2001-04-09 20:54:03 +01:00
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% clp(q,r) version 1.3.2 %
|
|
|
|
% %
|
|
|
|
% (c) Copyright 1992,1993,1994,1995 %
|
|
|
|
% Austrian Research Institute for Artificial Intelligence (OFAI) %
|
|
|
|
% Schottengasse 3 %
|
|
|
|
% A-1010 Vienna, Austria %
|
|
|
|
% %
|
|
|
|
% File: expand.pl %
|
|
|
|
% Author: Christian Holzbaur christian@ai.univie.ac.at %
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
|
|
|
|
%
|
|
|
|
% Perform theory-purification in the presence of
|
|
|
|
% interpreted terms.
|
|
|
|
%
|
|
|
|
|
|
|
|
:- module( expand, [expand/0, noexpand/0]).
|
|
|
|
:- dynamic expanding/0.
|
|
|
|
|
|
|
|
:- multifile
|
|
|
|
user:term_expansion/2,
|
|
|
|
user:goal_expansion/3.
|
|
|
|
|
|
|
|
:- dynamic
|
|
|
|
user:term_expansion/2,
|
|
|
|
user:goal_expansion/3.
|
|
|
|
|
|
|
|
user:term_expansion(A,B) :- % expands heads
|
|
|
|
expanding,
|
|
|
|
purify_head(A,B).
|
|
|
|
|
|
|
|
user:goal_expansion(G,M,E):- % expands bodies
|
|
|
|
M \== prolog, % quite common due to internal call_cleanups etc.
|
|
|
|
M \== expand, % this file may get loaded more than once
|
|
|
|
expanding,
|
|
|
|
purify(G,M,E).
|
|
|
|
|
|
|
|
noexpand :-
|
|
|
|
retractall(expanding).
|
|
|
|
|
|
|
|
expand :-
|
|
|
|
assert(expanding).
|
|
|
|
|
|
|
|
|
|
|
|
purify( Goal, Module, _) :- quoted( Goal, Module), !, fail.
|
|
|
|
purify( Goal, _, Expansion) :-
|
|
|
|
interpreted_relation( Goal, _Module),
|
|
|
|
!,
|
|
|
|
Expansion = {Goal}.
|
|
|
|
purify( X=Y, _Module, Expansion) :- !, % shortcut for =/2
|
|
|
|
( ( var(X) ; interpreted_term( X, Th) ),
|
|
|
|
( var(Y) ; interpreted_term( Y, Th) ),
|
|
|
|
nonvar( Th) ->
|
|
|
|
Expansion = {X=Y}
|
|
|
|
;
|
|
|
|
ra( X=Y, user, Pure, ThL, ThLTail),
|
|
|
|
ThL \== ThLTail,
|
|
|
|
ThLTail = [Pure],
|
|
|
|
l2conj( ThL, Expansion)
|
|
|
|
).
|
|
|
|
purify( Goal, _Module, Expansion) :-
|
|
|
|
nobuiltin( Goal),
|
|
|
|
ra( Goal, user, Pure, ThL, ThLTail),
|
|
|
|
ThL \== ThLTail, % ifunctors present ?
|
|
|
|
ThLTail = [Pure],
|
|
|
|
l2conj( ThL, Expansion).
|
|
|
|
|
|
|
|
nobuiltin( Goal) :-
|
|
|
|
predicate_property( Goal, built_in),
|
|
|
|
!,
|
|
|
|
fail.
|
|
|
|
nobuiltin( _).
|
|
|
|
|
|
|
|
quoted( {_}, _).
|
|
|
|
quoted( run(_,_), geler). % late goal of verify_attributes/3
|
|
|
|
quoted( resubmit_eq(_), nf). % some (all?) of its clients
|
|
|
|
quoted( resubmit_lt(_), nf).
|
|
|
|
quoted( resubmit_le(_), nf).
|
|
|
|
quoted( resubmit_ne(_), nf).
|
|
|
|
quoted( wait_linear_retry(_,_,_), nf).
|
|
|
|
quoted( fm_cp_filter(_,_,_), linear). % generator in findall/3
|
|
|
|
%
|
|
|
|
quoted( printf(_), _).
|
|
|
|
quoted( printf(_,_), _).
|
|
|
|
quoted( user_tout(_,_,_,_), _). % undef pred
|
|
|
|
|
|
|
|
%
|
|
|
|
% Identify the theory (module) involved.
|
|
|
|
%
|
|
|
|
interpreted_term( X, _) :- var(X), !, fail.
|
|
|
|
interpreted_term( X, linear) :- number(X).
|
|
|
|
interpreted_term( rat(_,_), linear). % rational constant
|
|
|
|
%
|
|
|
|
interpreted_term( #(_), linear). % Monash
|
|
|
|
interpreted_term( -(_), linear). % unary minus
|
|
|
|
interpreted_term( +(_), linear). % plus
|
|
|
|
interpreted_term( +(_,_), linear). % binary
|
|
|
|
interpreted_term( -(_,_), linear).
|
|
|
|
interpreted_term( *(_,_), linear).
