2013-11-03 14:12:38 +00:00
|
|
|
%% -*- prolog -*-
|
|
|
|
%%=============================================================================
|
|
|
|
%% Copyright (C) 2011 by Denys Duchier
|
|
|
|
%%
|
|
|
|
%% This program is free software: you can redistribute it and/or modify it
|
|
|
|
%% under the terms of the GNU Lesser General Public License as published by the
|
|
|
|
%% Free Software Foundation, either version 3 of the License, or (at your
|
|
|
|
%% option) any later version.
|
|
|
|
%%
|
|
|
|
%% This program is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
|
|
%% more details.
|
|
|
|
%%
|
|
|
|
%% You should have received a copy of the GNU Lesser General Public License
|
|
|
|
%% along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
%%=============================================================================
|
|
|
|
|
2014-09-11 20:06:57 +01:00
|
|
|
/** @defgroup Gecode Gecode Interface
|
|
|
|
|
2015-01-04 23:58:23 +00:00
|
|
|
@ingroup packages
|
2014-09-11 20:06:57 +01:00
|
|
|
@{
|
|
|
|
|
|
|
|
|
|
|
|
The gecode library intreface was designed and implemented by Denis
|
|
|
|
Duchier, with recent work by Vítor Santos Costa to port it to version 4
|
|
|
|
of gecode and to have an higher level interface,
|
|
|
|
|
|
|
|
|
|
|
|
@defgroup The_Gecode_Interface The Gecode Interface
|
|
|
|
@ingroup Gecode
|
|
|
|
@{
|
|
|
|
|
|
|
|
This text is due to Denys Duchier. The gecode interface requires
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
:- use_module(library(gecode)).
|
|
|
|
~~~~~
|
|
|
|
Several example programs are available with the distribution.
|
|
|
|
|
|
|
|
+ CREATING A SPACE
|
|
|
|
|
|
|
|
A space is gecodes data representation for a store of constraints:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Space := space
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
+ CREATING VARIABLES
|
|
|
|
|
|
|
|
Unlike in Gecode, variable objects are not bound to a specific Space. Each one
|
|
|
|
actually contains an index with which it is possible to access a Space-bound
|
|
|
|
Gecode variable. Variables can be created using the following expressions:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
IVar := intvar(Space,SPEC...)
|
|
|
|
BVar := boolvar(Space)
|
|
|
|
SVar := setvar(Space,SPEC...)
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
where SPEC... is the same as in Gecode. For creating lists of variables use
|
|
|
|
the following variants:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
IVars := intvars(Space,N,SPEC...)
|
|
|
|
BVars := boolvars(Space,N,SPEC...)
|
|
|
|
SVars := setvars(Space,N,SPEC...)
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
where N is the number of variables to create (just like for XXXVarArray in
|
|
|
|
Gecode). Sometimes an IntSet is necessary:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
ISet := intset([SPEC...])
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
where each SPEC is either an integer or a pair (I,J) of integers. An IntSet
|
|
|
|
describes a set of ints by providing either intervals, or integers (which stand
|
|
|
|
for an interval of themselves). It might be tempting to simply represent an
|
|
|
|
IntSet as a list of specs, but this would be ambiguous with IntArgs which,
|
|
|
|
here, are represented as lists of ints.
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Space += keep(Var)
|
|
|
|
Space += keep(Vars)
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
Variables can be marked as "kept". In this case, only such variables will be
|
|
|
|
explicitly copied during search. This could bring substantial benefits in
|
|
|
|
memory usage. Of course, in a solution, you can then only look at variables
|
|
|
|
that have been "kept". If no variable is marked as "kept", then they are all
|
|
|
|
kept. Thus marking variables as "kept" is purely an optimization.
|
|
|
|
|
|
|
|
+ CONSTRAINTS AND BRANCHINGS
|
|
|
|
|
|
|
|
all constraint and branching posting functions are available just like in
|
|
|
|
Gecode. Wherever a XXXArgs or YYYSharedArray is expected, simply use a list.
|
|
|
|
At present, there is no support for minimodel-like constraint posting.
|
|
|
|
Constraints and branchings are added to a space using:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Space += CONSTRAINT
|
|
|
|
Space += BRANCHING
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
For example:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Space += rel(X,'IRT_EQ',Y)
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
arrays of variables are represented by lists of variables, and constants are
|
|
|
|
represented by atoms with the same name as the Gecode constant
|
|
|
|
(e.g. 'INT_VAR_SIZE_MIN').
