312 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			312 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /****************************************************************************************[Solver.h]
 | ||
|  | MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | ||
|  | 
 | ||
|  | Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | ||
|  | associated documentation files (the "Software"), to deal in the Software without restriction, | ||
|  | including without limitation the rights to use, copy, modify, merge, publish, distribute, | ||
|  | sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | ||
|  | furnished to do so, subject to the following conditions: | ||
|  | 
 | ||
|  | The above copyright notice and this permission notice shall be included in all copies or | ||
|  | substantial portions of the Software. | ||
|  | 
 | ||
|  | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | ||
|  | NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
|  | NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | ||
|  | DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | ||
|  | OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
|  | **************************************************************************************************/ | ||
|  | 
 | ||
|  | #ifndef Solver_h
 | ||
|  | #define Solver_h
 | ||
|  | 
 | ||
|  | #include <cstdio>
 | ||
|  | 
 | ||
|  | #include "Vec.h"
 | ||
|  | #include "Heap.h"
 | ||
|  | #include "Alg.h"
 | ||
|  | 
 | ||
|  | #include "SolverTypes.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //=================================================================================================
 | ||
|  | // Solver -- the main class:
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class Solver { | ||
|  | public: | ||
|  | 
 | ||
|  |     // Constructor/Destructor:
 | ||
|  |     //
 | ||
|  |     Solver(); | ||
|  |     ~Solver(); | ||
|  | 
 | ||
|  |     // Problem specification:
 | ||
|  |     //
 | ||
|  |     Var     newVar    (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
 | ||
|  |     bool    addClause (vec<Lit>& ps);                           // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
 | ||
|  |     bool    setminVars(vec<Lit>& ps); | ||
|  | 
 | ||
|  |     // Solving:
 | ||
|  |     //
 | ||
|  |     bool    simplify     ();                        // Removes already satisfied clauses.
 | ||
|  |     bool    solve        (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
 | ||
|  |     bool    solve        ();                        // Search without assumptions.
 | ||
|  |     bool    okay         () const;                  // FALSE means solver is in a conflicting state
 | ||
|  | 
 | ||
|  |     // Variable mode:
 | ||
|  |     // 
 | ||
|  |     void    setPolarity    (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
 | ||
|  |     void    setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
 | ||
|  | 
 | ||
|  |     // Read state:
 | ||
|  |     //
 | ||
|  |     lbool   value      (Var x) const;       // The current value of a variable.
 | ||
|  |     lbool   value      (Lit p) const;       // The current value of a literal.
 | ||
|  |     lbool   modelValue (Lit p) const;       // The value of a literal in the last model. The last call to solve must have been satisfiable.
 | ||
|  |     int     nAssigns   ()      const;       // The current number of assigned literals.
 | ||
|  |     int     nClauses   ()      const;       // The current number of original clauses.
 | ||
|  |     int     nLearnts   ()      const;       // The current number of learnt clauses.
 | ||
|  |     int     nVars      ()      const;       // The current number of variables.
 | ||
|  | 
 | ||
|  |     // Extra results: (read-only member variable)
 | ||
|  |     //
 | ||
|  |     vec<lbool> model;             // If problem is satisfiable, this vector contains the model (if any).
 | ||
|  |     vec<Lit>   conflict;          // If problem is unsatisfiable (possibly under assumptions),
 | ||
|  |                                   // this vector represent the final conflict clause expressed in the assumptions.
