2010-08-26 13:44:10 +01:00
|
|
|
%%% -*- Mode: Prolog; -*-
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% ProbLog program describing a probabilistic graph using tabling
|
|
|
|
% (running example from ProbLog presentations)
|
2010-10-05 17:26:40 +01:00
|
|
|
% $Id: graph_tabled.pl 4875 2010-10-05 15:28:35Z theo $
|
2010-08-26 13:44:10 +01:00
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
2010-12-02 14:04:42 +00:00
|
|
|
:- use_module(library(problog)).
|
2010-08-26 13:44:10 +01:00
|
|
|
|
|
|
|
% New trie method ensures Probibilistic Cycle Handling needed for tabling that handles loops
|
|
|
|
:- set_problog_flag(use_db_trie, true).
|
|
|
|
:- set_problog_flag(use_old_trie, false).
|
|
|
|
|
|
|
|
%%%%
|
|
|
|
% background knowledge
|
|
|
|
%%%%
|
|
|
|
% definition of acyclic path using list of visited nodes
|
|
|
|
|
|
|
|
% to table a predicate you first need to define it as a dynamic one
|
|
|
|
:- dynamic path/2.
|
|
|
|
|
|
|
|
path(X,X).
|
|
|
|
path(X,Y) :-
|
|
|
|
X\==Y,
|
|
|
|
edge(X,Z),
|
|
|
|
path(Z,Y).
|
|
|
|
|
|
|
|
:- problog_table path/2.
|
|
|
|
% after all predicate definitions have appeared you need to state that the predicate will be tabled
|
|
|
|
|
|
|
|
% using directed edges in both directions
|
|
|
|
edge(X,Y) :- dir_edge(Y,X).
|
|
|
|
edge(X,Y) :- dir_edge(X,Y).
|
|
|
|
|
|
|
|
|
|
|
|
%%%%
|
|
|
|
% probabilistic facts
|
|
|
|
%%%%
|
|
|
|
0.9::dir_edge(1,2).
|
|
|
|
0.8::dir_edge(2,3).
|
|
|
|
0.6::dir_edge(3,4).
|
|
|
|
0.7::dir_edge(1,6).
|
|
|
|
0.5::dir_edge(2,6).
|
|
|
|
0.4::dir_edge(6,5).
|
|
|
|
0.7::dir_edge(5,3).
|
|
|
|
0.2::dir_edge(5,4).
|
|
|
|
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% example queries about tabled path(1,4) useable only with problog_exact, problog_montecarlo currently
|
|
|
|
%
|
|
|
|
%%% success probability
|
|
|
|
% ?- problog_exact(path(1,4),Prob,Status).
|
|
|
|
% Prob = 0.53864,
|
|
|
|
% Status = ok ?
|
|
|
|
% yes
|
|
|
|
%%% approximation using monte carlo, to reach 95%-confidence interval width 0.01
|
|
|
|
% ?- problog_montecarlo(path(1,4),0.01,Prob).
|
|
|
|
% Prob = 0.537525 ?
|
|
|
|
% yes
|
|
|
|
%%% success probability of negation
|
|
|
|
% ?- problog_exact(problog_neg(path(1,4)),Prob,Status).
|
|
|
|
% Prob = 0.46136,
|
|
|
|
% Status = ok ?
|
|
|
|
% yes
|
|
|
|
%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|