|
|
|
|
|
|
|
|
+ SEARCHING FOR SOLUTIONS
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
SolSpace := search(Space)
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
This is a backtrackable predicate that enumerates all solution spaces
|
|
|
|
(SolSpace). It may also take options:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
SolSpace := search(Space,Options)
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
Options is a list whose elements maybe:
|
|
|
|
|
|
|
|
+ restart
|
|
|
|
to select the Restart search engine
|
|
|
|
+ threads=N
|
|
|
|
to activate the parallel search engine and control the number of
|
|
|
|
workers (see Gecode doc)
|
|
|
|
+ c_d=N
|
|
|
|
to set the commit distance for recomputation
|
|
|
|
+ a_d=N
|
|
|
|
to set the adaptive distance for recomputation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ EXTRACTING INFO FROM A SOLUTION
|
|
|
|
|
|
|
|
An advantage of non Space-bound variables, is that you can use them both to
|
|
|
|
post constraints in the original space AND to consult their values in
|
|
|
|
solutions. Below are methods for looking up information about variables. Each
|
|
|
|
of these methods can either take a variable as argument, or a list of
|
|
|
|
variables, and returns resp. either a value, or a list of values:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Val := assigned(Space,X)
|
|
|
|
|
|
|
|
Val := min(Space,X)
|
|
|
|
Val := max(Space,X)
|
|
|
|
Val := med(Space,X)
|
|
|
|
Val := val(Space,X)
|
|
|
|
Val := size(Space,X)
|
|
|
|
Val := width(Space,X)
|
|
|
|
Val := regret_min(Space,X)
|
|
|
|
Val := regret_max(Space,X)
|
|
|
|
|
|
|
|
Val := glbSize(Space,V)
|
|
|
|
Val := lubSize(Space,V)
|
|
|
|
Val := unknownSize(Space,V)
|
|
|
|
Val := cardMin(Space,V)
|
|
|
|
Val := cardMax(Space,V)
|
|
|
|
Val := lubMin(Space,V)
|
|
|
|
Val := lubMax(Space,V)
|
|
|
|
Val := glbMin(Space,V)
|
|
|
|
Val := glbMax(Space,V)
|
|
|
|
Val := glb_ranges(Space,V)
|
|
|
|
Val := lub_ranges(Space,V)
|
|
|
|
Val := unknown_ranges(Space,V)
|
|
|
|
Val := glb_values(Space,V)
|
|
|
|
Val := lub_values(Space,V)
|
|
|
|
Val := unknown_values(Space,V)
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
+ DISJUNCTORS
|
|
|
|
|
|
|
|
Disjunctors provide support for disjunctions of clauses, where each clause is a
|
|
|
|
conjunction of constraints:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
C1 or C2 or ... or Cn
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
Each clause is executed "speculatively": this means it does not affect the main
|
|
|
|
space. When a clause becomes failed, it is discarded. When only one clause
|
|
|
|
remains, it is committed: this means that it now affects the main space.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
Consider the problem where either X=Y=0 or X=Y+(1 or 2) for variable X and Y
|
|
|
|
that take values in 0..3.
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Space := space,
|
|
|
|
[X,Y] := intvars(Space,2,0,3),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
First, we must create a disjunctor as a manager for our 2 clauses:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Disj := disjunctor(Space),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
We can now create our first clause:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
C1 := clause(Disj),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
This clause wants to constrain X and Y to 0. However, since it must be
|
|
|
|
executed "speculatively", it must operate on new variables X1 and Y1 that
|
|
|
|
shadow X and Y:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
[X1,Y1] := intvars(C1,2,0,3),
|
|
|
|
C1 += forward([X,Y],[X1,Y1]),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
The forward(...) stipulation indicates which global variable is shadowed by
|
|
|
|
which clause-local variable. Now we can post the speculative clause-local
|
|
|
|
constraints for X=Y=0:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
C1 += rel(X1,'IRT_EQ',0),
|
|
|
|
C1 += rel(Y1,'IRT_EQ',0),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
We now create the second clause which uses X2 and Y2 to shadow X and Y:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
C2 := clause(Disj),
|
|
|
|
[X2,Y2] := intvars(C2,2,0,3),
|
|
|
|
C2 += forward([X,Y],[X2,Y2]),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
However, this clause also needs a clause-local variable Z2 taking values 1 or
|
|
|
|
2 in order to post the clause-local constraint X2=Y2+Z2:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Z2 := intvar(C2,1,2),
|
|
|
|
C2 += linear([-1,1,1],[X2,Y2,Z2],'IRT_EQ',0),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
Finally, we can branch and search:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
Space += branch([X,Y],'INT_VAR_SIZE_MIN','INT_VAL_MIN'),
|
|
|
|
SolSpace := search(Space),
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
and lookup values of variables in each solution:
|
|
|
|
|
|
|
|
~~~~~{.prolog}
|
|
|
|
[X_,Y_] := val(SolSpace,[X,Y]).
|
|
|
|
~~~~~
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
2013-11-03 14:12:38 +00:00
|
|
|
:- module(gecode, [(:=)/2, op(500, xfx, ':='),
|
|
|
|
(+=)/2, op(500, xfx, '+=')]).
|
|
|
|
|
2014-09-11 20:06:57 +01:00
|
|
|
|
2013-11-03 14:12:38 +00:00
|
|
|
:- use_module(library(debug)).
|
|
|
|
|
|
|
|
:- op(500, xfx, ':=').
