This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/dbase.c

4214 lines
108 KiB
C
Raw Normal View History

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: dbase.c *
* Last rev: 8/2/88 *
* mods: *
* comments: YAP's internal data base *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
#include "Yap.h"
#include "clause.h"
#include "heapgc.h"
#include "yapio.h"
#if HAVE_STRING_H
#include <string.h>
#endif
/* There are two options to implement traditional immediate update semantics.
- In the first option, we only remove an element of the chain when
it is phisically disposed of. This simplifies things, because
pointers are always valid, but it complicates some stuff a bit:
o You may have go through long lines of deleted db entries before you
actually reach the one you want.
o Deleted clauses are also not removed of the chain. The solution
was to place a fail in every clause, but you still have to
backtrack through failed clauses.
An alternative solution is to remove clauses from the chain, even
if they are still phisically present. Unfortunately this creates
problems because immediate update semantics means you have to
backtrack clauses or see the db entries stored later.
There are several solutions. One of the simplest is to use an age
counter. When you backtrack to a removed clause or to a deleted db
entry you use the age to find newly entered clauses in the DB.
This still causes a problem when you backtrack to a deleted
clause, because clauses are supposed to point to the next
alternative, and having been removed from the chain you cannot
point there directly. One solution is to have a predicate in C that
recovers the place where to go to and then gets rid of the clause.
*/
#ifdef KEEP_ENTRY_AGE
#define DISCONNECT_OLD_ENTRIES 1
#else
#define KEEP_OLD_ENTRIES_HANGING_ABOUT 1
#endif /* KEEP_ENTRY_AGE */
#ifdef MACYAPBUG
#define Register
#else
#define Register register
#endif
/* Flags for recorda or recordz */
/* MkCode should be the same as CodeDBProperty */
#define MkFirst 1
#define MkCode CodeDBBit
#define MkLast 4
#define WithRef 8
#define MkIfNot 16
#define InQueue 32
#define FrstDBRef(V) ( (V) -> First )
#define NextDBRef(V) ( (V) -> Next )
#define DBLength(V) (sizeof(DBStruct) + (Int)(V) + CellSize)
#define AllocDBSpace(V) ((DBRef)AllocCodeSpace(V))
#define FreeDBSpace(V) FreeCodeSpace(V)
#define NO_ERROR_IN_DB 0
#define OVF_ERROR_IN_DB 1
#define SOVF_ERROR_IN_DB 2
#define TOVF_ERROR_IN_DB 3
#define OTHER_ERROR_IN_DB 4
#if SIZEOF_INT_P==4
#define ToSmall(V) ((BITS16)(Unsigned(V)>>2))
#else
#define ToSmall(V) ((BITS16)(Unsigned(V)>>3))
#endif
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
#define DEAD_REF(ref) ((ref)->Flags & ErasedMask)
#else
#define DEAD_REF(ref) FALSE
#endif
#ifdef SFUNC
#define MaxSFs 256
typedef struct {
Term SName; /* The culprit */
CELL *SFather; /* and his father's position */
} SFKeep;
#endif
typedef struct
{
Functor id; /* identify this as being pointed to by a DBRef */
Term EntryTerm; /* cell bound to itself */
SMALLUNSGN Flags; /* always required */
#if defined(YAPOR) || defined(THREADS)
rwlock_t QRWLock; /* a simple lock to protect this entry */
#endif
DBRef FirstInQueue, LastInQueue;
} db_queue;
#define HashFieldMask ((CELL)0xffL)
#define DualHashFieldMask ((CELL)0xffffL)
#define TripleHashFieldMask ((CELL)0xffffffL)
#define FourHashFieldMask ((CELL)0xffffffffL)
#define ONE_FIELD_SHIFT 8
#define TWO_FIELDS_SHIFT 16
#define THREE_FIELDS_SHIFT 24
#define AtomHash(t) (Unsigned(t)>>4)
#define FunctorHash(t) (Unsigned(t)>>4)
#define NumberHash(t) (Unsigned(IntOfTerm(t)))
/* traditionally, YAP used a link table to recover IDB terms*/
#define IDB_LINK_TABLE 1
#if LARGE_IDB_LINK_TABLE
typedef BITS32 link_entry;
#else
typedef BITS16 link_entry;
#endif
/* a second alternative is to just use a tag */
/*#define IDB_USE_MBIT 1*/
/* These global variables are necessary to build the data base
structure */
#ifdef IDB_LINK_TABLE
static link_entry *lr = NULL, *LinkAr;
#endif
static int DBErrorFlag = FALSE; /* error while recording */
/* we cannot call Error directly from within recorded(). These flags are used
to delay for a while
*/
static yap_error_number DBErrorNumber; /* error number */
static Term DBErrorTerm; /* error term */
static char *DBErrorMsg; /* Error Message */
static DBRef *tofref; /* place the refs also up */
static SMALLUNSGN DBModule;
CELL *next_float = NULL;
#ifdef SFUNC
static CELL *FathersPlace; /* Where the father was going when the term
* was reached */
static SFKeep *SFAr, *TopSF; /* Where are we putting our SFunctors */
#endif
static DBRef found_one; /* Place where we started recording */
#ifdef SUPPORT_HASH_TABLES
typedef struct {
CELL key;
DBRef entry;
} hash_db_entry;
typedef table {
Int NOfEntries;
Int HashArg;
hash_db_entry *table;
} hash_db_table;
#endif
STATIC_PROTO(CELL *cpcells,(CELL *,CELL*,Int));
#ifdef IDB_LINK_TABLE
STATIC_PROTO(void linkblk,(link_entry *,CELL *));
#endif
#ifdef IDB_USE_MBIT
STATIC_PROTO(CELL *linkcells,(CELL *,Int));
#endif
STATIC_PROTO(Int cmpclls,(CELL *,CELL *,Int));
STATIC_PROTO(Prop FindDBProp,(AtomEntry *, int, unsigned int));
STATIC_PROTO(CELL CalcKey, (Term));
STATIC_PROTO(CELL *MkDBTerm, (CELL *, CELL *, CELL *, CELL *, CELL *, int *));
STATIC_PROTO(DBRef CreateDBStruct, (Term, DBProp, int));
STATIC_PROTO(DBRef new_lu_index, (LogUpdDBProp));
STATIC_PROTO(void clean_lu_index, (DBRef));
STATIC_PROTO(DBRef record, (int, Term, Term, Term));
STATIC_PROTO(DBRef check_if_cons, (DBRef, Term));
STATIC_PROTO(DBRef check_if_var, (DBRef));
STATIC_PROTO(DBRef check_if_wvars, (DBRef, unsigned int, CELL *));
#ifdef IDB_LINK_TABLE
STATIC_PROTO(int scheckcells, (int, CELL *, CELL *, link_entry *, CELL));
#endif
STATIC_PROTO(DBRef check_if_nvars, (DBRef, unsigned int, CELL *));
STATIC_PROTO(Int p_rcda, (void));
STATIC_PROTO(Int p_rcdap, (void));
STATIC_PROTO(Int p_rcdz, (void));
STATIC_PROTO(Int p_rcdzp, (void));
STATIC_PROTO(Int p_drcdap, (void));
STATIC_PROTO(Int p_drcdzp, (void));
STATIC_PROTO(Int p_rcdaifnot, (void));
STATIC_PROTO(Int p_rcdzifnot, (void));
STATIC_PROTO(Term GetDBTerm, (DBRef));
STATIC_PROTO(DBProp FetchDBPropFromKey, (Term, int, int, char *));
STATIC_PROTO(Int i_log_upd_recorded, (LogUpdDBProp));
STATIC_PROTO(Int i_recorded, (DBProp));
STATIC_PROTO(Int c_log_upd_recorded, (DBRef *, int));
STATIC_PROTO(Int c_recorded, (int));
STATIC_PROTO(Int in_rded, (void));
STATIC_PROTO(Int co_rded, (void));
STATIC_PROTO(Int in_rdedp, (void));
STATIC_PROTO(Int co_rdedp, (void));
STATIC_PROTO(Int p_first_instance, (void));
STATIC_PROTO(void ErasePendingRefs, (DBRef));
STATIC_PROTO(void RemoveDBEntry, (DBRef));
STATIC_PROTO(void EraseLogUpdCl, (Clause *));
STATIC_PROTO(void MyEraseClause, (Clause *));
STATIC_PROTO(void PrepareToEraseClause, (Clause *, DBRef));
STATIC_PROTO(void EraseEntry, (DBRef));
STATIC_PROTO(Int p_erase, (void));
STATIC_PROTO(Int p_eraseall, (void));
STATIC_PROTO(Int p_erased, (void));
STATIC_PROTO(Int p_instance, (void));
STATIC_PROTO(int NotActiveDB, (DBRef));
STATIC_PROTO(DBEntry *NextDBProp, (PropEntry *));
STATIC_PROTO(Int init_current_key, (void));
STATIC_PROTO(Int cont_current_key, (void));
STATIC_PROTO(Int cont_current_key_integer, (void));
STATIC_PROTO(Int p_rcdstatp, (void));
STATIC_PROTO(Int p_somercdedp, (void));
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
STATIC_PROTO(int StillInChain, (CODEADDR, PredEntry *));
#endif /* KEEP_OLD_ENTRIES_HANGING_ABOUT */
#ifdef DISCONNECT_OLD_ENTRIES
STATIC_PROTO(yamop * find_next_clause, (DBRef));
STATIC_PROTO(Int jump_to_next_dynamic_clause, (void));
#endif /* DISCONNECT_OLD_ENTRIES */
#ifdef SFUNC
STATIC_PROTO(void SFVarIn, (Term));
STATIC_PROTO(void sf_include, (SFKeep *));
#endif
STATIC_PROTO(Int p_init_queue, (void));
STATIC_PROTO(Int p_enqueue, (void));
STATIC_PROTO(void keepdbrefs, (DBRef));
STATIC_PROTO(Int p_dequeue, (void));
STATIC_PROTO(Int p_first_age, (void));
STATIC_PROTO(Int p_db_nb_to_ref, (void));
STATIC_PROTO(Int p_last_age, (void));
STATIC_PROTO(Term StealFirstFromDB, (Atom, Int));
#if OS_HANDLES_TR_OVERFLOW
#define check_trail(x)
#else
#define check_trail(x) { \
if (Unsigned(TrailTop) == Unsigned(x)) { \
if(!growtrail (sizeof(CELL) * 16 * 1024L)) { \
goto error_tr_overflow; \
} \
} \
}
#endif
#ifdef SUPPORT_HASH_TABLES
/* related property and hint on number of entries */
static void create_hash_table(DBProp p, Int hint) {
int off = sizeof(CELL)*4, out;
Int size;
if (hint < p->NOfEntries)
hint = p->NOfEntries;
while (off) {
int limit = 1 << (off);
if (inp >= limit) {
out += off;
inp >>= off;
}
off >>= 1;
}
if ((size = 1 << out) < hint)
hint <<= 1;
/* clean up the table */
pt = tbl = (hash_db_entry *)AllocDBSpace(hint*sizeof(hash_db_entry));
for (i=0; i< hint; i++) {
pt->key = NULL;
pt++;
}
/* next insert the entries */
}
static void insert_in_table() {
}
static void remove_from_table() {
}
#endif
#ifdef IDB_LINK_TABLE
inline static CELL *cpcells(CELL *to, CELL *from, Int n)
{
#if HAVE_MEMMOVE
memmove((void *)to, (void *)from, (size_t)(n*sizeof(CELL)));
return(to+n);
#else
while (n-- >= 0) {
*to++ = *from++;
}
return(to);
#endif
}
static void linkblk(link_entry *r, CELL *c)
{
CELL p;
while ((p = (CELL)*r) != 0) {
Term t = c[p];
r++;
c[p] = AdjustIDBPtr(t, (CELL)c);
}
}
#endif
#ifdef IDB_USE_MBIT
inline static CELL *cpcells(register CELL *to, register CELL *from, Int n)
{
CELL *last = to + n;
register CELL off = ((CELL)to)-MBIT;
while (to <= last) {
register d0 = *from++;
if (MARKED(d0))
*to++ = AdjustIDBPtr(d0, off);
else
*to++ = d0;
}
return(to);
}
static CELL *linkcells(register CELL *to, Int n)
{
CELL *last = to + n;
register CELL off = ((CELL)to)-MBIT;
while(to <= last) {
register d0 = *to++;
if (MARKED(d0))
to[-1] = AdjustIDBPtr(d0, off);
}
return(to);
}
#endif
static Int cmpclls(CELL *a,CELL *b,Int n)
{
while (n-- >= 0)
if(*a++ != *b++) return 0;
return 1;
}
int DBTrailOverflow(void)
{
#ifdef IDB_USE_MBIT
return(FALSE);
#endif
#ifdef IDB_LINK_TABLE
return((CELL *)lr > (CELL *)TrailTop - 1024);
#endif
}
/* get DB entry for ap/arity; */
static Prop
LockedFindDBProp(AtomEntry *ae, int CodeDB, unsigned int arity)
{
Prop p0;
DBProp p;
p = RepDBProp(p0 = ae->PropOfAE);
while (p0 && (((p->KindOfPE & ~0x1) != (CodeDB|DBProperty)) ||
(p->ArityOfDB != arity) ||
((CodeDB & MkCode) && p->ModuleOfDB && p->ModuleOfDB != DBModule ))) {
p = RepDBProp(p0 = p->NextOfPE);
}
return (p0);
}
/* get DB entry for ap/arity; */
static Prop
FindDBProp(AtomEntry *ae, int CodeDB, unsigned int arity)
{
Prop out;
READ_LOCK(ae->ARWLock);
out = LockedFindDBProp(ae, CodeDB, arity);
READ_UNLOCK(ae->ARWLock);
return(out);
}
/* These two functions allow us a fast lookup method in the data base */
/* PutMasks builds the mask and hash for a single argument */
inline static CELL
CalcKey(Term tw)
{
/* The first argument is known to be instantiated */
if (IsApplTerm(tw)) {
Functor f = FunctorOfTerm(tw);
if (IsExtensionFunctor(f)) {
if (f == FunctorDBRef) {
return(FunctorHash(tw)); /* Ref */
} /* if (f == FunctorLongInt || f == FunctorDouble) */
return(NumberHash(RepAppl(tw)[1]));
}
return(FunctorHash(f));
} else if (IsAtomOrIntTerm(tw)) {
if (IsAtomTerm(tw)) {
return(AtomHash(tw));
}
return(NumberHash(tw));
}
return(FunctorHash(FunctorList));
}
/* EvalMasks builds the mask and hash for up to three arguments of a term */
CELL
EvalMasks(register Term tm, CELL *keyp)
{
if (IsApplTerm(tm)) {
Functor fun = FunctorOfTerm(tm);
if (IsExtensionFunctor(fun)) {
if (fun == FunctorDBRef) {
*keyp = FunctorHash(tm); /* Ref */
} else /* if (f == FunctorLongInt || f == FunctorDouble) */ {
*keyp = NumberHash(RepAppl(tm)[1]);
}
return(FourHashFieldMask);
} else {
unsigned int arity;
arity = ArityOfFunctor(fun);
#ifdef SFUNC
if (arity == SFArity) { /* do not even try to calculate masks */
*keyp = key;
return(FourHashFieldMask);
}
#endif
switch (arity) {
case 1:
{
Term tw = ArgOfTerm(1, tm);
if (IsNonVarTerm(tw)) {
*keyp = (FunctorHash(fun) & DualHashFieldMask) | (CalcKey(tw) << TWO_FIELDS_SHIFT);
return(FourHashFieldMask);
} else {
*keyp = (FunctorHash(fun) & DualHashFieldMask);
return(DualHashFieldMask);
}
}
case 2:
{
Term tw1, tw2;
CELL key, mask;
key = FunctorHash(fun) & DualHashFieldMask;
mask = DualHashFieldMask;
tw1 = ArgOfTerm(1, tm);
if (IsNonVarTerm(tw1)) {
