This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/CLPBN/clpbn/bp/HorusYap.cpp

276 lines
7.9 KiB
C++
Raw Normal View History

#include <cstdlib>
#include <vector>
#include <iostream>
#include <sstream>
#include <YapInterface.h>
#include "BayesNet.h"
#include "FactorGraph.h"
#include "BPSolver.h"
#include "SPSolver.h"
#include "CountingBP.h"
using namespace std;
int
createNetwork (void)
{
//Statistics::numCreatedNets ++;
//cout << "creating network number " << Statistics::numCreatedNets << endl;
BayesNet* bn = new BayesNet();
YAP_Term varList = YAP_ARG1;
while (varList != YAP_TermNil()) {
YAP_Term var = YAP_HeadOfTerm (varList);
Vid vid = (Vid) YAP_IntOfTerm (YAP_ArgOfTerm (1, var));
unsigned dsize = (unsigned) YAP_IntOfTerm (YAP_ArgOfTerm (2, var));
int evidence = (int) YAP_IntOfTerm (YAP_ArgOfTerm (3, var));
YAP_Term parentL = YAP_ArgOfTerm (4, var);
unsigned distId = (unsigned) YAP_IntOfTerm (YAP_ArgOfTerm (5, var));
BnNodeSet parents;
while (parentL != YAP_TermNil()) {
unsigned parentId = (unsigned) YAP_IntOfTerm (YAP_HeadOfTerm (parentL));
BayesNode* parent = bn->getBayesNode (parentId);
if (!parent) {
parent = bn->addNode (parentId);
}
parents.push_back (parent);
parentL = YAP_TailOfTerm (parentL);
}
Distribution* dist = bn->getDistribution (distId);
if (!dist) {
dist = new Distribution (distId);
bn->addDistribution (dist);
}
BayesNode* node = bn->getBayesNode (vid);
if (node) {
node->setData (dsize, evidence, parents, dist);
} else {
bn->addNode (vid, dsize, evidence, parents, dist);
}
varList = YAP_TailOfTerm (varList);
}
bn->setIndexes();
// if (Statistics::numCreatedNets == 1688) {
// Statistics::writeStats();
// exit (0);
// }
YAP_Int p = (YAP_Int) (bn);
return YAP_Unify (YAP_MkIntTerm (p), YAP_ARG2);
}
int
setExtraVarsInfo (void)
{
BayesNet* bn = (BayesNet*) YAP_IntOfTerm (YAP_ARG1);
YAP_Term varsInfoL = YAP_ARG2;
while (varsInfoL != YAP_TermNil()) {
YAP_Term head = YAP_HeadOfTerm (varsInfoL);
Vid vid = YAP_IntOfTerm (YAP_ArgOfTerm (1, head));
YAP_Atom label = YAP_AtomOfTerm (YAP_ArgOfTerm (2, head));
YAP_Term domainL = YAP_ArgOfTerm (3, head);
Domain domain;
while (domainL != YAP_TermNil()) {
YAP_Atom atom = YAP_AtomOfTerm (YAP_HeadOfTerm (domainL));
domain.push_back ((char*) YAP_AtomName (atom));
domainL = YAP_TailOfTerm (domainL);
}
BayesNode* node = bn->getBayesNode (vid);
assert (node);
node->setLabel ((char*) YAP_AtomName (label));
node->setDomain (domain);
varsInfoL = YAP_TailOfTerm (varsInfoL);
}
return TRUE;
}
int
setParameters (void)
{
BayesNet* bn = (BayesNet*) YAP_IntOfTerm (YAP_ARG1);
YAP_Term distList = YAP_ARG2;
while (distList != YAP_TermNil()) {
YAP_Term dist = YAP_HeadOfTerm (distList);
unsigned distId = (unsigned) YAP_IntOfTerm (YAP_ArgOfTerm (1, dist));
YAP_Term paramL = YAP_ArgOfTerm (2, dist);
ParamSet params;
while (paramL!= YAP_TermNil()) {
params.push_back ((double) YAP_FloatOfTerm (YAP_HeadOfTerm (paramL)));
paramL = YAP_TailOfTerm (paramL);
}
bn->getDistribution(distId)->updateParameters(params);
if (Statistics::numCreatedNets == 4) {
cout << "dist " << distId << " parameters:" ;
cout << Util::parametersToString (params);
cout << endl;
}
distList = YAP_TailOfTerm (distList);
}
return TRUE;
}
int
runSolver (void)
{
BayesNet* bn = (BayesNet*) YAP_IntOfTerm (YAP_ARG1);
YAP_Term taskList = YAP_ARG2;
vector<VidSet> tasks;
VidSet marginalVids;
while (taskList != YAP_TermNil()) {
if (YAP_IsPairTerm (YAP_HeadOfTerm (taskList))) {
VidSet jointVids;
YAP_Term jointList = YAP_HeadOfTerm (taskList);
while (jointList != YAP_TermNil()) {