|
|
|
|
:- op(500, xfx, '+=').
|
|
|
|
:- load_foreign_files([gecode_yap],[],gecode_init).
|
|
|
|
|
|
|
|
is_int(X,Y) :- integer(X), Y=X.
|
|
|
|
is_int(X) :- integer(X).
|
|
|
|
|
|
|
|
is_bool_(true,true).
|
|
|
|
is_bool_(false,false).
|
|
|
|
is_bool(X,Y) :- nonvar(X), Y=X.
|
|
|
|
is_bool(X) :- is_bool(X,_).
|
|
|
|
|
|
|
|
is_IntVar_('IntVar'(I,K),N) :-
|
|
|
|
integer(I),
|
|
|
|
integer(K),
|
|
|
|
nb_getval(gecode_space_use_keep_index,B),
|
|
|
|
(B=true -> N=K ; N=I).
|
|
|
|
is_FloatVar_('FloatVar'(I,K),N) :-
|
|
|
|
integer(I),
|
|
|
|
integer(K),
|
|
|
|
nb_getval(gecode_space_use_keep_index,B),
|
|
|
|
(B=true -> N=K ; N=I).
|
|
|
|
is_BoolVar_('BoolVar'(I,K),N) :-
|
|
|
|
integer(I),
|
|
|
|
integer(K),
|
|
|
|
nb_getval(gecode_space_use_keep_index,B),
|
|
|
|
(B=true -> N=K ; N=I).
|
|
|
|
is_SetVar_('SetVar'(I,K),N) :-
|
|
|
|
integer(I),
|
|
|
|
integer(K),
|
|
|
|
nb_getval(gecode_space_use_keep_index,B),
|
|
|
|
(B=true -> N=K ; N=I).
|
|
|
|
|
|
|
|
is_IntVar(X,I) :- nonvar(X), is_IntVar_(X,I).
|
|
|
|
is_BoolVar(X,I) :- nonvar(X), is_BoolVar_(X,I).
|
|
|
|
is_FloatVar(X,I) :- nonvar(X), is_FloatVar_(X,I).
|
|
|
|
is_SetVar(X,I) :- nonvar(X), is_SetVar_(X,I).
|
|
|
|
|
|
|
|
is_IntVar(X) :- is_IntVar(X,_).
|
|
|
|
is_BoolVar(X) :- is_BoolVar(X,_).
|
|
|
|
is_FloatVar(X) :- is_FloatVar(X,_).
|
|
|
|
is_SetVar(X) :- is_SetVar(X,_).
|
|
|
|
|
|
|
|
is_IntVarArgs_([],[]).
|
|
|
|
is_IntVarArgs_([H|T],[H2|T2]) :- is_IntVar(H,H2), is_IntVarArgs(T,T2).
|
|
|
|
is_IntVarArgs(X,Y) :- nonvar(X), is_IntVarArgs_(X,Y).
|
|
|
|
is_IntVarArgs(X) :- \+ \+ is_IntVarArgs(X,_).
|
|
|
|
|
|
|
|
is_BoolVarArgs_([],[]).
|
|
|
|
is_BoolVarArgs_([H|T],[H2|T2]) :- is_BoolVar(H,H2), is_BoolVarArgs(T,T2).
|
|
|
|
is_BoolVarArgs(X,Y) :- nonvar(X), is_BoolVarArgs_(X,Y).
|
|
|
|
is_BoolVarArgs(X) :- \+ \+ is_BoolVarArgs(X,_).
|
|
|
|
|
|
|
|
is_FloatVarArgs_([],[]).
|
|
|
|
is_FloatVarArgs_([H|T],[H2|T2]) :- is_FloatVar(H,H2), is_FloatVarArgs(T,T2).
|
|
|
|
is_FloatVarArgs(X,Y) :- nonvar(X), is_FloatVarArgs_(X,Y).
|
|
|
|
is_FloatVarArgs(X) :- \+ \+ is_FloatVarArgs(X,_).
|
|
|
|
|
|
|
|
is_FloatValArgs_([],[]).
|
|
|
|
is_FloatValArgs_([H|T],[H2|T2]) :- is_FloatVar(H,H2), is_FloatValArgs(T,T2).
|
|
|
|
is_FloatValArgs(X,Y) :- nonvar(X), is_FloatValArgs_(X,Y).
|
|
|
|
is_FloatValArgs(X) :- \+ \+ is_FloatValArgs(X,_).
|
|
|
|
|
|
|
|
is_SetVarArgs_([],[]).
|
|
|
|
is_SetVarArgs_([H|T],[H2|T2]) :- is_SetVar(H,H2), is_SetVarArgs(T,T2).
|
|
|
|
is_SetVarArgs(X,Y) :- nonvar(X), is_SetVarArgs_(X,Y).
|
|
|
|
is_SetVarArgs(X) :- \+ \+ is_SetVarArgs(X,_).
|
|
|
|
|
|
|
|
is_IntArgs_([],[]).