key |= ((CalcKey(tw1) & HashFieldMask) << TWO_FIELDS_SHIFT);
mask |= (HashFieldMask << TWO_FIELDS_SHIFT);
}
tw2 = ArgOfTerm(2, tm);
if (IsNonVarTerm(tw2)) {
*keyp = key | (CalcKey(tw2) << THREE_FIELDS_SHIFT);
return(mask | (HashFieldMask << THREE_FIELDS_SHIFT));
} else {
*keyp = key;
return(mask);
}
}
default:
{
Term tw1, tw2, tw3;
CELL key, mask;
key = FunctorHash(fun) & HashFieldMask;
mask = HashFieldMask;
tw1 = ArgOfTerm(1, tm);
if (IsNonVarTerm(tw1)) {
key |= (CalcKey(tw1) & HashFieldMask) << ONE_FIELD_SHIFT;
mask |= HashFieldMask << ONE_FIELD_SHIFT;
}
tw2 = ArgOfTerm(2, tm);
if (IsNonVarTerm(tw2)) {
key |= (CalcKey(tw2) & HashFieldMask) << TWO_FIELDS_SHIFT;
mask |= HashFieldMask << TWO_FIELDS_SHIFT;
}
tw3 = ArgOfTerm(3, tm);
if (IsNonVarTerm(tw3)) {
*keyp = key | (CalcKey(tw3) << THREE_FIELDS_SHIFT);
return(mask | (HashFieldMask << THREE_FIELDS_SHIFT));
} else {
*keyp = key;
return(mask);
}
}
}
}
} else {
CELL key = (FunctorHash(FunctorList) & DualHashFieldMask);
CELL mask = DualHashFieldMask;
Term th = HeadOfTerm(tm), tt;
if (IsNonVarTerm(th)) {
mask |= (HashFieldMask << TWO_FIELDS_SHIFT);
key |= (CalcKey(th) << TWO_FIELDS_SHIFT);
}
tt = TailOfTerm(tm);
if (IsNonVarTerm(tt)) {
*keyp = key | (CalcKey(tt) << THREE_FIELDS_SHIFT);
return( mask|(HashFieldMask << THREE_FIELDS_SHIFT));
}
*keyp = key;
return(mask);
}
}
/* Called to inform that a new pointer to a data base entry has been added */
#define MarkThisRef(Ref) ((Ref)->NOfRefsTo ++ )
/* From a term, builds its representation in the data base */
/* otherwise, we just need to restore variables*/
typedef struct {
CELL *addr;
} visitel;
#define UNWIND_CUNIF() \
while (visited < (visitel *)AuxSp) { \
RESET_VARIABLE(visited->addr); \
visited ++; \
}
/* no checking for overflow while building DB terms yet */
#define CheckDBOverflow() if (CodeMax+1024 >= (CELL *)visited) { \
goto error; \
}
/* no checking for overflow while building DB terms yet */
#define CheckVisitOverflow() if ((CELL *)to_visit+1024 >= ASP) { \
goto error2; \
}
/* This routine creates a complex term in the heap. */
static CELL *MkDBTerm(register CELL *pt0, register CELL *pt0_end,
register CELL *StoPoint,
CELL *CodeMax, CELL *tbase,
int *vars_foundp)
{
register visitel *visited = (visitel *)AuxSp;
/* store this in H */
register CELL **to_visit = (CELL **)H;
CELL **to_visit_base = to_visit;
/* where we are going to add a new pair */
int vars_found = 0;
loop:
while (pt0 <= pt0_end) {
CELL *ptd0 = pt0;
CELL d0 = *ptd0;
restart:
if (IsVarTerm(d0))
goto deref_var;
if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* we will need to link afterwards */
ap2 = RepAppl(d0);
#ifdef RATIONAL_TREES
if (ap2 < (CELL *)((CELL)CodeMax-(CELL)tbase)) {
*StoPoint++ = d0;
++pt0;
continue;
}
#endif
#ifdef IDB_LINK_TABLE
*lr++ = ToSmall((CELL)(StoPoint)-(CELL)(tbase));
check_trail(lr);
#endif
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
switch((CELL)f) {
case (CELL)FunctorDBRef:
{
DBRef dbentry;
/* store now the correct entry */
dbentry = DBRefOfTerm(d0);
*StoPoint++ = d0;
#ifdef IDB_LINK_TABLE
lr--;
#endif
dbentry->NOfRefsTo++;
*--tofref = dbentry;
/* just continue the loop */
++ pt0;
continue;
}
case (CELL)FunctorLongInt:
{
CELL *st = CodeMax;
/* first thing, store a link to the list before we move on */
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl((CELL *)(((CELL)st-(CELL)tbase)|MBIT));
#else
*StoPoint++ = AbsAppl((CELL *)((CELL)st-(CELL)tbase));
#endif
st[0] = (CELL)f;
st[1] = ap2[1];
st[2] = ((2*sizeof(CELL)+EndSpecials)|MBIT);
/* now reserve space */
CodeMax = st+3;
++pt0;
continue;
}
#ifdef USE_GMP
case (CELL)FunctorBigInt:
{
CELL *st = CodeMax;
/* first thing, store a link to the list before we move on */
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl((CELL *)(((CELL)st-(CELL)tbase)|MBIT));
#else
*StoPoint++ = AbsAppl((CELL *)((CELL)st-(CELL)tbase));
#endif
st[0] = (CELL)f;
{
Int sz =
sizeof(MP_INT)+
(((MP_INT *)(ap2+1))->_mp_alloc*sizeof(mp_limb_t));
memcpy((void *)(st+1), (void *)(ap2+1), sz);
CodeMax = st+1+sz/CellSize;
*CodeMax++ = (sz+CellSize+EndSpecials)|MBIT;
}
++pt0;
continue;
}
#endif
case (CELL)FunctorDouble:
{
CELL *st = CodeMax;
/* first thing, store a link to the list before we move on */
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl((CELL *)(((CELL)st-(CELL)tbase)|MBIT));
#else
*StoPoint++ = AbsAppl((CELL *)((CELL)st-(CELL)tbase));
#endif
st[0] = (CELL)f;
st[1] = ap2[1];
#if SIZEOF_DOUBLE == 2*SIZEOF_LONG_INT
st[2] = ap2[2];
st[3] = ((3*sizeof(CELL)+EndSpecials)|MBIT);
#else
st[2] = ((2*sizeof(CELL)+EndSpecials)|MBIT);
#endif
/* now reserve space */
CodeMax = st+(2+SIZEOF_DOUBLE/SIZEOF_LONG_INT);
++pt0;
continue;
}
}
}
/* first thing, store a link to the list before we move on */
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl((CELL *)(((CELL)CodeMax-(CELL)tbase)|MBIT));
#else
*StoPoint++ = AbsAppl((CELL *)((CELL)CodeMax-(CELL)tbase));
#endif
/* next, postpone analysis to the rest of the current list */
#ifdef RATIONAL_TREES
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit[3] = (CELL *)*pt0;
to_visit += 4;
*pt0 = StoPoint[-1];
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit += 3;
}
#endif
CheckVisitOverflow();
d0 = ArityOfFunctor(f);
pt0 = ap2+1;
pt0_end = ap2 + d0;
/* prepare for our new compound term */
/* first the functor */
CheckDBOverflow();
*CodeMax++ = (CELL)f;
/* we'll be working here */
StoPoint = CodeMax;
/* now reserve space */
CodeMax += d0;
continue;
}
else if (IsPairTerm(d0)) {
/* we will need to link afterwards */
#ifdef RATIONAL_TREES
if (RepPair(d0) < (CELL *)((CELL)CodeMax-(CELL)tbase)) {
*StoPoint++ = d0;
++pt0;
continue;
}
#endif
#ifdef IDB_LINK_TABLE
*lr++ = ToSmall((CELL)(StoPoint)-(CELL)(tbase));
check_trail(lr);
#endif
#ifdef IDB_USE_MBIT
*StoPoint++ =
AbsPair((CELL *)(((CELL)CodeMax-(CELL)tbase)|MBIT));
#else
*StoPoint++ = AbsPair((CELL *)(((CELL)CodeMax-(CELL)tbase)));
#endif
/* next, postpone analysis to the rest of the current list */
#ifdef RATIONAL_TREES
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit[3] = (CELL *)*pt0;
to_visit += 4;
*pt0 = StoPoint[-1];
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit += 3;
}
#endif
CheckVisitOverflow();
/* new list */
/* we are working at CodeMax */
StoPoint = CodeMax;
/* set ptr to new term being analysed */
pt0 = RepPair(d0);
pt0_end = RepPair(d0) + 1;
/* reserve space for our new list */
CodeMax += 2;
CheckDBOverflow();
continue;
} else if (IsAtomOrIntTerm(d0)) {
*StoPoint++ = d0;
++pt0;
continue;
}
/* the code to dereference a variable */
deref_var:
if (!MARKED(d0))
{
#if SBA
if (d0 != 0) {
#else
if (d0 != (CELL)ptd0) {
#endif
ptd0 = (Term *) d0;
d0 = *ptd0;
goto restart; /* continue dereferencing */
}
/* else just drop to found_var */
}
/* else just drop to found_var */
{
CELL displacement = (CELL)(StoPoint)-(CELL)(tbase);
pt0++;
/* first time we found this variable! */
if (!MARKED(d0)) {
/* store previous value */
visited --;
visited->addr = ptd0;
CheckDBOverflow();
/* variables need to be offset at read time */
*ptd0 = (displacement | MBIT);
#if SBA
/* the copy we keep will be an empty vaiable */
*StoPoint++ = 0;
#else
#ifdef IDB_USE_MBIT
/* say we've seen the variable, and make it point to its
offset */
/* the copy we keep will be the current displacement */
*StoPoint++ = (displacement | MBIT);
#else
/* the copy we keep will be the current displacement */
*StoPoint++ = displacement;
*lr++ = ToSmall(displacement);
check_trail(lr);
#endif
#endif
/* indicate we found variables */
vars_found++;
continue;
} else {
/* references need to be offset at read time */
#ifdef IDB_LINK_TABLE
*lr++ = ToSmall(displacement);
check_trail(lr);
#endif
/* store the offset */
#ifdef IDB_USE_MBIT
*StoPoint = d0;
#else
*StoPoint = d0 ^ MBIT;
#endif
StoPoint++;
continue;
}
}
}
/* Do we still have compound terms to visit */
if (to_visit > (CELL **)to_visit_base) {
#ifdef RATIONAL_TREES
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
#else
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
#endif
goto loop;
}
/* we're done */
*vars_foundp = vars_found;
UNWIND_CUNIF();
return(CodeMax);
error:
DBErrorFlag = OVF_ERROR_IN_DB;
*vars_foundp = vars_found;
#ifdef RATIONAL_TREES
while (to_visit > (CELL **)to_visit_base) {
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
}
#endif
UNWIND_CUNIF();
return(NULL);
error2:
DBErrorFlag = SOVF_ERROR_IN_DB;
*vars_foundp = vars_found;
#ifdef RATIONAL_TREES
while (to_visit > (CELL **)to_visit_base) {
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
}
#endif
UNWIND_CUNIF();
return(NULL);
#if !OS_HANDLES_TR_OVERFLOW
error_tr_overflow:
DBErrorFlag = TOVF_ERROR_IN_DB; \
*vars_foundp = vars_found;
#ifdef RATIONAL_TREES
while (to_visit > (CELL **)to_visit_base) {
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
}
#endif
UNWIND_CUNIF();
return(NULL);
#endif
}
#ifdef SFUNC
/*
* The sparse terms existing in the structure are to be included now. This
* means simple copy for constant terms but, some care about variables If
* they have appeared before, we will know by their position number
*/
static void
sf_include(sfp)
SFKeep *sfp;
{
Term Tm = sfp->SName;
CELL *tp = ArgsOfSFTerm(Tm);
Register Term *StoPoint = ntp;
CELL *displacement = CodeAbs;
CELL arg_no;
Term tvalue;
int j = 3;
if (sfp->SFather != NIL)
*(sfp->SFather) = AbsAppl(displacement);
*StoPoint++ = FunctorOfTerm(Tm);
*lr++ = ToSmall(displacement + 1);
check_trail(lr);
*StoPoint++ = (Term) (displacement + 1);
while (*tp) {
arg_no = *tp++;
tvalue = Derefa(tp++);
if (IsVarTerm(tvalue)) {
if (((VarKeep *) tvalue)->NOfVars != 0) {
*StoPoint++ = arg_no;
*lr++ = ToSmall(displacement + j);
check_trail(lr);
if (((VarKeep *) tvalue)->New == 0)
*StoPoint++ = ((VarKeep *) tvalue)->New = Unsigned(displacement + j);
else
*StoPoint++ = ((VarKeep *) tvalue)->New;
j += 2;
}
} else if (IsAtomicTerm(tvalue)) {
*StoPoint++ = arg_no;
*StoPoint++ = tvalue;
j += 2;
} else {
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = TYPE_ERROR_DBTERM;
DBErrorTerm = d0;
DBErrorMsg = "wrong term in SF";
return(NULL);
}
}
*StoPoint++ = 0;
ntp = StoPoint;
CodeAbs = displacement + j;
}
#endif
/*
* This function is used to check if one of the terms in the idb is the
* constant to_compare
*/
inline static DBRef
check_if_cons(DBRef p, Term to_compare)
{
while (p != NIL
&& (p->Flags & (DBCode | ErasedMask | DBVar | DBNoVars | DBComplex)
|| p->Entry != Unsigned(to_compare)))
p = NextDBRef(p);
return (p);
}
/*
* This function is used to check if one of the terms in the idb is a prolog
* variable
*/
static DBRef
check_if_var(DBRef p)
{
while (p != NIL &&
p->Flags & (DBCode | ErasedMask | DBAtomic | DBNoVars | DBComplex ))
p = NextDBRef(p);
return (p);
}
/*
* This function is used to check if a Prolog complex term with variables
* already exists in the idb for that key. The comparison is alike ==, but
* only the relative binding of variables, not their position is used. The
* comparison is done using the function cmpclls only. The function could
* only fail if a functor was matched to a Prolog term, but then, it should
* have failed before because the structure of term would have been very
* different
*/
static DBRef
check_if_wvars(DBRef p, unsigned int NOfCells, CELL *BTptr)
{
CELL *memptr;
do {
while (p != NIL &&
p->Flags & (DBCode | ErasedMask | DBAtomic | DBNoVars | DBVar))
p = NextDBRef(p);
if (p == NIL)
return (p);
memptr = CellPtr(p->Contents);
if (NOfCells == p->NOfCells
&& cmpclls(memptr, BTptr, NOfCells))
return (p);
else
p = NextDBRef(p);
} while (TRUE);
return (NIL);
}
#ifdef IDB_LINK_TABLE
static int
scheckcells(int NOfCells, register CELL *m1, register CELL *m2, link_entry *lp, register CELL bp)
{
CELL base = Unsigned(m1 + 1);
link_entry *lp1;
while (NOfCells-- >= 0) {
Register CELL r1, r2;
r1 = *m1++;
r2 = *m2++;
if (r1 == r2)
continue;
else if (r2 + bp == r1) {
/* link pointers may not have been generated in the */
/* same order */
/* make sure r1 is really an offset. */
lp1 = lp;
r1 = m1 - (CELL *)base;
while (*lp1 != r1 && *lp1)
lp1++;
if (!(*lp1))
return (FALSE);
/* keep the old link pointer for future search. */
/* vsc: this looks like a bug!!!! */
/* *lp1 = *lp++; */
} else {
return (FALSE);
}
}
return (TRUE);
}
#endif
/*
* the cousin of the previous, but with things a bit more sophisticated.
