).
|
||
|
|
||
|
|
||
|
|
||
|
% end of handler time.chr ----------------------------------------------------
|