|
|
|
|
is_IntArgs_([H|T],[H|T2]) :- integer(H), is_IntArgs(T,T2).
|
|
|
|
is_IntArgs(X,Y) :- nonvar(X), is_IntArgs_(X,Y).
|
|
|
|
is_IntArgs(X) :- \+ \+ is_IntArgs(X,_).
|
|
|
|
|
|
|
|
is_IntSharedArray(X) :- is_IntArgs(X).
|
|
|
|
is_IntSharedArray(X,Y) :- is_IntArgs(X,Y).
|
|
|
|
|
|
|
|
is_TaskTypeArgs_([],[]).
|
|
|
|
is_TaskTypeArgs_([H|T],[H2|T2]) :- is_TaskType(H,H2), is_TaskTypeArgs(T,T2).
|
|
|
|
is_TaskTypeArgs(X,Y) :- nonvar(X), is_TaskTypeArgs_(X,Y).
|
|
|
|
is_TaskTypeArgs(X) :- \+ \+ is_TaskTypeArgs(X,_).
|
|
|
|
|
|
|
|
is_IntSet_('IntSet'(L),L).
|
|
|
|
is_IntSet(X,Y) :- nonvar(X), is_IntSet_(X,Y).
|
|
|
|
is_IntSet(X) :- is_IntSet(X,_).
|
|
|
|
|
|
|
|
is_IntSetArgs_([],[]).
|
|
|
|
is_IntSetArgs_([H|T],[H2|T2]) :- is_IntSet(H,H2), is_IntSetArgs(T,T2).
|
|
|
|
is_IntSetArgs(X,Y) :- nonvar(X), is_IntSetArgs_(X,Y).
|
|
|
|
is_IntSetArgs(X) :- \+ \+ is_IntSetArgs(X,_).
|
|
|
|
|
|
|
|
is_TupleSet_('TupleSet'(TS),TS).
|
|
|
|
is_TupleSet(X,Y) :- nonvar(X), is_TupleSet_(X,Y).
|
|
|
|
is_TupleSet(X) :- is_TupleSet(X,_).
|
|
|
|
|
|
|
|
is_DFA_('DFA'(TS),TS).
|
|
|
|
is_DFA(X,Y) :- nonvar(X), is_DFA_(X,Y).
|
|
|
|
is_DFA(X) :- is_DFA(X,_).
|
|
|
|
|
|
|
|
new_intset(X,I,J) :- intset(X,I,J).
|
|
|
|
new_intset(X,L) :- intset(X,L).
|
|
|
|
|
|
|
|
intset(X, I, J) :-
|
|
|
|
integer(I),
|
|
|
|
integer(J),
|
|
|
|
X='IntSet'([(I,J)]).
|
|
|
|
intset(X, L) :-
|
|
|
|
is_list_of_intset_specs(L,L2),
|
|
|
|
X='IntSet'(L2).
|
|
|
|
|
|
|
|
is_list_of_intset_specs(X,Y) :-
|
|
|
|
nonvar(X), is_list_of_intset_specs_(X,Y).
|
|
|
|
is_list_of_intset_specs_([],[]).
|
|
|
|
is_list_of_intset_specs_([H|T],[H2|T2]) :-
|
|
|
|
is_intset_spec(H,H2),
|
|
|
|
is_list_of_intset_specs(T,T2).
|
|
|
|
|
|
|
|
is_intset_spec(X,Y) :- nonvar(X), is_intset_spec_(X,Y).
|
|
|
|
is_intset_spec_((I,J),(I,J)) :- !, integer(I), integer(J).
|
|
|
|
is_intset_spec_(I,(I,I)) :- integer(I).
|
|
|
|
|
|
|
|
assert_var(X,Y) :-
|
|
|
|
var(X) -> X=Y; throw(gecode_error(expected(var))).
|
|
|
|
assert_is_int(X,Y) :-
|
|
|
|
integer(X) -> X=Y ; throw(gecode_error(expected(int))).
|
|
|
|
assert_is_float(X,Y) :-
|
|
|
|
float(X) -> X=Y ; throw(gecode_error(expected(int))).
|
|
|
|
assert_is_Space(X,Y) :-
|
|
|
|
is_Space(X,Y) -> true ; throw(gecode_error(expected(space))).
|
|
|
|
assert_is_IntSet(X,Y) :-
|
|
|
|
is_IntSet(X,Y) -> true ; throw(gecode_error(expected(intset))).
|
|
|
|
assert_is_TupleSet(X,Y) :-
|
|
|
|
is_TupleSet(X,Y) -> true ; throw(gecode_error(expected(tupleset))).
|
|
|
|
assert_is_DFA(X,Y) :-
|
|
|
|
is_DFA(X,Y) -> true ; throw(gecode_error(expected(dfa))).
|
|
|
|
assert_is_IntVar(X,Y) :-
|
|
|
|
is_IntVar(X,Y) -> true ; throw(gecode_error(expected(intvar))).