* mtchcells, if an error was an found, needs to test ........
*/
static DBRef
check_if_nvars(DBRef p, unsigned int NOfCells, CELL *BTptr)
{
CELL *memptr;
do {
while (p != NIL &&
p->Flags & (DBCode | ErasedMask | DBAtomic | DBComplex | DBVar))
p = NextDBRef(p);
if (p == NIL)
return (p);
memptr = CellPtr(p->Contents);
#ifdef IDB_LINK_TABLE
if (scheckcells(NOfCells, memptr, BTptr, LinkAr, Unsigned(p->Contents)))
#else
if (NOfCells == *memptr++
&& cmpclls(memptr, BTptr, NOfCells))
#endif
return (p);
else
p = NextDBRef(p);
} while (TRUE);
return (NIL);
}
static DBRef
CreateDBStruct(Term Tm, DBProp p, int InFlag)
{
Register Term tt, *nar = NIL;
Register DBRef pp0, pp;
SMALLUNSGN flag;
unsigned int NOfCells = 0;
#ifdef IDB_LINK_TABLE
int NOfLinks = 0;
#endif
Term *ntp0, *ntp;
/* place DBRefs in ConsultStack */
DBRef *TmpRefBase = (DBRef *)ConsultSp;
CELL *CodeAbs; /* how much code did we find */
int vars_found;
DBErrorFlag = NO_ERROR_IN_DB;
if (IsVarTerm(Tm)) {
Register DBRef pp;
tt = Tm;
if (InFlag & MkIfNot && (found_one = check_if_var(p->First)))
return (found_one);
pp = AllocDBSpace(DBLength(NIL));
if (pp == NIL) {
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
DBErrorMsg = "could not allocate space";
return(NULL);
}
pp->id = FunctorDBRef;
pp->EntryTerm = MkAtomTerm(AbsAtom((AtomEntry *)pp));
pp->Flags = DBVar;
pp->Entry = (CELL) Tm;
pp->Code = NULL;
pp->DBRefs = NULL;
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
return(pp);
} else if (IsAtomOrIntTerm(Tm)) {
Register DBRef pp;
SMALLUNSGN flag;
tt = Tm;
flag = DBAtomic;
if (IsAtomOrIntTerm(tt))
if (InFlag & MkIfNot && (found_one = check_if_cons(p->First, tt)))
return (found_one);
pp = AllocDBSpace(DBLength(NIL));
if (pp == NIL) {
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
DBErrorMsg = "could not allocate space";
return(NULL);
}
pp->id = FunctorDBRef;
pp->EntryTerm = MkAtomTerm(AbsAtom((AtomEntry *)pp));
pp->Flags = flag;
pp->Entry = (CELL) Tm;
pp->Code = NULL;
pp->DBRefs = NULL;
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
return(pp);
} else {
tofref = TmpRefBase;
/* compound term */
pp0 = (DBRef)PreAllocCodeSpace();
ntp0 = pp0->Contents;
#ifdef IDB_LINK_TABLE
lr = LinkAr = (link_entry *)TR;
#endif
if (IsPairTerm(Tm)) {
/* avoid null pointers!! */
tt = AbsPair((CELL *)sizeof(CELL));
ntp = MkDBTerm(RepPair(Tm), RepPair(Tm)+1, ntp0, ntp0+2, ntp0-1, &vars_found);
if (ntp == NULL) {
return(NULL);
}
}
else
{
unsigned int arity;
Functor fun;
tt = AbsAppl((CELL *)sizeof(CELL));
/* we need to store the functor manually */
fun = (Functor)(*ntp0 = (CELL)FunctorOfTerm(Tm));
if (IsExtensionFunctor(fun)) {
switch((CELL)fun) {
case (CELL)FunctorDouble:
{
CELL *fp = RepAppl(Tm);
ntp0[1] = fp[1];
#if SIZEOF_DOUBLE == 2*SIZEOF_LONG_INT
ntp0[2] = fp[2];
ntp0[3] = ((3*sizeof(CELL)+EndSpecials)|MBIT);
ntp = ntp0+4;
#else
ntp0[2] = ((2*sizeof(CELL)+EndSpecials)|MBIT);
ntp = ntp0+3;
#endif
}
break;
case (CELL)FunctorDBRef:
{
DBRef dbr;
pp = AllocDBSpace(DBLength(2*sizeof(DBRef)));
if (pp == NIL) {
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
DBErrorMsg = "could not allocate space";
return(NULL);
}
pp->id = FunctorDBRef;
pp->EntryTerm = MkAtomTerm(AbsAtom((AtomEntry *)pp));
pp->Flags = DBNoVars|DBComplex|DBWithRefs;
pp->Entry = Tm;
pp->NOfCells = 2;
dbr = DBRefOfTerm(Tm);
dbr->NOfRefsTo++;
pp->Contents[0] = (CELL)NIL;
pp->Contents[1] = (CELL)dbr;
pp->DBRefs = (DBRef *)(pp->Contents+2);
pp->Code = NULL;
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
return(pp);
}
#ifdef USE_GMP
case (CELL)FunctorBigInt:
{
CELL *pt = RepAppl(Tm);
Int sz =
sizeof(MP_INT)+
(((MP_INT *)(pt+1))->_mp_alloc*sizeof(mp_limb_t));
memcpy((void *)(ntp0+1), (void *)(pt+1), sz);
ntp = ntp0+sz/sizeof(CELL)+1;
*ntp++ = (sz+CellSize+EndSpecials)|MBIT;
}
break;
#endif
default: /* LongInt */
{
CELL *pt = RepAppl(Tm);
ntp0[1] = pt[1];
ntp0[2] = ((2*sizeof(CELL)+EndSpecials)|MBIT);
ntp = ntp0+3;
}
break;
}
} else {
arity = ArityOfFunctor(fun);
ntp = MkDBTerm(RepAppl(Tm)+1,
RepAppl(Tm)+arity,
ntp0+1, ntp0+1+arity, ntp0-1, &vars_found);
if (ntp == NULL)
return(NULL);
}
}
CodeAbs = (CELL *)((CELL)ntp-(CELL)ntp0);
if (DBErrorFlag)
return (NULL); /* Error Situation */
NOfCells = ntp - ntp0; /* End Of Code Info */
#ifdef IDB_LINK_TABLE
*lr++ = 0;
NOfLinks = (lr - LinkAr);
#endif
if (vars_found || InFlag & InQueue) {
/*
* Take into account the fact that one needs an entry
* for the number of links
*/
flag = DBComplex;
#ifdef IDB_LINK_TABLE
CodeAbs++; /* We have one more cell */
CodeAbs += CellPtr(lr) - CellPtr(LinkAr);
if ((CELL *)((char *)ntp0+(CELL)CodeAbs) > AuxSp) {
DBErrorFlag = OVF_ERROR_IN_DB;
return(NULL);
}
/* restore lr to NULL in case there is a TR overflow */
lr = NULL;
#endif
if ((InFlag & MkIfNot) && (found_one = check_if_wvars(p->First, NOfCells, ntp0)))
return (found_one);
} else {
#ifdef IDB_LINK_TABLE
/* make sure lr ends in 0 for check_if_nvars */
/* restore lr to NULL in case there is a TR overflow */
lr = NULL;
#endif
flag = DBNoVars;
if ((InFlag & MkIfNot) && (found_one = check_if_nvars(p->First, NOfCells, ntp0)))
return (found_one);
}
if (tofref != TmpRefBase) {
CodeAbs += TmpRefBase - tofref + 1;
if ((CELL *)((char *)ntp0+(CELL)CodeAbs) > AuxSp) {
DBErrorFlag = OVF_ERROR_IN_DB;
return(NULL);
}
flag |= DBWithRefs;
}
#ifdef IDB_LINK_TABLE
#if SIZEOF_SHORT_INT==4
if (Unsigned(CodeAbs) >= 0x400000000) {
#else
if (Unsigned(CodeAbs) >= 0x40000) {
#endif
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
#if SIZEOF_SHORT_INT==4
DBErrorMsg = "trying to store term larger than 256KB";
#else
DBErrorMsg = "trying to store term larger than 16MB";
#endif
return(NULL);
}
#endif
pp = AllocDBSpace(DBLength(CodeAbs));
if (pp == NIL) {
DBErrorFlag = OVF_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
DBErrorMsg = "heap crashed against stacks";
return(NULL);
}
pp->id = FunctorDBRef;
pp->EntryTerm = MkAtomTerm(AbsAtom((AtomEntry *)pp));
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
pp->Flags = flag;
if (flag & DBComplex) {
#ifdef IDB_LINK_TABLE
link_entry *woar;
#endif /* IDB_LINK_TABLE */
pp->NOfCells = NOfCells;
if (pp0 != pp) {
nar = pp->Contents;
#ifdef IDB_LINK_TABLE
nar = (Term *) cpcells(CellPtr(nar), ntp0, Unsigned(NOfCells));
#endif
#ifdef IDB_USE_MBIT
memcpy((void *)nar, (const void *)ntp0,
(size_t)((NOfCells+1)*sizeof(CELL)));
nar += NOfCells+1;
#endif
} else {
nar = pp->Contents + Unsigned(NOfCells);
}
#ifdef IDB_LINK_TABLE
woar = WordPtr(nar);
memcpy((void *)woar,(const void *)LinkAr,(size_t)(NOfLinks*sizeof(link_entry)));
woar += NOfLinks;
#ifdef ALIGN_LONGS
#if SIZEOF_INT_P==8
while ((Unsigned(woar) & 7) != 0)
woar++;
#else
if ((Unsigned(woar) & 3) != 0)
woar++;
#endif
#endif
nar = (Term *) (woar);
#endif
pp->Entry = (CELL) tt;
} else if (flag & DBNoVars) {
if (pp0 != pp) {
nar = (Term *) cpcells(CellPtr(pp->Contents), ntp0, Unsigned(NOfCells));
} else {
#ifdef IDB_LINK_TABLE
nar = pp->Contents + Unsigned(NOfCells)+1;
#endif
#ifdef IDB_USE_MBIT
/* we still need to link */
nar = (Term *) linkcells(ntp0, NOfCells);
#endif
}
#ifdef IDB_LINK_TABLE
linkblk(LinkAr, CellPtr(pp->Contents-1));
#endif
pp->Entry = AdjustIDBPtr(tt,Unsigned(pp->Contents)-sizeof(CELL));
pp->NOfCells = NOfCells;
}
if (flag & DBWithRefs) {
DBRef *ptr = TmpRefBase, *rfnar = (DBRef *)nar;
*rfnar++ = NULL;
while (ptr != tofref)
*rfnar++ = *--ptr;
pp->DBRefs = rfnar;
} else {
pp->DBRefs = NULL;
}
ReleasePreAllocCodeSpace((ADDR)pp0);
return (pp);
}
}
static DBRef
new_lu_index(LogUpdDBProp AtProp) {
Int cnt = AtProp->NOfEntries, i;
DBRef index = AllocDBSpace(DBLength((cnt+1)*sizeof(DBRef *)));
DBRef ref = AtProp->First;
DBRef *te;
if (index == NIL) {
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
DBErrorMsg = "could not allocate space";
return(NULL);
}
te = (DBRef *)(index->Contents);
for (i=0; i < cnt; i++) {
*te++ = ref;
ref->NOfRefsTo++;
ref = ref->Next;
}
*te = NULL;
index->id = FunctorDBRef;
index->EntryTerm = MkAtomTerm(AbsAtom((AtomEntry *)index));
index->NOfRefsTo = 0;
index->Prev = index->Next = NIL;
index->Parent = (DBProp)AtProp;
index->Flags = DBClMask|IndexMask|LogUpdMask;
index->NOfCells = cnt;
INIT_LOCK(index->lock);
INIT_DBREF_COUNT(index);
return(index);
}
static DBRef
record(int Flag, Term key, Term t_data, Term t_code)
{
Register Term twork = key;
Register DBProp p;
Register DBRef x;
#ifdef SFUNC
FathersPlace = NIL;
#endif
if (EndOfPAEntr(p = FetchDBPropFromKey(twork, Flag & MkCode, TRUE, "record/3"))) {
return(NULL);
}
if ((x = CreateDBStruct(t_data, p, Flag)) == NULL) {
return (NULL);
}
if ((Flag & MkIfNot) && found_one)
return (NULL);
TRAIL_REF(&(x->Flags));
if (x->Flags & (DBNoVars|DBComplex))
x->Mask = EvalMasks(t_data, &x->Key);
else
x->Mask = x->Key = 0;
if (Flag & MkCode)
x->Flags |= DBCode;
else
x->Flags |= DBNoCode;
x->Parent = p;
#if defined(YAPOR) || defined(THREADS)
x->Flags |= DBClMask;
x->ref_count = 1;
#else
x->Flags |= (InUseMask | DBClMask);
#endif
x->NOfRefsTo = 0;
WRITE_LOCK(p->DBRWLock);
if (p->KindOfPE & LogUpdDBBit) {
LogUpdDBProp lup = (LogUpdDBProp)p;
x->Flags |= LogUpdMask;
/* index stops being valid */
if (lup->Index != NULL) {
clean_lu_index(lup->Index);
lup->Index = NULL;
}
lup->NOfEntries++;
} else {
#ifdef KEEP_ENTRY_AGE
if (Flag & MkFirst)
x->age = -(p->age++);
else
x->age = (p->age++);
#endif /* KEEP_ENTRY_AGE */
}
if (p->First == NIL) {
p->First = p->Last = x;
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
p->FirstNEr = x;
#endif
x->Prev = x->Next = NIL;
} else if (Flag & MkFirst) {
x->Prev = NIL;
(p->First)->Prev = x;
x->Next = p->First;
p->First = x;
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
p->FirstNEr = x;
#endif
} else {
x->Next = NIL;
(p->Last)->Next = x;
x->Prev = p->Last;
p->Last = x;
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
if (p->FirstNEr == NIL)
p->FirstNEr = x;
#endif
}
if (Flag & WithRef) {
x->Code = (CODEADDR) IntegerOfTerm(t_code);
} else {
x->Code = NULL;
}
WRITE_UNLOCK(p->DBRWLock);
return (x);
}
/* recorda(+Functor,+Term,-Ref) */
static Int
p_rcda(void)
{
/* Idiotic xlc's cpp does not work with ARG1 within MkDBRefTerm */
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
DBModule = 0;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
restart_record:
TRef = MkDBRefTerm(record(MkFirst, t1, t2, Unsigned(0)));
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(3, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recorda/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recorda/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
}
/* '$recordap'(+Functor,+Term,-Ref) */
static Int
p_rcdap(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
DBModule = CurrentModule;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
restart_record:
TRef = MkDBRefTerm(record(MkFirst | MkCode, t1, t2, Unsigned(0)));
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(3, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recorda/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recorda/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
}
/* recordz(+Functor,+Term,-Ref) */
static Int
p_rcdz(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
DBModule = 0;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
restart_record:
TRef = MkDBRefTerm(record(MkLast, t1, t2, Unsigned(0)));
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(3, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recordz/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recordz/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
}
/* '$recordzp'(+Functor,+Term,-Ref) */