 | ||
|  | 
 | ||
|  |     // Mode of operation:
 | ||
|  |     //
 | ||
|  |     double    var_decay;          // Inverse of the variable activity decay factor.                                            (default 1 / 0.95)
 | ||
|  |     double    clause_decay;       // Inverse of the clause activity decay factor.                                              (1 / 0.999)
 | ||
|  |     double    random_var_freq;    // The frequency with which the decision heuristic tries to choose a random variable.        (default 0.02)
 | ||
|  |     int       restart_first;      // The initial restart limit.                                                                (default 100)
 | ||
|  |     double    restart_inc;        // The factor with which the restart limit is multiplied in each restart.                    (default 1.5)
 | ||
|  |     double    learntsize_factor;  // The intitial limit for learnt clauses is a factor of the original clauses.                (default 1 / 3)
 | ||
|  |     double    learntsize_inc;     // The limit for learnt clauses is multiplied with this factor each restart.                 (default 1.1)
 | ||
|  |     bool      expensive_ccmin;    // Controls conflict clause minimization.                                                    (default TRUE)
 | ||
|  |     int       polarity_mode;      // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
 | ||
|  |     int       verbosity;          // Verbosity level. 0=silent, 1=some progress report                                         (default 0)
 | ||
|  | 
 | ||
|  |     enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 }; | ||
|  | 
 | ||
|  |     // Statistics: (read-only member variable)
 | ||
|  |     //
 | ||
|  |     uint64_t starts, decisions, rnd_decisions, propagations, conflicts; | ||
|  |     uint64_t clauses_literals, learnts_literals, max_literals, tot_literals; | ||
|  | 
 | ||
|  | protected: | ||
|  | 
 | ||
|  |     // Helper structures:
 | ||
|  |     //
 | ||
|  |     struct VarOrderLt { | ||
|  |         const vec<double>&  activity; | ||
|  |         bool operator () (Var x, Var y) const { return activity[x] > activity[y]; } | ||
|  |         VarOrderLt(const vec<double>&  act) : activity(act) { } | ||
|  |     }; | ||
|  | 
 | ||
|  |     friend class VarFilter; | ||
|  |     struct VarFilter { | ||
|  |         const Solver& s; | ||
|  |         VarFilter(const Solver& _s) : s(_s) {} | ||
|  |         bool operator()(Var v) const { return toLbool(s.assigns[v]) == l_Undef && s.decision_var[v]; } | ||
|  |     }; | ||
|  | 
 | ||
|  |     // Solver state:
 | ||
|  |     //
 | ||
|  | 
 | ||
|  |     //****************
 | ||
|  |     bool                allMinVarsAssigned; | ||
|  |     int                 lastMinVarDL; | ||
|  |     vec<Lit>            minVars; | ||
|  |     //****************
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     bool                ok;               // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
 | ||
|  |     vec<Clause*>        clauses;          // List of problem clauses.
 | ||
|  |     vec<Clause*>        learnts;          // List of learnt clauses.
 | ||
|  |     double              cla_inc;          // Amount to bump next clause with.
 | ||
|  |     vec<double>         activity;         // A heuristic measurement of the activity of a variable.
 | ||
|  |     double              var_inc;          // Amount to bump next variable with.
 | ||
|  |     vec<vec<Clause*> >  watches;          // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
 | ||
|  |     vec<char>           assigns;          // The current assignments (lbool:s stored as char:s).
 | ||
|  |     vec<char>           polarity;         // The preferred polarity of each variable.
 | ||
|  |     vec<char>           decision_var;     // Declares if a variable is eligible for selection in the decision heuristic.
 | ||
|  |     vec<Lit>            trail;            // Assignment stack; stores all assigments made in the order they were made.
 | ||
|  |     vec<int>            trail_lim;        // Separator indices for different decision levels in 'trail'.
 | ||
|  |     vec<Clause*>        reason;           // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
 | ||
|  |     vec<int>            level;            // 'level[var]' contains the level at which the assignment was made.
 | ||
|  |     int                 qhead;            // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
 | ||
|  |     int                 simpDB_assigns;   // Number of top-level assignments since last execution of 'simplify()'.
 | ||
|  |     int64_t             simpDB_props;     // Remaining number of propagations that must be made before next execution of 'simplify()'.
 | ||
|  |     vec<Lit>            assumptions;      // Current set of assumptions provided to solve by the user.
 | ||
|  |     Heap<VarOrderLt>    order_heap;       // A priority queue of variables ordered with respect to the variable activity.
 | ||
|  |     double              random_seed;      // Used by the random variable selection.
 | ||
|  |     double              progress_estimate;// Set by 'search()'.
 | ||
|  |     bool                remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
 | ||
|  | 
 | ||
|  |     // Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
 | ||
|  |     // used, exept 'seen' wich is used in several places.
 | ||
|  |     //
 | ||
|  |     vec<char>           seen; | ||
|  |     vec<Lit>            analyze_stack; | ||
|  |     vec<Lit>            analyze_toclear; | ||
|  |     vec<Lit>            add_tmp; | ||
|  | 
 | ||
|  |     // Main internal methods:
 | ||
|  |     //
 | ||
|  |     void     insertVarOrder   (Var x);                                                 // Insert a variable in the decision order priority queue.