|
|
|
|
assert_is_BoolVar(X,Y) :-
|
|
|
|
is_BoolVar(X,Y) -> true ; throw(gecode_error(expected(boolvar))).
|
|
|
|
assert_is_FloatVar(X,Y) :-
|
|
|
|
is_FloatVar(X,Y) -> true ; throw(gecode_error(expected(floatvar))).
|
|
|
|
assert_is_SetVar(X,Y) :-
|
|
|
|
is_SetVar(X,Y) -> true ; throw(gecode_error(expected(setvar))).
|
|
|
|
assert_is_IntArgs(X,Y) :-
|
|
|
|
is_IntArgs(X,Y) -> true ; throw(gecode_error(expected(intargs))).
|
|
|
|
assert_is_IntVarArgs(X,Y) :-
|
|
|
|
is_IntVarArgs(X,Y) -> true ; throw(gecode_error(expected(intvarargs))).
|
|
|
|
assert_is_BoolVarArgs(X,Y) :-
|
|
|
|
is_BoolVarArgs(X,Y) -> true ; throw(gecode_error(expected(boolvarargs))).
|
|
|
|
assert_is_FloatVarArgs(X,Y) :-
|
|
|
|
is_FloatVarArgs(X,Y) -> true ; throw(gecode_error(expected(floatvarargs))).
|
|
|
|
assert_is_FloatValArgs(X,Y) :-
|
|
|
|
is_FloatValArgs(X,Y) -> true ; throw(gecode_error(expected(floatvarargs))).
|
|
|
|
assert_is_SetVarArgs(X,Y) :-
|
|
|
|
is_SetVarArgs(X,Y) -> true ; throw(gecode_error(expected(setvarargs))).
|
|
|
|
assert_is_ReifyMode(X,Y) :-
|
|
|
|
is_ReifyMode(X,Y) -> true ; throw(gecode_error(expected(reifymode))).
|
|
|
|
|
|
|
|
assert_var(X) :- assert_var(X,_).
|
|
|
|
assert_is_int(X) :- assert_is_int(X,_).
|
|
|
|
assert_is_float(X) :- assert_is_float(X,_).
|
|
|
|
assert_is_Space(X) :- assert_is_Space(X,_).
|
|
|
|
assert_is_IntSet(X) :- assert_is_IntSet(X,_).
|
|
|
|
assert_is_IntVar(X) :- assert_is_IntVar(X,_).
|
|
|
|
assert_is_BoolVar(X) :- assert_is_BoolVar(X,_).
|
|
|
|
assert_is_FloatVar(X) :- assert_is_FloatVar(X,_).
|
|
|
|
assert_is_SetVar(X) :- assert_is_SetVar(X,_).
|
|
|
|
assert_is_IntArgs(X) :- assert_is_IntArgs(X,_).
|
|
|
|
assert_is_IntVarArgs(X) :- assert_is_IntVarArgs(X,_).
|
|
|
|
assert_is_BoolVarArgs(X) :- assert_is_BoolVarArgs(X,_).
|
|
|
|
assert_is_FloatVarArgs(X) :- assert_is_FloatVarArgs(X,_).
|
|
|
|
assert_is_FloatValArgs(X) :- assert_is_FloatValArgs(X,_).
|
|
|
|
assert_is_SetVarArgs(X) :- assert_is_SetVarArgs(X,_).
|
|
|
|
|
|
|
|
%% Var and Val Branching changed in Gecode 4 to be done as a set of functions,
|
|
|
|
%% not as an enum.
|
|
|
|
|
|
|
|
is_IntVarBranch_('INT_VAR_NONE').
|
|
|
|
is_IntVarBranch_('INT_VAR_RND'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_MERIT_MIN'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_MERIT_MAX'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_DEGREE_MIN').
|
|
|
|
is_IntVarBranch_('INT_VAR_DEGREE_MAX').
|
|
|
|
is_IntVarBranch_('INT_VAR_AFC_MIN'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_AFC_MAX'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_ACTIVITY_MIN'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_ACTIVITY_MAX'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_MIN_MIN').
|
|
|
|
is_IntVarBranch_('INT_VAR_MIN_MAX').
|
|
|
|
is_IntVarBranch_('INT_VAR_MAX_MIN').
|
|
|
|
is_IntVarBranch_('INT_VAR_MAX_MAX').
|
|
|
|
is_IntVarBranch_('INT_VAR_SIZE_MIN').
|
|
|
|
is_IntVarBranch_('INT_VAR_SIZE_MAX').
|
|
|
|
is_IntVarBranch_('INT_VAR_DEGREE_SIZE_MIN').
|
|
|
|
is_IntVarBranch_('INT_VAR_DEGREE_SIZE_MAX').
|
|
|
|
is_IntVarBranch_('INT_VAR_AFC_SIZE_MIN'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_AFC_SIZE_MAX'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_ACTIVITY_SIZE_MIN'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_ACTIVITY_SIZE_MAX'(_)).