static Int
p_rcdzp(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
DBModule = CurrentModule;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
restart_record:
TRef = MkDBRefTerm(record(MkLast | MkCode, t1, t2, Unsigned(0)));
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(3, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recordz/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recordz/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
}
/* '$record_stat_source'(+Functor,+Term) */
static Int
p_rcdstatp(void)
{
Term t1 = Deref(ARG1), t2 = Deref(ARG2), t3 = Deref(ARG3);
int mk_first;
Term TRef;
DBModule = CurrentModule;
if (IsVarTerm(t3) || !IsIntTerm(t3))
return (FALSE);
if (IsVarTerm(t3) || !IsIntTerm(t3))
return (FALSE);
mk_first = ((IntOfTerm(t3) % 4) == 2);
restart_record:
if (mk_first)
TRef = MkDBRefTerm(record(MkFirst | MkCode, t1, t2, MkIntTerm(0)));
else
TRef = MkDBRefTerm(record(MkLast | MkCode, t1, t2, MkIntTerm(0)));
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
return (unify(ARG4,TRef));
case SOVF_ERROR_IN_DB:
if (!gc(3, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in record_stat_source/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in record_stat_source/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in record_stat_source/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
}
/* '$recordap'(+Functor,+Term,-Ref,+CRef) */
static Int
p_drcdap(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2), t4 = Deref(ARG4);
DBModule = CurrentModule;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
if (IsVarTerm(t4) || !IsIntegerTerm(t4))
return (FALSE);
restart_record:
TRef = MkDBRefTerm(record(MkFirst | MkCode | WithRef,
t1, t2, t4));
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(4, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recorda/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recorda/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
t1 = Deref(ARG1);
t2 = Deref(ARG2);
t4 = Deref(ARG4);
goto restart_record;
}
/* '$recordzp'(+Functor,+Term,-Ref,+CRef) */
static Int
p_drcdzp(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2), t4 = Deref(ARG4);
DBModule = CurrentModule;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
if (IsVarTerm(t4) || !IsIntegerTerm(t4))
return (FALSE);
restart_record:
TRef = MkDBRefTerm(record(MkLast | MkCode | WithRef,
t1, t2, t4));
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(4, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recordz/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recordz/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
t1 = Deref(ARG1);
t2 = Deref(ARG2);
t4 = Deref(ARG4);
goto restart_record;
}
/* '$recordaifnot'(+Functor,+Term,-Ref) */
static Int
p_rcdaifnot(void)
{
Term TRef;
DBRef db_ref;
restart_record:
DBModule = 0;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
found_one = NIL;
db_ref = record(MkFirst | MkIfNot, Deref(ARG1), Deref(ARG2), Unsigned(0));
if (db_ref == NULL)
return(FALSE);
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
TRef = MkDBRefTerm(db_ref);
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(3, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recordaifnot/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recordzifnot/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
goto restart_record;
}
/* '$recordzifnot'(+Functor,+Term,-Ref) */
static Int
p_rcdzifnot(void)
{
Term TRef;
DBRef db_ref;
restart_record:
DBModule = 0;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
found_one = NIL;
db_ref = record(MkLast | MkIfNot, Deref(ARG1), Deref(ARG2), Unsigned(0));
if (db_ref == NULL)
return(FALSE);
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
TRef = MkDBRefTerm(db_ref);
return (unify(ARG3, TRef));
case SOVF_ERROR_IN_DB:
if (!gc(3, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in recordaifnot/3 ]\n");
return(FALSE);
}
goto recover_record;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in recordzifnot/3 ]\n");
return(FALSE);
} else
goto recover_record;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
recover_record:
DBErrorFlag = NO_ERROR_IN_DB;
goto restart_record;
}
static Term
GetDBTerm(DBRef DBSP)
{
if (DBSP->Flags & (DBNoVars | DBAtomic))
return ((Term) DBSP->Entry);
if (DBSP->Flags & DBComplex) {
CELL *HOld = H;
CELL *HeapPtr;
CELL *pt;
CELL NOf;
pt = CellPtr(DBSP->Contents);
NOf = DBSP->NOfCells;
if (H+NOf > ASP - MinStackGap*(stack_overflows+1)) {
return((Term)0);
}
HeapPtr = cpcells(HOld, pt, NOf);
pt += HeapPtr - HOld;
H = HeapPtr;
#ifdef IDB_LINK_TABLE
{
link_entry *lp = (link_entry *)pt;
linkblk(lp, HOld-1);
}
#endif
return (AdjustIDBPtr((Term)(DBSP->Entry),Unsigned(HOld)-sizeof(CELL)));
}
return (MkVarTerm());
}
static void
init_int_keys(void) {
INT_KEYS = (Prop *)AllocCodeSpace(sizeof(Prop)*INT_KEYS_SIZE);
if (INT_KEYS != NULL) {
UInt i = 0;
Prop *p = INT_KEYS;
for (i = 0; i < INT_KEYS_SIZE; i++) {
p[0] = NIL;
p++;
}
}
}
static int
resize_int_keys(UInt new_size) {
Prop *new;
UInt i;
YAPEnterCriticalSection();
if (INT_KEYS == NULL) {
INT_KEYS_SIZE = new_size;
YAPLeaveCriticalSection();
return(TRUE);
}
new = (Prop *)AllocCodeSpace(sizeof(Prop)*new_size);
if (new == NULL) {
YAPLeaveCriticalSection();
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
DBErrorMsg = "could not allocate space";
return(FALSE);
}
for (i = 0; i < new_size; i++) {
new[i] = NIL;
}
for (i = 0; i < INT_KEYS_SIZE; i++) {
if (INT_KEYS[i] != NIL) {
Prop p0 = INT_KEYS[i];
while (p0 != NIL) {
DBProp p = RepDBProp(p0);
CELL key = (CELL)(p->FunctorOfDB);
UInt hash_key = (CELL)key % new_size;
p0 = p->NextOfPE;
p->NextOfPE = new[hash_key];
new[hash_key] = AbsDBProp(p);
}
}
}
FreeCodeSpace((char *)INT_KEYS);
INT_KEYS = new;
INT_KEYS_SIZE = new_size;
INT_KEYS_TIMESTAMP++;
if (INT_KEYS_TIMESTAMP == MAX_ABS_INT)
INT_KEYS_TIMESTAMP = 0;
YAPLeaveCriticalSection();
return(TRUE);
}
static DBProp
FetchIntDBPropFromKey(Int key, int flag, int new, char *error_mssg)
{
Functor fun = (Functor)key;
UInt hash_key = (CELL)key % INT_KEYS_SIZE;
Prop p0;
if (INT_KEYS == NULL) {
init_int_keys();
if (INT_KEYS == NULL) {
DBErrorFlag = OTHER_ERROR_IN_DB;
DBErrorNumber = SYSTEM_ERROR;
DBErrorTerm = TermNil;
DBErrorMsg = "could not allocate space";
return(NULL);
}
}
p0 = INT_KEYS[hash_key];
while (p0 != NIL) {
DBProp p = RepDBProp(p0);
if (p->FunctorOfDB == fun) return(p);
p0 = p->NextOfPE;
}
/* p is NULL, meaning we did not find the functor */
if (new) {
DBProp p;
/* create a new DBProp */
if (UPDATE_MODE == UPDATE_MODE_LOGICAL
|| (UPDATE_MODE == UPDATE_MODE_LOGICAL_ASSERT && (flag & MkCode))) {
LogUpdDBProp lup = (LogUpdDBProp) AllocAtomSpace(sizeof(*lup));
lup->KindOfPE = LogUpdDBProperty|flag;
lup->NOfEntries = 0;
lup->Index = NULL;
p = (DBProp)lup;
} else {
p = (DBProp) AllocAtomSpace(sizeof(*p));
p->KindOfPE = DBProperty|flag;
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
p->FirstNEr = NIL;
#endif
#ifdef KEEP_ENTRY_AGE
p->age = 0;
#endif /* KEEP_ENTRY_AGE */
}
p->ArityOfDB = 0;
p->First = p->Last = NIL;
p->ModuleOfDB = DBModule;
p->FunctorOfDB = fun;
p->NextOfPE = INT_KEYS[hash_key];
INIT_RWLOCK(p->DBRWLock);
INT_KEYS[hash_key] = AbsDBProp(p);
return(p);
} else {
return(RepDBProp(NULL));
}
}
static DBProp
FetchDBPropFromKey(Term twork, int flag, int new, char *error_mssg)
{
Atom At;
Int arity;
if (IsVarTerm(twork)) {
Error(INSTANTIATION_ERROR, twork, error_mssg);
return(RepDBProp(NIL));
} else if (IsAtomTerm(twork)) {
arity = 0, At = AtomOfTerm(twork);
} else if (IsIntegerTerm(twork)) {
return(FetchIntDBPropFromKey(IntegerOfTerm(twork), flag, new, error_mssg));
} else if (IsApplTerm(twork)) {
Register Functor f = FunctorOfTerm(twork);
if (IsExtensionFunctor(f)) {
Error(TYPE_ERROR_KEY, twork, error_mssg);
return(RepDBProp(NIL));
}
At = NameOfFunctor(f);
arity = ArityOfFunctor(f);
} else if (IsPairTerm(twork)) {
At = AtomDot;
arity = 2;
} else {
Error(TYPE_ERROR_KEY, twork,error_mssg);
return(RepDBProp(NIL));
}
if (new) {
DBProp p;
AtomEntry *ae = RepAtom(At);
WRITE_LOCK(ae->ARWLock);
if (EndOfPAEntr(p = RepDBProp(LockedFindDBProp(ae, flag, arity)))) {
/* create a new DBProp */
int OLD_UPDATE_MODE = UPDATE_MODE;
if (flag & MkCode) {
PredEntry *pp = RepPredProp(LockedGetPredProp(At, arity));
if (!EndOfPAEntr(pp)) {
READ_LOCK(pp->PRWLock);
if(pp->PredFlags & LogUpdatePredFlag)
UPDATE_MODE = UPDATE_MODE_LOGICAL;
READ_UNLOCK(pp->PRWLock);
}
}
if (UPDATE_MODE == UPDATE_MODE_LOGICAL
|| (UPDATE_MODE == UPDATE_MODE_LOGICAL_ASSERT && (flag & MkCode))) {
LogUpdDBProp lup = (LogUpdDBProp) AllocAtomSpace(sizeof(*lup));
lup->KindOfPE = LogUpdDBProperty|flag;
lup->NOfEntries = 0;
lup->Index = NULL;
p = (DBProp)lup;
} else {
p = (DBProp) AllocAtomSpace(sizeof(*p));
p->KindOfPE = DBProperty|flag;
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
p->FirstNEr = NIL;
#endif
#ifdef KEEP_ENTRY_AGE
p->age = 0;
#endif /* KEEP_ENTRY_AGE */
}
UPDATE_MODE = OLD_UPDATE_MODE;
p->ArityOfDB = arity;
p->First = p->Last = NIL;
p->ModuleOfDB = DBModule;
/* This is NOT standard but is QUITE convenient */
INIT_RWLOCK(p->DBRWLock);
if (arity == 0)
p->FunctorOfDB = (Functor) At;
else
p->FunctorOfDB = UnlockedMkFunctor(ae,arity);
p->NextOfPE = ae->PropOfAE;
ae->PropOfAE = AbsDBProp(p);
}
WRITE_UNLOCK(ae->ARWLock);
return(p);
} else
return(RepDBProp(FindDBProp(RepAtom(At), flag, arity)));
}
/* Finds a term recorded under the key ARG1 */
static Int
i_log_upd_recorded(LogUpdDBProp AtProp)
{
Term TermDB, TRef;
Register DBRef ref;
CELL *PreviousHeap;
CELL mask = 0, key = 0;
DBRef *ep;
DBRef table, rtable[1];
Term twork;
if (AtProp->NOfEntries == 0) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
}
else if (AtProp->NOfEntries == 1) {
ep = rtable;
ref = AtProp->First;
rtable[0] = NIL;
} else {
if (AtProp->Index == NULL) {
if((AtProp->Index = new_lu_index(AtProp)) == NULL) {
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP failed to reserve space in growheap ]\n");
cut_fail();
}
twork = Deref(ARG2);
}
}
table = AtProp->Index;
ep = (DBRef *)(table->Contents);
ref = *ep++;
}
READ_UNLOCK(AtProp->DBRWLock);
while (ref != NIL && DEAD_REF(ref))
ref = *ep++;
if (ref == NIL) {
cut_fail();
}
twork = Deref(ARG2); /* now working with ARG2 */
if (IsVarTerm(twork)) {
mask = key = 0;
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(((Int)mask));
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(((Int)key));
B->cp_h = H;
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = AbsAppl((CELL *)ep);
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
PreviousHeap = H;
twork = Deref(ARG2);
}
if (!unify(twork, TermDB)) {
cut_fail();
}
} else if (IsAtomOrIntTerm(twork)) {
mask = 0;
key = Unsigned(twork);
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(((Int)mask));
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(((Int)key));
B->cp_h = H;
do {
if (((twork == ref->Entry) || (ref->Flags & DBVar)) &&
!DEAD_REF(ref))
break;
ref =*ep++ ;
if (ref == NIL) {
cut_fail();
}
} while (TRUE);
} else {
mask = EvalMasks(twork, &key);
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(((Int)mask));
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(((Int)key));
PreviousHeap = H;
B->cp_h = H;
do {
H = PreviousHeap;
while ((mask & ref->Key) != (key & ref->Mask)) {
while ((ref = *ep++) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
cut_fail();
}
}
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = AbsAppl((CELL *)ep);
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
PreviousHeap = H;
}
if (unify(ARG2, TermDB))
break;