 | ||
|  |     Lit      pickBranchLit    (int polarity_mode, double random_var_freq);             // Return the next decision variable.
 | ||
|  |     void     newDecisionLevel ();                                                      // Begins a new decision level.
 | ||
|  |     void     uncheckedEnqueue (Lit p, Clause* from = NULL);                            // Enqueue a literal. Assumes value of literal is undefined.
 | ||
|  |     bool     enqueue          (Lit p, Clause* from = NULL);                            // Test if fact 'p' contradicts current state, enqueue otherwise.
 | ||
|  |     Clause*  propagate        ();                                                      // Perform unit propagation. Returns possibly conflicting clause.
 | ||
|  |     void     cancelUntil      (int level);                                             // Backtrack until a certain level.
 | ||
|  |     void     analyze          (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
 | ||
|  |     void     analyzeFinal     (Lit p, vec<Lit>& out_conflict);                         // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
 | ||
|  |     bool     litRedundant     (Lit p, uint32_t abstract_levels);                       // (helper method for 'analyze()')
 | ||
|  |     lbool    search           (int nof_conflicts, int nof_learnts);                    // Search for a given number of conflicts.
 | ||
|  |     void     reduceDB         ();                                                      // Reduce the set of learnt clauses.
 | ||
|  |     void     removeSatisfied  (vec<Clause*>& cs);                                      // Shrink 'cs' to contain only non-satisfied clauses.
 | ||
|  | 
 | ||
|  |     // Maintaining Variable/Clause activity:
 | ||
|  |     //
 | ||
|  |     void     varDecayActivity ();                      // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
 | ||
|  |     void     varBumpActivity  (Var v);                 // Increase a variable with the current 'bump' value.
 | ||
|  |     void     claDecayActivity ();                      // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
 | ||
|  |     void     claBumpActivity  (Clause& c);             // Increase a clause with the current 'bump' value.
 | ||
|  | 
 | ||
|  |     // Operations on clauses:
 | ||
|  |     //
 | ||
|  |     void     attachClause     (Clause& c);             // Attach a clause to watcher lists.
 | ||
|  |     void     detachClause     (Clause& c);             // Detach a clause to watcher lists.
 | ||
|  |     void     removeClause     (Clause& c);             // Detach and free a clause.
 | ||
|  |     bool     locked           (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
 | ||
|  |     bool     satisfied        (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
 | ||
|  | 
 | ||
|  |     // Misc:
 | ||
|  |     //
 | ||
|  |     int      decisionLevel    ()      const; // Gives the current decisionlevel.
 | ||
|  |     uint32_t abstractLevel    (Var x) const; // Used to represent an abstraction of sets of decision levels.
 | ||
|  |     double   progressEstimate ()      const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
 | ||
|  | 
 | ||
|  |     // Debug:
 | ||
|  |     void     printLit         (Lit l); | ||
|  |     template<class C> | ||
|  |     void     printClause      (const C& c); | ||
|  |     void     verifyModel      (); | ||
|  |     void     checkLiteralCount(); | ||
|  | 
 | ||
|  |     // Static helpers:
 | ||
|  |     //
 | ||
|  | 
 | ||
|  |     // Returns a random float 0 <= x < 1. Seed must never be 0.
 | ||
|  |     static inline double drand(double& seed) { | ||
|  |         seed *= 1389796; | ||
|  |         int q = (int)(seed / 2147483647); | ||
|  |         seed -= (double)q * 2147483647; | ||
|  |         return seed / 2147483647; } | ||
|  | 
 | ||
|  |     // Returns a random integer 0 <= x < size. Seed must never be 0.