|
|
|
|
is_IntVarBranch_('INT_VAR_REGRET_MIN_MIN').
|
|
|
|
is_IntVarBranch_('INT_VAR_REGRET_MIN_MAX').
|
|
|
|
is_IntVarBranch_('INT_VAR_REGRET_MAX_MIN').
|
|
|
|
is_IntVarBranch_('INT_VAR_REGRET_MAX_MAX').
|
|
|
|
|
|
|
|
is_IntVarBranch_(X, X) :-
|
|
|
|
is_IntVarBranch_(X).
|
|
|
|
|
|
|
|
is_IntVarBranch(X,Y) :- nonvar(X), is_IntVarBranch_(X,Y).
|
|
|
|
is_IntVarBranch(X) :- is_IntVarBranch(X,_).
|
|
|
|
|
|
|
|
is_SetVarBranch_('SET_VAR_NONE').
|
|
|
|
is_SetVarBranch_('SET_VAR_RND'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_MERIT_MIN'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_MERIT_MAX'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_DEGREE_MIN').
|
|
|
|
is_SetVarBranch_('SET_VAR_DEGREE_MAX').
|
|
|
|
is_SetVarBranch_('SET_VAR_AFC_MIN'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_AFC_MAX'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_ACTIVITY_MIN'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_ACTIVITY_MAX'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_MIN_MIN').
|
|
|
|
is_SetVarBranch_('SET_VAR_MIN_MAX').
|
|
|
|
is_SetVarBranch_('SET_VAR_MAX_MIN').
|
|
|
|
is_SetVarBranch_('SET_VAR_MAX_MAX').
|
|
|
|
is_SetVarBranch_('SET_VAR_SIZE_MIN').
|
|
|
|
is_SetVarBranch_('SET_VAR_SIZE_MAX').
|
|
|
|
is_SetVarBranch_('SET_VAR_DEGREE_SIZE_MIN').
|
|
|
|
is_SetVarBranch_('SET_VAR_DEGREE_SIZE_MAX').
|
|
|
|
is_SetVarBranch_('SET_VAR_AFC_SIZE_MIN'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_AFC_SIZE_MAX'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_ACTIVITY_SIZE_MIN'(_)).
|
|
|
|
is_SetVarBranch_('SET_VAR_ACTIVITY_SIZE_MAX'(_)).
|
|
|
|
|
|
|
|
is_SetVarBranch_(X, X) :-
|
|
|
|
is_SetVarBranch_(X).
|
|
|
|
|
|
|
|
is_SetVarBranch(X,Y) :- nonvar(X), is_SetVarBranch_(X,Y).
|
|
|
|
is_SetVarBranch(X) :- is_SetVarBranch(X,_).
|
|
|
|
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_NONE').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_RND'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_MERIT_MIN'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_MERIT_MAX'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_DEGREE_MIN').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_DEGREE_MAX').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_AFC_MIN'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_AFC_MAX'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_ACTIVITY_MIN'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_ACTIVITY_MAX'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_MIN_MIN').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_MIN_MAX').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_MAX_MIN').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_MAX_MAX').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_SIZE_MIN').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_SIZE_MAX').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_DEGREE_SIZE_MIN').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_DEGREE_SIZE_MAX').
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_AFC_SIZE_MIN'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_AFC_SIZE_MAX'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_ACTIVITY_SIZE_MIN'(_)).
|
|
|
|
is_FloatVarBranch_('FLOAT_VAR_ACTIVITY_SIZE_MAX'(_)).
|
|
|
|
|
|
|
|
is_FloatVarBranch_(X, X) :-
|
|
|
|
is_FloatVarBranch_(X).
|
|
|
|
|
|
|
|
is_FloatVarBranch(X,Y) :- nonvar(X), is_FloatVarBranch_(X,Y).
|
|
|
|
is_FloatVarBranch(X) :- is_FloatVarBranch(X,_).
|
|
|
|
|
|
|
|
is_IntValBranch_('INT_VAL_RND'(_)).
|
|
|
|
is_IntValBranch_('INT_VAL'(_,_)).
|
|
|
|
is_IntValBranch_('INT_VAL_MIN').
|
|
|
|
is_IntValBranch_('INT_VAL_MED').
|
|
|
|
is_IntValBranch_('INT_VAL_MAX').
|
|
|
|
is_IntValBranch_('INT_VAL_SPLIT_MIN').
|
|
|
|
is_IntValBranch_('INT_VAL_SPLIT_MAX').
|
|
|
|
is_IntValBranch_('INT_VAL_RANGE_MIN').
|
|
|
|
is_IntValBranch_('INT_VAL_RANGE_MAX').
|
|
|
|
is_IntValBranch_('INT_VALUES_MIN').
|
|
|
|
is_IntValBranch_('INT_NEAR_MIN'(_)).
|
|
|
|
is_IntValBranch_('INT_NEAR_MAX'(_)).
|
|
|
|
is_IntValBranch_('INT_NEAR_INC'(_)).