|
|
|
|
interpreted_term( /(_,_), linear).
|
|
|
|
interpreted_term( pow(_,_), linear).
|
|
|
|
interpreted_term( exp(_,_), linear).
|
|
|
|
interpreted_term( ^(_,_), linear).
|
|
|
|
interpreted_term( sin(_), linear).
|
|
|
|
interpreted_term( cos(_), linear).
|
|
|
|
interpreted_term( tan(_), linear).
|
|
|
|
interpreted_term( min(_,_), linear).
|
|
|
|
interpreted_term( max(_,_), linear).
|
|
|
|
interpreted_term( abs(_), linear).
|
|
|
|
|
|
|
|
interpreted_relation( G, _) :- var(G), !, fail.
|
|
|
|
interpreted_relation( <(_,_), linear).
|
|
|
|
interpreted_relation( =<(_,_), linear).
|
|
|
|
interpreted_relation( <=(_,_), linear). % Monash
|
|
|
|
interpreted_relation( >(_,_), linear).
|
|
|
|
interpreted_relation( >=(_,_), linear).
|
|
|
|
interpreted_relation( =\=(_,_), linear).
|
|
|
|
interpreted_relation( =:=(_,_), linear).
|
|
|
|
|
|
|
|
% ----------------------------------------------------------------
|
|
|
|
|
|
|
|
%
|
|
|
|
% replace alien subterms by variables
|
|
|
|
% Special treatment for quote/1
|
|
|
|
%
|
|
|
|
%
|
|
|
|
%
|
|
|
|
ra( Term, _, Pure) --> {var(Term), !, Term = Pure}.
|
|
|
|
ra( Term, Th, Pure) -->
|
|
|
|
{
|
|
|
|
functor( Term, N, A),
|
|
|
|
functor( Pure, N, A)
|
|
|
|
},
|
|
|
|
ra( A, Term, Th, Pure).
|
|
|
|
|
|
|
|
ra( 0, _, _, _) --> !.
|
|
|
|
ra( N, Term, Th, Pure) -->
|
|
|
|
{
|
|
|
|
N1 is N-1,
|
|
|
|
arg( N, Term, Ta),
|
|
|
|
arg( N, Pure, Pa)
|
|
|
|
},
|
|
|
|
ra_one( Ta, Th, Pa),
|
|
|
|
ra( N1, Term, Th, Pure).
|
|
|
|
|
|
|
|
ra_one( Term, _, Pure) --> {var( Term), !, Pure=Term}.
|
|
|
|
ra_one( quote(Term), _, Pure) --> {!, Pure=Term}.
|
|
|
|
ra_one( Term, ParentTheory, Pure) -->
|
|
|
|
{
|
|
|
|
( interpreted_term( Term, Theory) ->
|
|
|
|
true
|
|
|
|
;
|
|
|
|
Theory=user
|
|
|
|
)
|
|
|
|
},
|
|
|
|
( { ParentTheory=Theory } ->
|
|
|
|
ra( Term, Theory, Pure)
|
|
|
|
;
|
|
|
|
ra_equate( Theory, Pure, ThPure),
|
|
|
|
ra( Term, Theory, ThPure)
|
|
|
|
).
|
|
|
|
|
|
|
|
ra_equate( user, A, B) --> !, { A=B }. % now
|
|
|
|
ra_equate( _Theory, A, B) --> [ {A=B} ]. % later
|
|
|
|
|
|
|
|
% ---------------------------------------------------------------------------
|
|
|
|
|
|
|
|
purify_head( Term, NewTerm) :-
|
|
|
|
% vsc: doesn't really exist in YAP, ignore it for now.
|
|
|
|
( prolog:dcg_expansion( Term, []/*undef layout*/, Exp, _) ->
|
|
|
|
true
|
|
|
|
;
|
|
|
|
Term = Exp
|
|
|
|
),
|
|
|
|
( Exp = ?-(_) -> % don't touch these
|
|
|
|
fail
|
|
|
|
; Exp = :-(_) -> % expanded via goal_expansion
|
|
|
|
fail
|
|
|
|
; Exp = (H:-B) ->
|
|
|
|
ra( H, user, NewHead, Cl, []),
|
|
|
|
Cl = [_|_], % ifunctors in head ?
|
|
|
|
l2conj( Cl, Thc),
|
|
|
|
NewTerm = (NewHead:-Thc,B)
|
|
|
|
; % facts
|
|
|
|
ra( Exp, user, H, Cl, []),
|
|
|
|
Cl = [_|_], % ifunctors in head ?
|
|
|
|
l2conj( Cl, B),
|
|
|
|
NewTerm = (H:-B)
|
|
|
|
).
|
|
|
|
|
|
|
|
l2conj( [], true).
|
|
|
|
l2conj( [X|Xs], Conj) :-
|
|
|
|
( Xs = [], Conj = X
|
|
|
|
; Xs = [_|_], Conj = (X,Xc), l2conj( Xs, Xc)
|
|
|
|
).
|
2001-11-15 00:01:43 +00:00
|
|
|
|