while ((ref = *ep++) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
cut_fail();
}
} while (TRUE);
}
/* This should be after any non-tagged terms, because the routines in grow.c
go from upper to lower addresses */
TRef = MkDBRefTerm(ref);
if (*ep == NULL) {
if (unify(ARG3, TRef)) {
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
}
#endif
cut_succeed();
} else {
cut_fail();
}
} else {
DBRef table = AtProp->Index;
EXTRA_CBACK_ARG(3,1) = AbsAppl((CELL *)ep);
#if defined(YAPOR) || defined(THREADS)
LOCK(table->lock);
TRAIL_REF(&(table->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(table);
UNLOCK(table->lock);
LOCK(ref->lock);
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(table->Flags & InUseMask)) {
table->Flags |= InUseMask;
if (B->cp_tr == TR) {
TRAIL_REF(&(table->Flags)); /* So that fail will erase it */
B->cp_tr = TR; /* protect this entry so that it will not be
undone by backtracking */
} else {
Term new;
TRAIL_REF(&(table->Flags)); /* So that fail will erase it */
/* swap this with what was pointed by the choicepoint */
new = TrailTerm(TR-1);
TrailTerm(TR-1) = TrailTerm(B->cp_tr);
TrailTerm(B->cp_tr) = new;
#if defined(TABLING) || defined(SBA)
{
CELL val;
val = TrailVal(TR-1);
TrailVal(TR-1) = TrailVal(B->cp_tr);
TrailVal(B->cp_tr) = val;
}
#endif
B->cp_tr++;
}
}
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
}
#endif
return (unify(ARG3, TRef));
}
}
static Int
p_db_key(void)
{
Register Term twork = Deref(ARG1); /* fetch the key */
DBProp AtProp;
DBModule = 0;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, 0, TRUE, "db_key/3"))) {
/* should never happen */
return(FALSE);
}
return(unify(ARG2,MkIntegerTerm((Int)AtProp)));
}
/* Finds a term recorded under the key ARG1 */
static Int
i_recorded(DBProp AtProp)
{
Term TermDB, TRef;
Register DBRef ref;
Term t3 = Deref(ARG3);
Term twork;
READ_LOCK(AtProp->DBRWLock);
if (!IsVarTerm(t3)) {
if (!IsDBRefTerm(t3)) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
} else {
DBRef ref0 = DBRefOfTerm(t3);
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
ref = AtProp->FirstNEr;
#else
ref = AtProp->First;
#endif
while (ref != NULL
&& (ref != ref0)) {
ref = NextDBRef(ref);
}
READ_UNLOCK(AtProp->DBRWLock);
if (ref == NULL || DEAD_REF(ref) || !unify(ARG2,GetDBTerm(ref))) {
cut_fail();
} else {
cut_succeed();
}
}
}
if (AtProp->KindOfPE & 0x1)
return(i_log_upd_recorded((LogUpdDBProp)AtProp));
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
ref = AtProp->FirstNEr;
#else
ref = AtProp->First;
#endif
while (ref != NULL
&& DEAD_REF(ref))
ref = NextDBRef(ref);
READ_UNLOCK(AtProp->DBRWLock);
if (ref == NULL) {
cut_fail();
}
twork = Deref(ARG2); /* now working with ARG2 */
if (IsVarTerm(twork)) {
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(0);
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(0);
B->cp_h = H;
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
twork = Deref(ARG2);
t3 = Deref(ARG3);
}
if (!unify(twork, TermDB)) {
cut_fail();
}
} else if (IsAtomOrIntTerm(twork)) {
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(0);
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm((Int)twork);
B->cp_h = H;
READ_LOCK(AtProp->DBRWLock);
do {
if (((twork == ref->Entry) || IsVarTerm(ref->Entry)) &&
!DEAD_REF(ref))
break;
ref = NextDBRef(ref);
if (ref == NIL) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
}
} while (TRUE);
READ_UNLOCK(AtProp->DBRWLock);
} else {
CELL key;
CELL mask = EvalMasks(twork, &key);
B->cp_h = H;
READ_LOCK(AtProp->DBRWLock);
do {
while ((mask & ref->Key) != (key & ref->Mask) && !DEAD_REF(ref)) {
ref = NextDBRef(ref);
if (ref == NULL) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
}
}
if ((TermDB = GetDBTerm(ref)) != (CELL)0) {
if (unify(TermDB, ARG2)) {
/* success */
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(((Int)mask));
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(((Int)key));
B->cp_h = H;
break;
} else {
while ((ref = NextDBRef(ref)) != NULL
&& DEAD_REF(ref));
if (ref == NULL) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
}
}
} else {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
READ_UNLOCK(AtProp->DBRWLock);
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(((Int)mask));
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(((Int)key));
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
READ_LOCK(AtProp->DBRWLock);
}
} while (TRUE);
READ_UNLOCK(AtProp->DBRWLock);
}
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* This should be after any non-tagged terms, because the routines in grow.c
go from upper to lower addresses */
TRef = MkDBRefTerm(ref);
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
}
#endif
return (unify(ARG3, TRef));
}
static Int
c_log_upd_recorded(DBRef *ep, int flags)
{
Term TermDB, TRef;
Register DBRef ref;
CELL *PreviousHeap = H;
CELL mask, key;
ref = *ep++;
if (ref == NIL) {
cut_fail();
}
{
Term ttmp = EXTRA_CBACK_ARG(3,2);
if (IsLongIntTerm(ttmp))
mask = (CELL)LongIntOfTerm(ttmp);
else
mask = (CELL)IntOfTerm(ttmp);
}
{
Term ttmp = EXTRA_CBACK_ARG(3,3);
if (IsLongIntTerm(ttmp))
key = (CELL)LongIntOfTerm(ttmp);
else
key = (CELL)IntOfTerm(ttmp);
}
while (ref != NIL
&& DEAD_REF(ref))
ref = *ep++;
if (ref == NIL) {
cut_fail();
}
if (mask == 0 && key == 0) { /* ARG2 is a variable */
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = AbsAppl((CELL *)ep);
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
PreviousHeap = H;
}
unify(ARG2, TermDB);
} else if (mask == 0) { /* ARG2 is a constant */
do {
if (((key == Unsigned(ref->Entry)) || (ref->Flags & DBVar)) &&
!DEAD_REF(ref))
break;
ref = *ep++;
} while (ref != NIL);
if (ref == NIL) {
cut_fail();
}
} else
do { /* ARG2 is a structure */
H = PreviousHeap;
while ((mask & ref->Key) != (key & ref->Mask)) {
while ((ref = *ep++) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
cut_fail();
}
}
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = AbsAppl((CELL *)ep);
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
PreviousHeap = H;
}
if (unify(ARG2, TermDB))
break;
while ((ref = *ep++) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
cut_fail();
}
} while (1);
TRef = MkDBRefTerm(ref);
EXTRA_CBACK_ARG(3,1) = AbsAppl((CELL *)ep);
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
}
#endif
if (!unify(ARG3, TRef))
return(FALSE); /* should never happen */
if (*ep == NULL) {
cut_succeed();
} else {
return(TRUE);
}
}
static Int
c_recorded(int flags)
{
Term TermDB, TRef;
Register DBRef ref, ref0;
CELL *PreviousHeap = H;
CELL mask, key;
Term t1;
t1 = EXTRA_CBACK_ARG(3,1);
if (!IsVarTerm(t1)) {
return(c_log_upd_recorded((DBRef *)RepAppl(t1), flags));
}
ref0 = (DBRef)t1;
READ_LOCK(ref0->Parent->DBRWLock);
ref = NextDBRef(ref0);
if (ref == NIL) {
#ifdef DISCONNECT_OLD_ENTRIES
if (ref0->Flags & ErasedMask) {
Int my_age = ref0->age;
/* we were thrown out of the hash chain */
ref = ref0->Parent->First;
/* search for an old entry */
while (ref != NIL && ref->age < my_age)
ref = ref->Next;
/* we have used the DB entry, so we can remove it now, although
first we have to make sure noone is pointing to it */
if (!DBREF_IN_USE(ref0) && (ref0->NOfRefsTo == 0)) {
/* I can't free space for a clause if it's still being pointed
to from code */
if ((ref0->Flags & DBCode) && ref0->Code) {
Clause *clau = ClauseCodeToClause(ref0->Code);
if (!CL_IN_USE(clau)) {
FreeDBSpace((char *) ref0);
}
} else {
FreeDBSpace((char *) ref0);
}
}
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
}
else
#endif
{
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
}
{
Term ttmp = EXTRA_CBACK_ARG(3,2);
if (IsLongIntTerm(ttmp))
mask = (CELL)LongIntOfTerm(ttmp);
else
mask = (CELL)IntOfTerm(ttmp);
}
{
Term ttmp = EXTRA_CBACK_ARG(3,3);
if (IsLongIntTerm(ttmp))
key = (CELL)LongIntOfTerm(ttmp);
else
key = (CELL)IntOfTerm(ttmp);
}
while (ref != NIL
&& DEAD_REF(ref))
ref = NextDBRef(ref);
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
if (mask == 0 && key == 0) { /* ARG2 is a variable */
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
PreviousHeap = H;
}
unify(ARG2, TermDB);
} else if (mask == 0) { /* ARG2 is a constant */
do {
if (((key == Unsigned(ref->Entry)) || (ref->Flags & DBVar)) &&
!DEAD_REF(ref))
break;
ref = NextDBRef(ref);
} while (ref != NIL);
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
} else
do { /* ARG2 is a structure */
H = PreviousHeap;
while ((mask & ref->Key) != (key & ref->Mask)) {
while ((ref = NextDBRef(ref)) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
}
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, CP);
PreviousHeap = H;
}
if (unify(ARG2, TermDB))
break;
while ((ref = NextDBRef(ref)) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
} while (1);
READ_UNLOCK(ref0->Parent->DBRWLock);
TRef = MkDBRefTerm(ref);
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
}
#endif
return (unify(ARG3, TRef));
}
/*
* The arguments for this 4 functions are the flags for terms which should be
* skipped
*/
/* recorded(+Functor,+Term,-Ref) */
static Int
in_rded(void)
{
DBProp AtProp;
register choiceptr b0=B;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
DBModule = 0;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, 0, FALSE, "recorded/3"))) {
if (b0 == B)
cut_fail();
else
return(FALSE);
}
return (i_recorded(AtProp));
}
/* recorded(+Functor,+Term,-Ref) */
static Int
in_rded_with_key(void)
{
DBProp AtProp = (DBProp)IntegerOfTerm(Deref(ARG1));
return (i_recorded(AtProp));
}
static Int
co_rded(void)
{
DBModule = 0;
return (c_recorded(0));
}
/* '$recordedp'(+Functor,+Term,-Ref) */
static Int
in_rdedp(void)
{
DBProp AtProp;
register choiceptr b0=B;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
DBModule = CurrentModule;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, MkCode, FALSE, "recorded/3"))) {
if (b0 == B)
cut_fail();
else
return(FALSE);
}
return (i_recorded(AtProp));
}
static Int
co_rdedp(void)
{
DBModule = CurrentModule;
return (c_recorded(MkCode));
}
/* '$some_recordedp'(Functor) */
static Int
p_somercdedp(void)
{
Register DBRef ref;
DBProp AtProp;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
DBModule = CurrentModule;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, MkCode, FALSE, "some_recorded/3"))) {
return(FALSE);
}
READ_LOCK(AtProp->DBRWLock);
ref = FrstDBRef(AtProp);
while (ref != NIL && (ref->Flags & (DBNoCode | ErasedMask)))
ref = NextDBRef(ref);
READ_UNLOCK(AtProp->DBRWLock);
if (ref == NIL)
return (FALSE);
else
return (TRUE);
}
/* Finds the first instance recorded under key ARG1 */
static Int
p_first_instance(void)
{
Term TRef;
Register DBRef ref;
DBProp AtProp;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
Term TermDB;
ARG3 = Deref(ARG3);
if (!IsVarTerm(ARG3)) {
cut_fail();
}
DBModule = CurrentModule;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, 0, FALSE, "first_instance/3"))) {
return(FALSE);
}
READ_LOCK(AtProp->DBRWLock);
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
ref = AtProp->FirstNEr;
#else
ref = AtProp->First;
#endif
while (ref != NIL
&& (ref->Flags & (DBCode | ErasedMask)))
ref = NextDBRef(ref);
READ_UNLOCK(AtProp->DBRWLock);
if (ref == NIL) {
cut_fail();
}
TRef = MkDBRefTerm(ref);
/* we have a pointer to the term available */
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
}
#endif
while ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* oops, we are in trouble, not enough stack space */
gc(3, ENV, P);
}
if (IsVarTerm(TermDB)) {
unify(TermDB, ARG2);
} else {
return(unify(ARG2, TermDB));
}
return(unify(ARG3, TRef));
}
/*