|
|
|
|
is_IntValBranch_('INT_NEAR_DEC'(_)).
|
|
|
|
|
|
|
|
is_IntValBranch_(X,X) :- is_IntValBranch_(X).
|
|
|
|
|
|
|
|
is_IntValBranch(X,Y) :- nonvar(X), is_IntValBranch_(X,Y).
|
|
|
|
is_IntValBranch(X) :- is_IntValBranch(X,_).
|
|
|
|
|
|
|
|
is_SetValBranch_('SET_VAL_RND_INC'(_)).
|
|
|
|
is_SetValBranch_('SET_VAL_RND_EXC'(_)).
|
|
|
|
is_SetValBranch_('SET_VAL'(_,_)).
|
|
|
|
is_SetValBranch_('SET_VAL_MIN_INC').
|
|
|
|
is_SetValBranch_('SET_VAL_MIN_EXC').
|
|
|
|
is_SetValBranch_('SET_VAL_MED_INC').
|
|
|
|
is_SetValBranch_('SET_VAL_MED_EXC').
|
|
|
|
is_SetValBranch_('SET_VAL_MAX_INC').
|
|
|
|
is_SetValBranch_('SET_VAL_MAX_EXC').
|
|
|
|
|
|
|
|
is_SetValBranch_(X,X) :- is_SetValBranch_(X).
|
|
|
|
|
|
|
|
is_SetValBranch(X,Y) :- nonvar(X), is_SetValBranch_(X,Y).
|
|
|
|
is_SetValBranch(X) :- is_SetValBranch(X,_).
|
|
|
|
|
|
|
|
is_FloatValBranch_('FLOAT_VAL'(_,_)).
|
|
|
|
is_FloatValBranch_('FLOAT_VAL_SPLIT_RND'(_)).
|
|
|
|
is_FloatValBranch_('FLOAT_VAL_SPLIT_MIN').
|
|
|
|
is_FloatValBranch_('FLOAT_VAL_SLIT_MAX').
|
|
|
|
|
|
|
|
is_FloatValBranch_(X,X) :- is_FloatValBranch_(X).
|
|
|
|
|
|
|
|
is_FloatValBranch(X,Y) :- nonvar(X), is_FloatValBranch_(X,Y).
|
|
|
|
is_FloatValBranch(X) :- is_FloatValBranch(X,_).
|
|
|
|
|
|
|
|
|
|
|
|
new_space(Space) :-
|
|
|
|
assert_var(Space),
|
|
|
|
gecode_new_space(Space_),
|
|
|
|
Space='Space'(Space_).
|
|
|
|
|
|
|
|
%% checking that an argument is a space sets a global variable
|
|
|
|
%% indicating whether variables need to be translated to their
|
|
|
|
%% original index or to their "keep" index.
|
|
|
|
%%
|
|
|
|
%% these bindings are going to take advantage of the fact that,
|
|
|
|
%% when a space is involved, it is checked first, thus setting
|
|
|
|
%% this global variable. subsequent accesses to variables are
|
|
|
|
%% then correctly translated.
|
|
|
|
|
|
|
|
is_Space_('Space'(X),X) :-
|
|
|
|
gecode_space_use_keep_index(X,B),
|
|
|
|
nb_setval(gecode_space_use_keep_index,B).
|
|
|
|
is_Space(X,Y) :- nonvar(X), is_Space_(X,Y).
|
|
|
|
is_Space(X) :- is_Space(X,_).
|
|
|
|
|
|
|
|
is_Reify_('Reify'(X),X).
|
|
|
|
is_Reify(X,Y) :- nonvar(X), is_Reify_(X,Y).
|
|
|
|
is_Reify(X) :- is_Reify(X,_).
|
|
|
|
|
|
|
|
%% AUTOGENERATE ALL VARIANTS LATER!
|
|
|
|
|
|
|
|
new_intvars([], _Space, _Lo, _Hi).
|
|
|
|
new_intvars([IVar|IVars], Space, Lo, Hi) :-
|
|
|
|
new_intvar(IVar, Space, Lo, Hi),
|
|
|
|
new_intvars(IVars, Space, Lo, Hi).
|
|
|
|
|
|
|
|
new_intvars([], _Space, _IntSet).
|
|
|
|
new_intvars([IVar|IVars], Space, IntSet) :-
|
|
|
|
new_intvar(IVar, Space, IntSet),
|
|
|
|
new_intvars(IVars, Space, IntSet).
|
|
|
|
|
|
|
|
new_boolvars([], _Space).
|
|
|
|
new_boolvars([BVar|BVars], Space) :-
|
|
|
|
new_boolvar(BVar, Space),
|
|
|
|
new_boolvars(BVars, Space).
|
|
|
|
|
|
|
|
new_setvars([], _Space, _X1, _X2, _X3, _X4, _X5, _X6).
