This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CHR/chr/examples/time-pc.pl

108 lines
3.0 KiB
Perl
Raw Normal View History

% PATH CONSISTENCY to be used with time.pl
% thom fruehwirth ECRC 921030,930212,930802,930804,930908,931216,931223
% christian holzbaur 961022 more mods for Sicstus
% thom fruehwirth LMU 980206, 980312
:- use_module(library(chr)).
:- use_module( library('chr/ordering'), [globalize/1,var_compare/3]).
nonground( X) :- \+ ground( X).
handler path_consistency.
constraints arc/4, path/6.
% arc(X,Y,L,T) there is an arc in the constraint network between variables X and Y with constraint L of type T
% path(N,X,Y,L,T,I) there is a path in the constraint network between variables X and Y with constraint L of type T
%% start up
add_path @
arc(X,Y,L,T) <=> ground(L),ground(T),length(L,N) |
globalize(X-Y), % attach attribute to vars to have order on them
path(N,X,Y,L,T,1).
%% ground case
ground @
path(N,X,Y,L,T,I) <=> ground(X-Y-L-T) | path1(N,X,Y,L,T,I).
%% simple cases
empty @
path(N,X,Y,L,T,I) <=> empty(N,L,T) | fail.
universal @
path(N,X,Y,L,T,I) <=> universal(N,L,T) | true.
equality @
path(N,X,X,L,T,I) <=> equality(L,T).
unify @
path(1,X,Y,L,T,I) <=> unique(L),equality(L,T) | X=Y. % can cause problems with var order
%% special cases for finite domains
findom_unique @
path(1,X,Y,L,p-p,I) <=> number(X),unique(L) | bind_value(X,Y,L).
findom_x @
path(N,X,Y,L,p-p,I) <=> number(X),X=\=0
|
shift_interval(X,L,L1),
path(N,0,Y,L1,p-p,I).
findom_y @
path(N,Y,X,L,p-p,I) <=> number(X)
|
equality([Eq],p-p),transl(L,L2,[Eq],p-p-p), % invert path
shift_interval(X,L2,L1),
path(N,0,Y,L1,p-p,I).
%% intersection (has to come before transitivity)
intersect_xy_xy @
path(N1, X, Y, L1, U-V, I), path(N2, X, Y, L2, U-V, J) <=> % 10
intersection(L1, L2, L3, U-V),
length(L3, N3),
K is min(I, J),
path(N3, X, Y, L3, U-V, K)
pragma already_in_heads.
intersect_yx_xy @
path(N1, Y, X, L1, U-V, I), path(N2, X, Y, L, V-U, J) <=> % 11
equality([Eq], V-V), transl(L, L2, [Eq], V-U-V), % invert 2nd path
intersection(L1, L2, L3, U-V),
length(L3, N3),
K is min(I, J),
path(N3, Y, X, L3, U-V, K).
%% transitivity
propagate_xy_yz @
path(N1, X, Y, L1, U-V, I), path(N2, Y, Z, L2, V-W, J) ==>
nonground(Y),
J=1, (I=1 -> var_compare( <, X, Z) ; true) % or J=1 or N2=1 or X@<Z
|
transl(L1, L2, L3, U-V-W),
length(L3, M),
K is I+J,
path(M, X, Z, L3, U-W, K).
propagate_xy_xz @
path(N1, X, Y, L1, U-V, I), path(N2, X, Z, L3, U-W, J) ==>
nonground(X),
min(I, J)=:=1, var_compare( <, Y, Z) % or J=1 or N2=1
|
transl(L1, L2, L3, U-V-W),
length(L2, M),
K is I+J,
path(M, Y, Z, L2, V-W, K).
propagate_xy_zy @
path(N1, X, Y, L3, U-V, I), path(N2, Z, Y, L2, W-V, J) ==>
nonground(Y),
min(I, J)=:=1, var_compare( <, X, Z) % or J=1 or N2=1
|
transl(L1, L2, L3, U-W-V),
length(L1, M),
K is I+J,
path(M, X, Z, L1, U-W, K).
%% labeling by choice of primitive relation
constraints labeling/0.
labeling, path(N, X, Y, L, T, I)#Id <=> N>1 |
member(R, L),
path(1, X, Y, [R], T, I),
labeling
pragma passive(Id).
/*--------------- eof pc.chr ------------------------------------------------*/