* This is called when we are erasing a data base clause, because we may have
* pending references
*/
static void
ErasePendingRefs(DBRef entryref)
{
CELL *cp;
DBRef ref;
if (!(entryref->Flags & DBWithRefs))
return;
cp = CellPtr(entryref->DBRefs);
while ((ref = (DBRef)(*--cp)) != NULL) {
if ((ref->Flags & DBClMask) && (--(ref->NOfRefsTo) == 0)
&& (ref->Flags & ErasedMask))
ErDBE(ref);
}
}
inline static void
RemoveDBEntry(DBRef entryref)
{
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
DBProp pp = entryref->Parent;
#endif
ErasePendingRefs(entryref);
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
if (entryref->Prev == NIL) {
if (entryref->Next == NIL) {
pp->First = pp->Last = NIL;
} else {
(entryref->Next)->Prev = NIL;
pp->First = entryref->Next;
}
} else if (entryref->Next == NIL) {
pp->Last = entryref->Prev;
(entryref->Prev)->Next = NIL;
}
else {
(entryref->Prev)->Next = entryref->Next;
(entryref->Next)->Prev = entryref->Prev;
}
#endif
#ifdef DISCONNECT_OLD_ENTRIES
if (entryref->Flags & LogUpdMask) {
if (entryref->Flags & IndexMask)
clean_lu_index(entryref);
else
FreeDBSpace((char *) entryref);
} else {
/* We may be backtracking back to a deleted entry. If we just remove
the space then the info on the entry may be corrupt. */
if ((B->cp_ap == RETRY_C_RECORDED_CODE
|| B->cp_ap == RETRY_C_RECORDED_K_CODE
|| B->cp_ap == RETRY_C_DRECORDED_CODE
|| B->cp_ap == RETRY_C_RECORDEDP_CODE) &&
EXTRA_CBACK_ARG(3,1) == (CELL)entryref)
/* make it clear the entry has been released */
#if defined(YAPOR) || defined(THREADS)
DEC_DBREF_COUNT(entryref);
#else
entryref->Flags &= ~InUseMask;
#endif
else
#endif
{
FreeDBSpace((char *) entryref);
}
}
}
static void
clean_lu_index(DBRef index) {
DBRef *te = (DBRef *)(index->Contents);
DBRef ref;
LOCK(index->lock);
if (DBREF_IN_USE(index)) {
index->Flags |= ErasedMask;
UNLOCK(index->lock);
return;
}
while ((ref = *te++) != NULL) {
LOCK(ref->lock);
/* note that the first element of the conditional generates a
side-effect, and should never be swapped around with the other */
if ( --(ref->NOfRefsTo) == 0 && (ref->Flags & ErasedMask)) {
if (!DBREF_IN_USE(ref)) {
UNLOCK(ref->lock);
RemoveDBEntry(ref);
} else
UNLOCK(ref->lock);
} else
UNLOCK(ref->lock);
}
UNLOCK(index->lock);
/* can I get rid of this index? */
FreeDBSpace((char *)index);
}
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
/*
* Check if the clause is still in his father chain, that might not be true
* if an abolish had happened after the clause was removed
*/
/* pred is already locked */
inline static int
StillInChain(CODEADDR cl, PredEntry *pred)
{
register CODEADDR base, end;
if (!(pred->PredFlags & DynamicPredFlag))
return (FALSE);
base = pred->FirstClause;
end = pred->LastClause;
while (cl != base) {
if (base == end)
return (FALSE);
base = NextClause(base);
}
return (TRUE);
}
#endif /* KEEP_OLD_ENTRIES_HANGING_ABOUT */
#ifdef DISCONNECT_OLD_ENTRIES
static yamop *
find_next_clause(DBRef ref0)
{
Register DBRef ref;
Int my_age;
yamop *newp;
/* fetch ref0 from the instruction we just started executing */
#ifdef DEBUG
if (!(ref0->Flags & ErasedMask)) {
Error(SYSTEM_ERROR, TermNil, "find_next_clause (dead clause %x)", ref0);
return(NIL);
}
#endif
my_age = ref0->age;
/* we were thrown out of the hash chain */
ref = ref0->Parent->First;
/* search for an newer entry that is to the left and points to code */
while (ref != NIL && (ref->age < my_age || !(ref->Flags & DBCode)))
ref = ref->Next;
/* no extra alternatives to try, let us leave gracefully */
if (ref == NIL) {
return(NIL);
} else {
/* OK, we found a clause we can jump to, do a bit of hanky pancking with
the choice-point, so that it believes we are actually working from that
clause */
newp = (yamop *)(ref->Code);
/* and next let's tell the world this clause is being used, just
like if we were executing a standard retry_and_mark */
#if defined(YAPOR) || defined(THREADS)
{
Clause *cl = ClauseCodeToClause(newp);
LOCK(cl->ClLock);
TRAIL_REF(&(cl->ClFlags));
INC_DBREF_COUNT(cl);
UNLOCK(cl->ClLock);
}
#else
if (!DynamicFlags(newp) & InUseMask) {
DynamicFlags(newp) |= InUseMask;
TRAIL_REF(&DynamicFlags(newp));
}
#endif
return(newp);
}
}
/* This procedure is called when a clause is officialy deleted. Its job
is to find out where the code can go next, if it can go anywhere */
static Int
jump_to_next_dynamic_clause(void)
{
DBRef ref = (DBRef)(DBRef)(((yamop *)((CODEADDR)P-(CELL)NEXTOP((yamop *)NIL,sla)))->u.sla.l2);
yamop *newp = find_next_clause(ref);
if (newp == (yamop *)NULL) {
cut_fail();
}
/* the next alternative to try must be obtained from this clause */
B->cp_ap = newp;
/* and next, enter the clause */
P = NEXTOP(newp,ld);
/* and return like if nothing had happened. */
return(TRUE);
}
#endif /* DISCONNECT_OLD_ENTRIES */
static void
EraseLogUpdCl(Clause *clau)
{
if (clau->ClFlags & IndexMask) {
RemoveLogUpdIndex(clau);
} else {
if (clau->ClFlags & LogUpdRuleMask) {
if (clau->u2.ClExt->u.EC.ClRefs > 0)
return;
} else if (clau->u2.ClUse > 0)
return;
FreeCodeSpace((char *)clau);
}
}
static void
MyEraseClause(Clause *clau)
{
DBRef ref;
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
DBRef next, previous;
DBProp father;
PredEntry *pred;
unsigned int arity;
Atom name;
#endif
SMALLUNSGN clmask;
if (CL_IN_USE(clau))
return;
clmask = clau->ClFlags;
if (clmask & LogUpdMask) {
EraseLogUpdCl(clau);
return;
}
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
/* after the fail we have a DBRef */
ref = (DBRef) NEXTOP(clau->ClCode,ld)->u.d.d;
if (DBREF_IN_USE(ref))
return;
next = ref->Next;
previous = ref->Prev;
while (next != NIL && next->Flags & DBNoCode)
next = next->Next;
while (previous != NIL && previous->Flags & DBNoCode)
previous = previous->Prev;
if (previous != NIL && next != NIL) {
yamop *previous_code = (yamop *)previous->Code;
previous_code->u.ld.d = next->Code;
} else {
father = ref->Parent;
if ((arity = father->ArityOfDB) == 0)
name = (Atom) father->FunctorOfDB;
else
name = NameOfFunctor(father->FunctorOfDB);
DBModule = father->ModuleOfDB;
pred = RepPredProp(PredProp(name, arity));
WRITE_LOCK(pred->PRWLock);
if (StillInChain((CODEADDR)(clau->ClCode), pred)) {
if (previous == NIL && next != NIL) {
CODEADDR second;
yamop *last;
second = NextClause(pred->FirstClause);
pred->FirstClause = second;
last = (yamop *)(pred->CodeOfPred);
last->u.ld.d = second;
} else if (previous != NIL) {
yamop *previousoflast = (yamop *)(previous->Code);
pred->LastClause = (CODEADDR)previousoflast;
previousoflast->u.ld.d = pred->CodeOfPred;
} else {
FreeCodeSpace(((char *) ClauseCodeToClause(pred->CodeOfPred)));
pred->LastClause = pred->FirstClause = NIL;
p->OpcodeOfPred = UNDEF_OPCODE;
p->TrueCodeOfPred = p->CodeOfPred =
(CODEADDR)(&(p->OpcodeOfPred));
}
}
}
if ( P == clau->ClCode) {
yamop *nextto;
P = (yamop *)(RTRYCODE);
nextto = (yamop *)RTRYCODE;
nextto->u.ld.d = clau->ClCode->u.ld.d;
nextto->u.ld.s = clau->ClCode->u.ld.s;
nextto->u.ld.p = clau->ClCode->u.ld.p;
}
WRITE_LOCK(pred->PRWLock);
#endif /* KEEP_OLD_ENTRIES_HANGING_ABOUT */
#ifdef DISCONNECT_OLD_ENTRIES
/*
I don't need to lock the clause at this point because
I am the last one using it anyway.
*/
ref = (DBRef) NEXTOP(clau->ClCode,ld)->u.sla.l2;
/* don't do nothing if the reference is still in use */
if (DBREF_IN_USE(ref))
return;
if ( P == clau->ClCode ) {
yamop *np = (yamop *)RTRYCODE;
/* make it the next alternative */
np->u.ld.d = (CODEADDR)find_next_clause((DBRef)(NEXTOP(P,ld)->u.sla.l2));
if (np->u.ld.d == NULL)
P = (yamop *)FAILCODE;
else {
/* with same arity as before */
np->u.ld.s = P->u.ld.s;
np->u.ld.p = P->u.ld.p;
/* go ahead and try this code */
P = np;
}
} else {
#endif /* DISCONNECT_OLD_ENTRIES */
FreeCodeSpace((char *)clau);
#ifdef DEBUG
if (ref->NOfRefsTo)
YP_fprintf(YP_stderr, "Error: references to dynamic clause\n");
#endif
RemoveDBEntry(ref);
#if DISCONNECT_OLD_ENTRIES
}
#endif
}
/*
This predicate is supposed to be called with a
lock on the current predicate
*/
void
ErCl(Clause *clau)
{
MyEraseClause(clau);
}
#define TRYCODE(G,F,N) ( (N)<5 ? (op_numbers)((int)(F)+(N)*3) : G)
static void
PrepareToEraseLogUpdClause(Clause *clau, DBRef dbr)
{
yamop *code_p = clau->ClCode;
PredEntry *p = (PredEntry *)(code_p->u.ld.p);
CODEADDR cl = (CODEADDR)(code_p);
WRITE_LOCK(p->PRWLock);
if (p->FirstClause != cl) {
/* we are not the first clause... */
yamop *prev_code_p = (yamop *)(dbr->Prev->Code);
prev_code_p->u.ld.d = code_p->u.ld.d;
/* are we the last? */
if (p->LastClause == cl)
p->LastClause = (CODEADDR)prev_code_p;
} else {
/* we are the first clause, what about the last ? */
if (p->LastClause == p->FirstClause) {
p->LastClause = p->FirstClause = NIL;
} else {
p->FirstClause = code_p->u.ld.d;
((yamop *)(p->FirstClause))->opc =
opcode(TRYCODE(_try_me, _try_me0, p->ArityOfPE));
}
}
dbr->Code = NULL; /* unlink the two now */
if (p->PredFlags & IndexedPredFlag) {
RemoveIndexation(p);
} else {
if (!(clau->ClFlags & InUseMask))
EraseLogUpdCl(clau);
}
if (p->FirstClause == p->LastClause) {
if (p->FirstClause != NIL) {
code_p = (yamop *)(p->FirstClause);
code_p->u.ld.d = p->FirstClause;
p->TrueCodeOfPred = (CODEADDR)NEXTOP(code_p, ld);
if (p->PredFlags & SpiedPredFlag) {
p->OpcodeOfPred = opcode(_spy_pred);
p->CodeOfPred = (CODEADDR)(&(p->OpcodeOfPred));
p->StateOfPred = StaticMask | SpiedMask;
} else {
p->CodeOfPred = p->TrueCodeOfPred;
p->OpcodeOfPred = ((yamop *)(p->TrueCodeOfPred))->opc;
p->StateOfPred = StaticMask;
}
} else {
p->OpcodeOfPred = UNDEF_OPCODE;
p->TrueCodeOfPred = p->CodeOfPred = (CODEADDR)(&(p->OpcodeOfPred));
}
} else {
if (p->PredFlags & SpiedPredFlag) {
p->OpcodeOfPred = opcode(_spy_pred);
p->CodeOfPred = (CODEADDR)(&(p->OpcodeOfPred));
} else {
p->OpcodeOfPred = INDEX_OPCODE;
p->CodeOfPred = (CODEADDR)(&(p->OpcodeOfPred));
}
}
WRITE_UNLOCK(p->PRWLock);
}
static void
PrepareToEraseClause(Clause *clau, DBRef dbr)
{ yamop *code_p;
/* no need to erase what has been erased */
if (clau->ClFlags & ErasedMask)
return;
clau->ClFlags |= ErasedMask;
if (clau->ClFlags & LogUpdMask) {
PrepareToEraseLogUpdClause(clau, dbr);
return;
}
/* skip mask */
code_p = clau->ClCode;
/* skip retry instruction */
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
code_p = NEXTOP(code_p, ld);
/* in this case, a fail will send you back to the next clause */
code_p->opc = opcode(_op_fail);
code_p->u.d.d = (CODEADDR)(dbr);
#endif
#ifdef DISCONNECT_OLD_ENTRIES
/* we can remove the entry from the list of alternatives for the
goal immediately */
{
DBProp father;
Int arity;
Atom name;
PredEntry *pred;
/* first we get the next clause */
CODEADDR next = code_p->u.ld.d;
/* then we get the previous clause */
CODEADDR previous = (CODEADDR)(clau->u.ClPrevious);
CODEADDR clau_code;
/* next we check if we still have clauses left in the chain */
if (previous != next) {
yamop *previous_code = (yamop *)previous;
Clause *next_cl = ClauseCodeToClause(next);
/* we do, let's say the previous now backtracks to the next */
previous_code->u.ld.d = next;
/* and tell next who it is the previous element */
next_cl->u.ClPrevious = previous_code;
}
/* that's it about setting up the code, now let's tell the
predicate entry that a clause left. */
father = dbr->Parent;
/* inefficient, but that will do for the moment, sir. */
if ((arity = father->ArityOfDB) == 0)
name = (Atom) father->FunctorOfDB;
else
name = NameOfFunctor(father->FunctorOfDB);
DBModule = father->ModuleOfDB;
pred = RepPredProp(PredProp(name, arity));
WRITE_LOCK(pred->PRWLock);
/* got my pred entry, let's have some fun! */
clau_code = (CODEADDR)(clau->ClCode);