 | ||
|  |     static inline int irand(double& seed, int size) { | ||
|  |         return (int)(drand(seed) * size); } | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | //=================================================================================================
 | ||
|  | // Implementation of inline methods:
 | ||
|  | 
 | ||
|  | 
 | ||
|  | inline void Solver::insertVarOrder(Var x) { | ||
|  |     if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x); } | ||
|  | 
 | ||
|  | inline void Solver::varDecayActivity() { var_inc *= var_decay; } | ||
|  | inline void Solver::varBumpActivity(Var v) { | ||
|  |     if ( (activity[v] += var_inc) > 1e100 ) { | ||
|  |         // Rescale:
 | ||
|  |         for (int i = 0; i < nVars(); i++) | ||
|  |             activity[i] *= 1e-100; | ||
|  |         var_inc *= 1e-100; } | ||
|  | 
 | ||
|  |     // Update order_heap with respect to new activity:
 | ||
|  |     if (order_heap.inHeap(v)) | ||
|  |         order_heap.decrease(v); } | ||
|  | 
 | ||
|  | inline void Solver::claDecayActivity() { cla_inc *= clause_decay; } | ||
|  | inline void Solver::claBumpActivity (Clause& c) { | ||
|  |         if ( (c.activity() += cla_inc) > 1e20 ) { | ||
|  |             // Rescale:
 | ||
|  |             for (int i = 0; i < learnts.size(); i++) | ||
|  |                 learnts[i]->activity() *= 1e-20; | ||
|  |             cla_inc *= 1e-20; } } | ||
|  | 
 | ||
|  | inline bool     Solver::enqueue         (Lit p, Clause* from)   { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); } | ||
|  | inline bool     Solver::locked          (const Clause& c) const { return reason[var(c[0])] == &c && value(c[0]) == l_True; } | ||
|  | inline void     Solver::newDecisionLevel()                      { trail_lim.push(trail.size()); } | ||
|  | 
 | ||
|  | inline int      Solver::decisionLevel ()      const   { return trail_lim.size(); } | ||
|  | inline uint32_t Solver::abstractLevel (Var x) const   { return 1 << (level[x] & 31); } | ||
|  | inline lbool    Solver::value         (Var x) const   { return toLbool(assigns[x]); } | ||
|  | inline lbool    Solver::value         (Lit p) const   { return toLbool(assigns[var(p)]) ^ sign(p); } | ||
|  | inline lbool    Solver::modelValue    (Lit p) const   { return model[var(p)] ^ sign(p); } | ||
|  | inline int      Solver::nAssigns      ()      const   { return trail.size(); } | ||
|  | inline int      Solver::nClauses      ()      const   { return clauses.size(); } | ||
|  | inline int      Solver::nLearnts      ()      const   { return learnts.size(); } | ||
|  | inline int      Solver::nVars         ()      const   { return assigns.size(); } | ||
|  | inline void     Solver::setPolarity   (Var v, bool b) { polarity    [v] = (char)b; } | ||
|  | inline void     Solver::setDecisionVar(Var v, bool b) { decision_var[v] = (char)b; if (b) { insertVarOrder(v); } } | ||
|  | inline bool     Solver::solve         ()              { vec<Lit> tmp; return solve(tmp); } | ||
|  | inline bool     Solver::okay          ()      const   { return ok; } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //=================================================================================================
 | ||
|  | // Debug + etc:
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define reportf(format, args...) ( fflush(stdout), fprintf(stderr, format, ## args), fflush(stderr) )
 | ||
|  | 
 | ||
|  | static inline void logLit(FILE* f, Lit l) | ||
|  | { | ||
|  |     fprintf(f, "%sx%d", sign(l) ? "~" : "", var(l)+1); | ||
|  | } | ||
|  | 
 | ||
|  | static inline void logLits(FILE* f, const vec<Lit>& ls) | ||
|  | { | ||
|  |     fprintf(f, "[ "); | ||
|  |     if (ls.size() > 0){ | ||
|  |         logLit(f, ls[0]); | ||
|  |         for (int i = 1; i < ls.size(); i++){ | ||
|  |             fprintf(f, ", "); | ||
|  |             logLit(f, ls[i]); | ||
|  |         } | ||
|  |     } | ||
|  |     fprintf(f, "] "); | ||
|  | } | ||
|  | 
 | ||
|  | static inline const char* showBool(bool b) { return b ? "true" : "false"; } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Just like 'assert()' but expression will be evaluated in the release version as well.
 | ||
|  | static inline void check(bool expr) { assert(expr); } | ||
|  | 
 | ||
|  | 
 | ||
|  | inline void Solver::printLit(Lit l) | ||
|  | { | ||
|  |     reportf("%s%d:%c", sign(l) ? "-" : "", var(l)+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X')); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template<class C> | ||
|  | inline void Solver::printClause(const C& c) | ||
|  | { | ||
|  |     for (int i = 0; i < c.size(); i++){ | ||
|  |         printLit(c[i]); | ||
|  |         fprintf(stderr, " "); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | //=================================================================================================
 | ||
|  | #endif
 |