Vid vid = (unsigned) YAP_IntOfTerm (YAP_HeadOfTerm (jointList));
assert (bn->getBayesNode (vid));
jointVids.push_back (vid);
jointList = YAP_TailOfTerm (jointList);
}
tasks.push_back (jointVids);
} else {
Vid vid = (unsigned) YAP_IntOfTerm (YAP_HeadOfTerm (taskList));
assert (bn->getBayesNode (vid));
tasks.push_back (VidSet() = {vid});
marginalVids.push_back (vid);
}
taskList = YAP_TailOfTerm (taskList);
}
// cout << "inference tasks:" << endl;
// for (unsigned i = 0; i < tasks.size(); i++) {
// cout << "i" << ": " ;
// if (tasks[i].size() == 1) {
// cout << tasks[i][0] << endl;
// } else {
// for (unsigned j = 0; j < tasks[i].size(); j++) {
// cout << tasks[i][j] << " " ;
// }
// cout << endl;
// }
// }
Solver* solver = 0;
GraphicalModel* gm = 0;
VidSet vids;
const BnNodeSet& nodes = bn->getBayesNodes();
for (unsigned i = 0; i < nodes.size(); i++) {
vids.push_back (nodes[i]->getVarId());
}
if (marginalVids.size() != 0) {
bn->exportToDotFormat ("bn unbayes.dot");
BayesNet* mrn = bn->getMinimalRequesiteNetwork (marginalVids);
mrn->exportToDotFormat ("bn bayes.dot");
//BayesNet* mrn = bn->getMinimalRequesiteNetwork (vids);
if (SolverOptions::convertBn2Fg) {
gm = new FactorGraph (*mrn);
if (SolverOptions::compressFactorGraph) {
solver = new CountingBP (*static_cast<FactorGraph*> (gm));
} else {
solver = new SPSolver (*static_cast<FactorGraph*> (gm));
}
if (SolverOptions::runBayesBall) {
delete mrn;
}
} else {
gm = mrn;
solver = new BPSolver (*static_cast<BayesNet*> (gm));
}
solver->runSolver();
}
vector<ParamSet> results;
results.reserve (tasks.size());
for (unsigned i = 0; i < tasks.size(); i++) {
if (tasks[i].size() == 1) {
results.push_back (solver->getPosterioriOf (tasks[i][0]));
} else {
static int count = 0;
cout << "calculating joint... " << count ++ << endl;
//if (count == 5225) {
// Statistics::printCompressingStats ("compressing.stats");
//}
Solver* solver2 = 0;
GraphicalModel* gm2 = 0;
bn->exportToDotFormat ("joint.dot");
BayesNet* mrn2;
if (SolverOptions::runBayesBall) {
mrn2 = bn->getMinimalRequesiteNetwork (tasks[i]);
} else {
mrn2 = bn;
}
if (SolverOptions::convertBn2Fg) {
gm2 = new FactorGraph (*mrn2);
if (SolverOptions::compressFactorGraph) {
solver2 = new CountingBP (*static_cast<FactorGraph*> (gm2));
} else {
solver2 = new SPSolver (*static_cast<FactorGraph*> (gm2));
}
if (SolverOptions::runBayesBall) {
delete mrn2;
}
} else {
gm2 = mrn2;
solver2 = new BPSolver (*static_cast<BayesNet*> (gm2));
}
results.push_back (solver2->getJointDistributionOf (tasks[i]));
delete solver2;
delete gm2;
}
}
delete solver;
delete gm;
YAP_Term list = YAP_TermNil();
for (int i = results.size() - 1; i >= 0; i--) {
const ParamSet& beliefs = results[i];
YAP_Term queryBeliefsL = YAP_TermNil();
for (int j = beliefs.size() - 1; j >= 0; j--) {
YAP_Int sl1 = YAP_InitSlot (list);
YAP_Term belief = YAP_MkFloatTerm (beliefs[j]);
queryBeliefsL = YAP_MkPairTerm (belief, queryBeliefsL);
list = YAP_GetFromSlot (sl1);
YAP_RecoverSlots (1);
}
list = YAP_MkPairTerm (queryBeliefsL, list);
}
return YAP_Unify (list, YAP_ARG3);
}
int
freeBayesNetwork (void)
{
//Statistics::printCompressingStats ("../../compressing.stats");
BayesNet* bn = (BayesNet*) YAP_IntOfTerm (YAP_ARG1);
bn->freeDistributions();
delete bn;
return TRUE;
}
extern "C" void
init_predicates (void)
{
YAP_UserCPredicate ("create_network", createNetwork, 2);
YAP_UserCPredicate ("set_extra_vars_info", setExtraVarsInfo, 2);
YAP_UserCPredicate ("set_parameters", setParameters, 2);
YAP_UserCPredicate ("run_solver", runSolver, 3);
YAP_UserCPredicate ("free_bayesian_network", freeBayesNetwork, 1);
}