if (pred->FirstClause == pred->LastClause) {
#ifdef DEBUG
if (pred->FirstClause != clau_code) {
/* sanity check */
Error(SYSTEM_ERROR, TermNil, "Prepare to erase clause for %s/%d",RepAtom(name)->StrOfAE,arity);
return;
}
#endif
/* nothing left here, let's clean the shop */
FreeCodeSpace(((char *) ClauseCodeToClause(pred->CodeOfPred)));
pred->LastClause = pred->FirstClause = NIL;
pred->OpcodeOfPred = UNDEF_OPCODE;
pred->TrueCodeOfPred = pred->CodeOfPred =
(CODEADDR)(&(pred->OpcodeOfPred));
} else if (clau_code == pred->FirstClause) {
pred->FirstClause = next;
} else if (clau_code == pred->LastClause) {
pred->LastClause = previous;
}
WRITE_UNLOCK(pred->PRWLock);
}
/* make sure we don't directly point to anyone else */
code_p->u.ld.d = (CODEADDR)code_p;
/* now, put some code so that backtracks to here will survive */
code_p = NEXTOP(code_p, ld);
/* in this case, a failed clause should go to the data base and find
out what is the next clause, if there is one */
code_p->opc = opcode(_call_cpred);
code_p->u.sla.l = (CODEADDR)(&jump_to_next_dynamic_clause);
code_p->u.sla.l2 = (CODEADDR)(dbr);
#endif /* DISCONNECT_OLD_ENTRIES */
}
void
ErDBE(DBRef entryref)
{
if ((entryref->Flags & DBCode) && entryref->Code) {
Clause *clau = ClauseCodeToClause(entryref->Code);
LOCK(clau->ClLock);
if (CL_IN_USE(clau) || entryref->NOfRefsTo != 0) {
PrepareToEraseClause(clau, entryref);
UNLOCK(clau->ClLock);
} else {
if (!(clau->ClFlags & ErasedMask))
PrepareToEraseClause(clau, entryref);
UNLOCK(clau->ClLock);
/* the clause must have left the chain */
MyEraseClause(clau);
}
} else if (!(DBREF_IN_USE(entryref))) {
if (entryref->NOfRefsTo == 0)
RemoveDBEntry(entryref);
else if (!(entryref->Flags & ErasedMask)) {
/* oops, I cannot remove it, but I at least have to tell
the world what's going on */
entryref->Flags |= ErasedMask;
#ifdef DISCONNECT_OLD_ENTRIES
entryref->Next = entryref->Prev = NIL;
#endif
}
}
}
static void
EraseEntry(DBRef entryref)
{
DBProp p;
if (entryref->Flags & ErasedMask)
return;
entryref->Flags |= ErasedMask;
/* update FirstNEr */
p = entryref->Parent;
if (p->KindOfPE & LogUpdDBBit) {
LogUpdDBProp lup = (LogUpdDBProp)p;
lup->NOfEntries--;
if (lup->Index != NULL) {
clean_lu_index(lup->Index);
lup->Index = NULL;
}
}
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
if (p->FirstNEr == entryref) {
DBRef q = entryref->Next;
while (q != NIL && (q->Flags & ErasedMask))
q = q->Next;
p->FirstNEr = q;
}
#endif /* KEEP_OLD_ENTRIES_HANGING_ABOUT */
#ifdef DISCONNECT_OLD_ENTRIES
/* exit the db chain */
if (entryref->Next != NIL) {
entryref->Next->Prev = entryref->Prev;
} else {
p->Last = entryref->Prev;
}
if (entryref->Prev != NIL)
entryref->Prev->Next = entryref->Next;
else
p->First = entryref->Next;
/* make sure we know the entry has been removed from the list */
entryref->Next = NIL;
#endif /* DISCONNECT_OLD_ENTRIES */
if (!DBREF_IN_USE(entryref)) {
ErDBE(entryref);
} else if ((entryref->Flags & DBCode) && entryref->Code) {
PrepareToEraseClause(ClauseCodeToClause(entryref->Code), entryref);
}
}
/* erase(+Ref) */
static Int
p_erase(void)
{
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
Error(INSTANTIATION_ERROR, t1, "erase");
return (FALSE);
}
if (!IsDBRefTerm(t1)) {
Error(TYPE_ERROR_DBREF, t1, "erase");
return (FALSE);
}
EraseEntry(DBRefOfTerm(t1));
return (TRUE);
}
/* eraseall(+Key) */
static Int
p_eraseall(void)
{
Register Term twork = Deref(ARG1);
Register DBRef entryref;
DBProp p;
DBModule = 0;
if (EndOfPAEntr(p = FetchDBPropFromKey(twork, 0, FALSE, "eraseall/3"))) {
return(TRUE);
}
WRITE_LOCK(p->DBRWLock);
if (p->KindOfPE & LogUpdDBBit) {
LogUpdDBProp lup = (LogUpdDBProp)p;
lup->NOfEntries = 0;
if (lup->Index != NULL) {
clean_lu_index(lup->Index);
lup->Index = NULL;
}
}
entryref = FrstDBRef(p);
do {
DBRef next_entryref;
while (entryref != NIL &&
(entryref->Flags & (DBCode | ErasedMask)))
entryref = NextDBRef(entryref);
if (entryref == NIL)
break;
next_entryref = NextDBRef(entryref);
#ifdef DISCONNECT_OLD_ENTRIES
/* exit the db chain */
if (entryref->Next != NIL) {
entryref->Next->Prev = entryref->Prev;
} else {
p->Last = entryref->Prev;
}
if (entryref->Prev != NIL)
entryref->Prev->Next = entryref->Next;
else
p->First = entryref->Next;
/* make sure we know the entry has been removed from the list */
entryref->Next = entryref->Prev = NIL;
#endif
if (!DBREF_IN_USE(entryref))
ErDBE(entryref);
else {
entryref->Flags |= ErasedMask;
}
entryref = next_entryref;
} while (entryref != NIL);
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
RepDBProp(AtProp)->FirstNEr = NIL;
#endif
WRITE_UNLOCK(p->DBRWLock);
return (TRUE);
}
/* erased(+Ref) */
static Int
p_erased(void)
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Error(INSTANTIATION_ERROR, t, "erased");
return (FALSE);
}
if (!IsDBRefTerm(t)) {
Error(TYPE_ERROR_DBREF, t, "erased");
return (FALSE);
}
return (DBRefOfTerm(t)->Flags & ErasedMask);
}
/* instance(+Ref,?Term) */
static Int
p_instance(void)
{
Term TermDB;
Term t1 = Deref(ARG1);
if (IsVarTerm(t1) || !IsDBRefTerm(t1))
return (FALSE);
while ((TermDB = GetDBTerm(DBRefOfTerm(t1))) == (CELL)0) {
/* oops, we are in trouble, not enough stack space */
gc(2, ENV, P);
t1 = Deref(ARG1);
}
return (unify(ARG2, TermDB));
}
inline static int
NotActiveDB(DBRef my_dbref)
{
while (my_dbref && (my_dbref->Flags & (DBCode | ErasedMask)))
my_dbref = my_dbref->Next;
return (my_dbref == NIL);
}
inline static DBEntry *
NextDBProp(PropEntry *pp)
{
while (!EndOfPAEntr(pp) && (((pp->KindOfPE & ~ 0x1) != DBProperty) ||
NotActiveDB(((DBProp) pp)->First)))
pp = RepProp(pp->NextOfPE);
return ((DBEntry *)pp);
}
static Int
init_current_key(void)
{ /* current_key(+Atom,?key) */
Int i = 0;
DBEntry *pp;
Atom a;
Term t1 = ARG1;
t1 = Deref(ARG1);
if (!IsVarTerm(t1)) {
if (IsAtomTerm(t1))
a = AtomOfTerm(t1);
else {
cut_fail();
}
} else {
/* ask for the first hash line */
while (TRUE) {
READ_LOCK(HashChain[i].AERWLock);
a = HashChain[i].Entry;
if (a != NIL) {
break;
}
READ_UNLOCK(HashChain[i].AERWLock);
i++;
}
READ_UNLOCK(HashChain[i].AERWLock);
}
READ_LOCK(RepAtom(a)->ARWLock);
pp = NextDBProp(RepProp(RepAtom(a)->PropOfAE));
READ_UNLOCK(RepAtom(a)->ARWLock);
EXTRA_CBACK_ARG(2,3) = MkAtomTerm(a);
EXTRA_CBACK_ARG(2,2) = MkIntTerm(i);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)pp);
return (cont_current_key());
}
static Int
cont_current_key(void)
{
unsigned int arity;
Functor functor;
Term term, AtT;
Atom a;
Int i = IntegerOfTerm(EXTRA_CBACK_ARG(2,2));
Term first = Deref(ARG1);
DBEntry *pp = (DBEntry *) IntegerOfTerm(EXTRA_CBACK_ARG(2,1));
if (IsIntTerm(term = EXTRA_CBACK_ARG(2,3)))
return(cont_current_key_integer());
a = AtomOfTerm(term);
if (EndOfPAEntr(pp) && IsAtomTerm(first)) {
cut_fail();
}
while (EndOfPAEntr(pp)) {
UInt j;
if ((a = RepAtom(a)->NextOfAE) == NIL) {
i++;
while (i < MaxHash) {
/* protect current hash table line, notice that the current
LOCK/UNLOCK algorithm assumes new entries are added to
the *front* of the list, otherwise I should have locked
earlier.
*/
READ_LOCK(HashChain[i].AERWLock);
a = HashChain[i].Entry;
if (a != NIL) {
break;
}
/* move to next entry */
READ_UNLOCK(HashChain[i].AERWLock);
i++;
}
if (i == MaxHash) {
/* we have left the atom hash table */
/* we don't have a lock over the hash table aany longer */
if (IsAtomTerm(first)) {
cut_fail();
}
j = 0;
if (INT_KEYS == NULL) {
cut_fail();
}
for(j = 0; j < INT_KEYS_SIZE; j++) {
if (INT_KEYS[j] != NIL) {
DBProp pptr = RepDBProp(INT_KEYS[j]);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)(pptr->NextOfPE));
EXTRA_CBACK_ARG(2,2) = MkIntegerTerm(j+1);
EXTRA_CBACK_ARG(2,3) = MkIntTerm(INT_KEYS_TIMESTAMP);
term = MkIntegerTerm((Int)(pptr->FunctorOfDB));
return(unify(term,ARG1) && unify(term,ARG2));
}
}
if (j == INT_KEYS_SIZE) {
cut_fail();
}
return(cont_current_key_integer());
} else {
/* release our lock over the hash table */
READ_UNLOCK(HashChain[i].AERWLock);
EXTRA_CBACK_ARG(2,2) = MkIntTerm(i);
}
}
READ_LOCK(RepAtom(a)->ARWLock);
if (!EndOfPAEntr(pp = NextDBProp(RepProp(RepAtom(a)->PropOfAE))))
EXTRA_CBACK_ARG(2,3) = (CELL) MkAtomTerm(a);
READ_UNLOCK(RepAtom(a)->ARWLock);
}
READ_LOCK(RepAtom(a)->ARWLock);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)NextDBProp(RepProp(pp->NextOfPE)));
READ_UNLOCK(RepAtom(a)->ARWLock);
arity = (unsigned int)(pp->ArityOfDB);
if (arity == 0) {
term = AtT = MkAtomTerm(a);
} else {
unsigned int j;
CELL *p = H;
for (j = 0; j < arity; j++) {
p[j] = MkVarTerm();
}
functor = MkFunctor(a, arity);
term = MkApplTerm(functor, arity, p);
AtT = MkAtomTerm(a);
}
return (unify_constant(ARG1, AtT) && unify(ARG2, term));
}
static Int
cont_current_key_integer(void)
{
Term term;
UInt i = IntOfTerm(EXTRA_CBACK_ARG(2,2));
Prop pp = (Prop)IntegerOfTerm(EXTRA_CBACK_ARG(2,1));
UInt tstamp = (UInt)IntOfTerm(EXTRA_CBACK_ARG(2,3));
DBProp pptr;
if (tstamp != INT_KEYS_TIMESTAMP) {
cut_fail();
}
while (pp == NIL) {
for(;i < INT_KEYS_SIZE; i++) {
if (INT_KEYS[i] != NIL) {
EXTRA_CBACK_ARG(2,2) = MkIntTerm(i+1);
pp = INT_KEYS[i];
break;
}
}
if (i == INT_KEYS_SIZE) {
cut_fail();
}
}
pptr = RepDBProp(pp);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)(pptr->NextOfPE));
term = MkIntegerTerm((Int)(pptr->FunctorOfDB));
return(unify(term,ARG1) && unify(term,ARG2));
}
Term
FetchTermFromDB(DBRef ref, int args)
{
Term TDB;
while ((TDB = GetDBTerm(ref)) == (CELL)0) {
/* oops, we are in trouble, not enough stack space */
gc(args, ENV, P);
}
return(TDB);
}
void
ReleaseTermFromDB(DBRef ref)
{
FreeDBSpace((char *)ref);
}
DBRef
StoreTermInDB(Term t, int nargs)
{
DBRef x;
while ((x = CreateDBStruct(t, (DBProp)NIL,
InQueue)) == NULL) {
switch(DBErrorFlag) {
case NO_ERROR_IN_DB:
#ifdef DEBUG
Abort("[ SYSTEM ERROR: no error but null return in enqueue/2 ]\n");
#endif
break;
case SOVF_ERROR_IN_DB:
if (!gc(nargs, ENV, P)) {
Abort("[ SYSTEM ERROR: YAP could not grow stack in enqueue/2 ]\n");
return(FALSE);
} else
break;
case TOVF_ERROR_IN_DB:
Abort("[ SYSTEM ERROR: YAP could not grow trail in recorda/3 ]\n");
return(FALSE);
case OVF_ERROR_IN_DB:
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP could not grow heap in enqueue/2 ]\n");
return(FALSE);
} else
break;
default:
Error(DBErrorNumber, DBErrorTerm, DBErrorMsg);
return(FALSE);
}
}
return(x);
}
static Int
p_init_queue(void)
{
db_queue *dbq;
Term t;
while ((dbq = (db_queue *)AllocDBSpace(sizeof(db_queue))) == NIL) {
if (!growheap(FALSE)) {
Abort("[ SYSTEM ERROR: YAP failed to reserve space in growheap ]\n");
return(FALSE);
}
}
dbq->id = FunctorDBRef;
dbq->EntryTerm = MkAtomTerm(AbsAtom((AtomEntry *)dbq));
dbq->Flags = DBClMask;
dbq->FirstInQueue = dbq->LastInQueue = NIL;
INIT_RWLOCK(dbq->QRWLock);
t = MkDBRefTerm((DBRef)dbq);
return(unify(ARG1, t));
}
static Int
p_enqueue(void)
{
Term Father = Deref(ARG1);
DBRef x;
db_queue *father_key;
if (IsVarTerm(Father)) {
Error(INSTANTIATION_ERROR, Father, "enqueue");
return(FALSE);
} else if (!IsDBRefTerm(Father)) {
Error(TYPE_ERROR_DBREF, Father, "enqueue");
return(FALSE);
} else
father_key = (db_queue *)DBRefOfTerm(Father);
x = StoreTermInDB(Deref(ARG2), 2);
WRITE_LOCK(father_key->QRWLock);
if (father_key->LastInQueue != NIL)
father_key->LastInQueue->Parent = (DBProp)x;
father_key->LastInQueue = x;
if (father_key->FirstInQueue == NIL)
father_key->FirstInQueue = x;
WRITE_UNLOCK(father_key->QRWLock);
return(TRUE);
}
/* when reading an entry in the data base we are making it accessible from
the outside. If the entry was removed, and this was the last pointer, the
target entry would be immediately removed, leading to dangling pointers.
We avoid this problem by making every entry accessible.
Note that this could not happen with recorded, because the original db
entry itself is still accessible from a trail entry, so we could not remove
the target entry,
*/
static void
keepdbrefs(DBRef entryref)
{
DBRef *cp;
DBRef ref;
if (!(entryref->Flags & DBWithRefs))
return;
cp = entryref->DBRefs;
while ((ref = *--cp) != NIL) {
LOCK(ref->lock);
if(!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(&(ref->Flags)); /* So that fail will erase it */
}
UNLOCK(ref->lock);
}
}
static Int
p_dequeue(void)
{
db_queue *father_key;
DBRef cur_instance;
Term Father = Deref(ARG1);
if (IsVarTerm(Father)) {
Error(INSTANTIATION_ERROR, Father, "dequeue");
return(FALSE);
} else if (!IsDBRefTerm(Father)) {
Error(TYPE_ERROR_DBREF, Father, "dequeue");
return(FALSE);
} else
father_key = (db_queue *)DBRefOfTerm(Father);
WRITE_LOCK(father_key->QRWLock);
if ((cur_instance = father_key->FirstInQueue) == NIL) {
/* an empty queue automatically goes away */
WRITE_UNLOCK(father_key->QRWLock);
FreeDBSpace((char *) father_key);
return(FALSE);
} else {
Term TDB;
DBRef tref = father_key->FirstInQueue;
if (cur_instance == father_key->LastInQueue)
father_key->FirstInQueue = father_key->LastInQueue = NIL;
else
father_key->FirstInQueue = (DBRef)(cur_instance->Parent);
WRITE_UNLOCK(father_key->QRWLock);
TDB = FetchTermFromDB(tref, 2);
/* release space for cur_instance */
keepdbrefs(cur_instance);
ErasePendingRefs(cur_instance);
FreeDBSpace((char *) cur_instance);
return(unify(ARG2, TDB));
}
}
/*
This is a hack, to steal the first element of a key.
It first fetches the first element in the chain, and then erases it
through its reference.
Be careful when using this routine. It is especially evil because if
the term is ground it should be copied to the stack, as space for
the entry may be deleted. For the moment, the terms I want are just
integers, so no problemo, amigo.
*/
static Term
StealFirstFromDB(Atom key, Int arity)
{
Prop AtProp;
Register DBRef ref;
Term TermDB;
Term out;
/* get the DB property */
if ((AtProp = FindDBProp(RepAtom(key), 0, arity)) == NIL) {
return(TermNil);
}
/* get the first entry */
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
ref = RepDBProp(AtProp)->FirstNEr;
#else
ref = RepDBProp(AtProp)->First;
#endif
/* is there anyone home ? */
while (ref != NIL
&& (ref->Flags & (DBCode | ErasedMask)))
ref = NextDBRef(ref);
if (ref == NIL) {
return(TermNil);
}
/* get our fine term */
if ((TermDB = GetDBTerm(ref)) == (CELL)0) {
/* oops, we are in trouble, not enough stack space */
return(TermNil);
}
if (IsVarTerm(TermDB) || !IsApplTerm(TermDB))
/* it's not a wonderful world afterall */
return(TermNil);
out = ArgOfTerm(1,TermDB);
/* next, make it disappear from the DB */
EraseEntry(ref);
/* now, return what once was there, only nevermore */
return(out);
}
Int
SetDBForThrow(Term Message)
{
Term cut_pt_term;
/* who's gonna catch us? */
DBModule = 0;
cut_pt_term = StealFirstFromDB(AtomCatch, 0);
if (IsVarTerm(cut_pt_term) || !IsIntegerTerm(cut_pt_term)) {
/* ooops, babe we are in trouble */
return(-1);
}
/* OK, we've got the place to cut to, next store the new throw */
if (record(MkFirst, MkAtomTerm(AtomThrow), Message, TermNil) == NIL)
return (-1);
else
/* off we go, to see the wizard of Oz */
return(IntegerOfTerm(cut_pt_term));
}
/* given a key, find the clock number for the first entry */
/* $db_key_to_nb(+Key,-Int) */
static Int
p_first_age(void)
{
Term t1 = Deref(ARG1);
Term to;
DBProp AtProp;
DBModule = CurrentModule;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(t1, MkCode, FALSE, "first_age/3"))) {
return(FALSE);
}
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
if (AtProp->FirstNEr == NULL)
return(FALSE);
to = MkIntegerTerm(AtProp->FirstNEr->age);
#else
if (AtProp->First == NULL)
to = MkIntegerTerm(AtProp->age);
else
to = MkIntegerTerm(AtProp->First->age);
#endif
return(unify(ARG2,to));
}
/* given an integer, and a reference to the fist element, find the
corresponding reference, if one exists. */
/* $db_nb_to_ref(+Age,+Key,-Ref) */
static Int
p_db_nb_to_ref(void)
{
Term t1 = Deref(ARG1);
Term t2 = Deref(ARG2);
Term tref;
DBRef myref;
Int age;
DBProp AtProp;
if (IsVarTerm(t1))
return(FALSE);
if (IsIntTerm(t1))
age = IntOfTerm(t1);
else if (IsLongIntTerm(t1))
age = LongIntOfTerm(t1);
else return(FALSE);
DBModule = CurrentModule;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(t2, MkCode, FALSE, "recorded/3"))) {
return(FALSE);
}
#ifdef KEEP_OLD_ENTRIES_HANGING_ABOUT
myref = AtProp->FirstNEr;
#else
myref = AtProp->First;
#endif
while (myref != NIL
&& (DEAD_REF(myref)
|| myref->age < age))
myref = NextDBRef(myref);
if (myref == NIL || myref->age != age) {
return(FALSE);
}
tref = MkDBRefTerm(myref);
#if defined(YAPOR) || defined(THREADS)
LOCK(myref->lock);
TRAIL_REF(&(myref->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(myref);
UNLOCK(myref->lock);
#else
if (!(myref->Flags & InUseMask)) {
myref->Flags |= InUseMask;
TRAIL_REF(&(myref->Flags)); /* So that fail will erase it */
}
#endif
return(unify(ARG3,tref));
}
/* given a key, find the clock number for the last entry */
/* $db_last_age(+Key,-Int) */
static Int
p_last_age(void)
{
Term t1 = Deref(ARG1);
DBProp AtProp;
Term last_age;
DBModule = CurrentModule;
if ((AtProp = FetchDBPropFromKey(t1, MkCode, FALSE, "$last_age/2")) == NIL) {
return(FALSE);
}
last_age = MkIntegerTerm(AtProp->age);
return(unify(ARG2,last_age));
}
/* set the logical updates flag */
static Int
p_slu(void)
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Error(INSTANTIATION_ERROR, t, "switch_logical_updates/1");
return(FALSE);
}
if (!IsIntTerm(t)) {
Error(TYPE_ERROR_INTEGER, t, "switch_logical_updates/1");
return(FALSE);
}
UPDATE_MODE = IntOfTerm(t);
return(TRUE);
}
/* check current status for logical updates */
static Int
p_lu(void)
{
return(unify(ARG1,MkIntTerm(UPDATE_MODE)));
}
/* get a hold over the index table for logical update predicates */
static Int
p_hold_index(void)
{
LogUpdDBProp AtProp;
DBRef index;
DBModule = CurrentModule;
if (EndOfPAEntr(AtProp = (LogUpdDBProp)FetchDBPropFromKey(Deref(ARG1), MkCode, FALSE, "recorded/3"))) {
return(FALSE);
}
if ((index = AtProp->Index) == NULL) {
if (AtProp->NOfEntries < 2) {
return(unify(ARG2, TermNil) && unify(ARG3,MkIntTerm(AtProp->NOfEntries)));
} else
index = AtProp->Index = new_lu_index(AtProp);
}
/* now, stash the index */
#if defined(YAPOR) || defined(THREADS)
LOCK(index->lock);
TRAIL_REF(&(index->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(index);
UNLOCK(index->lock);
#else
if (!(index->Flags & InUseMask)) {
index->Flags |= InUseMask;
TRAIL_REF(&(index->Flags));
}
#endif
return(unify(ARG2, MkDBRefTerm(index)) &&
unify(ARG3,MkIntTerm(AtProp->NOfEntries)));
}
static Int
p_fetch_reference_from_index(void)
{
Term t1 = Deref(ARG1), t2 = Deref(ARG2);
DBRef table, el;
Int pos;
if (IsVarTerm(t1) || !IsDBRefTerm(t1))
return(FALSE);
table = DBRefOfTerm(t1);
if (IsVarTerm(t2) || !IsIntTerm(t2))
return(FALSE);
pos = IntOfTerm(t2);
el = (DBRef)(table->Contents[pos]);
#if defined(YAPOR) || defined(THREADS)
LOCK(el->lock);
TRAIL_REF(&(el->Flags)); /* So that fail will erase it */
INC_DBREF_COUNT(el);
UNLOCK(el->lock);
#else
if (!(el->Flags & InUseMask)) {
el->Flags |= InUseMask;
TRAIL_REF(&(el->Flags));
}
#endif
return(unify(ARG3, MkDBRefTerm(el)));
}
static Int
p_resize_int_keys(void)
{
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
return(unify(ARG1,MkIntegerTerm((Int)INT_KEYS_SIZE)));
}
if (!IsIntegerTerm(t1)) {
Error(TYPE_ERROR_INTEGER, t1, "yap_flag(resize_db_int_keys,T)");
return(FALSE);
}
return(resize_int_keys(IntegerOfTerm(t1)));
}
void
InitDBPreds(void)
{
InitCPred("$recorda", 3, p_rcda, SafePredFlag|SyncPredFlag);
InitCPred("$recordz", 3, p_rcdz, SafePredFlag|SyncPredFlag);
InitCPred("$recordap", 3, p_rcdap, SafePredFlag|SyncPredFlag);
InitCPred("$recordzp", 3, p_rcdzp, SafePredFlag|SyncPredFlag);
InitCPred("$recordap", 4, p_drcdap, SafePredFlag|SyncPredFlag);
InitCPred("$recordzp", 4, p_drcdzp, SafePredFlag|SyncPredFlag);
InitCPred("$recordaifnot", 3, p_rcdaifnot, SafePredFlag|SyncPredFlag);
InitCPred("$recordzifnot", 3, p_rcdzifnot, SafePredFlag|SyncPredFlag);
InitCPred("erase", 1, p_erase, SafePredFlag|SyncPredFlag);
InitCPred("erased", 1, p_erased, TestPredFlag | SafePredFlag|SyncPredFlag);
InitCPred("instance", 2, p_instance, SyncPredFlag);
InitCPred("eraseall", 1, p_eraseall, SafePredFlag|SyncPredFlag);
InitCPred("$record_stat_source", 4, p_rcdstatp, SafePredFlag|SyncPredFlag);
InitCPred("$some_recordedp", 1, p_somercdedp, SafePredFlag|SyncPredFlag);
InitCPred("$first_instance", 3, p_first_instance, SafePredFlag|SyncPredFlag);
InitCPred("$init_db_queue", 1, p_init_queue, SafePredFlag|SyncPredFlag);
InitCPred("$db_key", 2, p_db_key, 0);
InitCPred("$db_enqueue", 2, p_enqueue, SyncPredFlag);
InitCPred("$db_dequeue", 2, p_dequeue, SyncPredFlag);
InitCPred("$db_first_age", 2, p_first_age, TestPredFlag|SafePredFlag|SyncPredFlag);
InitCPred("$db_nb_to_ref", 3, p_db_nb_to_ref, TestPredFlag|SafePredFlag);
InitCPred("$db_last_age", 2, p_last_age, TestPredFlag|SafePredFlag|SyncPredFlag);
InitCPred("$switch_log_upd", 1, p_slu, SafePredFlag|SyncPredFlag);
InitCPred("$log_upd", 1, p_lu, SafePredFlag|SyncPredFlag);
InitCPred("$hold_index", 3, p_hold_index, SafePredFlag|SyncPredFlag);
InitCPred("$fetch_reference_from_index", 3, p_fetch_reference_from_index, SafePredFlag|SyncPredFlag);
InitCPred("$resize_int_keys", 1, p_resize_int_keys, SafePredFlag|SyncPredFlag);
}
void
InitBackDB(void)
{
InitCPredBack("recorded", 3, 3, in_rded, co_rded, SyncPredFlag);
/* internal version, just to prevent the debugger from nosying around */
RETRY_C_RECORDED_CODE = NEXTOP((yamop *)
(RepPredProp(PredProp(LookupAtom("recorded"), 3))->FirstClause),lds);
InitCPredBack("$recorded_with_key", 3, 3, in_rded_with_key, co_rded, SyncPredFlag);
RETRY_C_RECORDED_K_CODE = NEXTOP((yamop *)
(RepPredProp(PredProp(LookupAtom("$recorded_with_key"), 3))->FirstClause),lds);
InitCPredBack("$recorded", 3, 3, in_rded, co_rded, SyncPredFlag);
RETRY_C_DRECORDED_CODE = NEXTOP((yamop *)
(RepPredProp(PredProp(LookupAtom("$recorded"), 3))->FirstClause),lds);
InitCPredBack("$recordedp", 3, 3, in_rdedp, co_rdedp, SyncPredFlag);
RETRY_C_RECORDEDP_CODE = NEXTOP((yamop *)
(RepPredProp(PredProp(LookupAtom("$recordedp"), 3))->FirstClause),lds);
InitCPredBack("current_key", 2, 4, init_current_key, cont_current_key,
SyncPredFlag);
}