|
|
|
|
new_setvars([SVar|SVars], Space, X1, X2, X3, X4, X5, X6) :-
|
|
|
|
new_setvar(SVar, Space, X1, X2, X3, X4, X5, X6),
|
|
|
|
new_setvars(SVars, Space, X1, X2, X3, X4, X5, X6).
|
|
|
|
|
|
|
|
new_setvars([], _Space, _X1, _X2, _X3, _X4, _X5).
|
|
|
|
new_setvars([SVar|SVars], Space, X1, X2, X3, X4, X5) :-
|
|
|
|
new_setvar(SVar, Space, X1, X2, X3, X4, X5),
|
|
|
|
new_setvars(SVars, Space, X1, X2, X3, X4, X5).
|
|
|
|
|
|
|
|
new_setvars([], _Space, _X1, _X2, _X3, _X4).
|
|
|
|
new_setvars([SVar|SVars], Space, X1, X2, X3, X4) :-
|
|
|
|
new_setvar(SVar, Space, X1, X2, X3, X4),
|
|
|
|
new_setvars(SVars, Space, X1, X2, X3, X4).
|
|
|
|
|
|
|
|
new_setvars([], _Space, _X1, _X2, _X3).
|
|
|
|
new_setvars([SVar|SVars], Space, X1, X2, X3) :-
|
|
|
|
new_setvar(SVar, Space, X1, X2, X3),
|
|
|
|
new_setvars(SVars, Space, X1, X2, X3).
|
|
|
|
|
|
|
|
new_setvars([], _Space, _X1, _X2).
|
|
|
|
new_setvars([SVar|SVars], Space, X1, X2) :-
|
|
|
|
new_setvar(SVar, Space, X1, X2),
|
|
|
|
new_setvars(SVars, Space, X1, X2).
|
|
|
|
|
|
|
|
%% AUTOGENERATE LATER
|
|
|
|
|
|
|
|
assert_integer(X) :- assert_is_int(X).
|
|
|
|
|
|
|
|
new_intvar(IVar, Space, Lo, Hi) :- !,
|
|
|
|
assert_var(IVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
assert_integer(Lo),
|
|
|
|
assert_integer(Hi),
|
|
|
|
gecode_new_intvar_from_bounds(Idx,Space_,Lo,Hi),
|
|
|
|
IVar='IntVar'(Idx,-1).
|
|
|
|
new_intvar(IVar, Space, IntSet) :- !,
|
|
|
|
assert_var(IVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
assert_is_IntSet(IntSet, L),
|
|
|
|
gecode_new_intvar_from_intset(Idx,Space_,L),
|
|
|
|
IVar='IntVar'(Idx,-1).
|
|
|
|
|
|
|
|
new_floatvar(FVar, Space, Lo, Hi) :- !,
|
|
|
|
assert_var(FVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
assert_float(Lo),
|
|
|
|
assert_float(Hi),
|
|
|
|
gecode_new_floatvar_from_bounds(Idx,Space_,Lo,Hi),
|
|
|
|
FVar='FloatVar'(Idx,-1).
|
|
|
|
|
|
|
|
new_boolvar(BVar, Space) :- !,
|
|
|
|
assert_var(BVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
gecode_new_boolvar(Idx,Space_),
|
|
|
|
BVar='BoolVar'(Idx,-1).
|
|
|
|
|
|
|
|
%% (GlbMin,GlbMax,LubMin,LubMax,CardMin,CardMax) 6 new_setvar_1
|
|
|
|
%% (GlbMin,GlbMax,LubMin,LubMax,CardMin) 5 new_setvar_2
|
|
|
|
%% (GlbMin,GlbMax,LubMin,LubMax) 4 new_setvar_3
|
|
|
|
%% (Glb,LubMin,LubMax,CardMin,CardMax) 5 new_setvar_4
|
|
|
|
%% (Glb,LubMin,LubMax,CardMin) 4 new_setvar_5
|
|
|
|
%% (Glb,LubMin,LubMax) 3 new_setvar_6
|
|
|
|
%% (GlbMin,GlbMax,Lub,CardMin,CardMax) 5 new_setvar_7
|
|
|
|
%% (GlbMin,GlbMax,Lub,CardMin) 4 new_setvar_8
|
|
|
|
%% (GlbMin,GlbMax,Lub) 3 new_setvar_9
|
|
|
|
%% (Glb,Lub,CardMin,CardMax) 4 new_setvar_10
|
|
|
|
%% (Glb,Lub,CardMin) 3 new_setvar_11
|
|
|
|
%% (Glb,Lub) 2 new_setvar_12
|
|
|
|
|
|
|
|
%% 6 arguments
|
|
|
|
%% (GlbMin,GlbMax,LubMin,LubMax,CardMin,CardMax) 6 new_setvar_1
|
|
|
|
new_setvar(SVar, Space, GlbMin, GlbMax, LubMin, LubMax, CardMin, CardMax) :-
|
|
|
|
assert_var(SVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
assert_integer(GlbMin),
|
|
|
|
assert_integer(GlbMax),
|
|
|
|
assert_integer(LubMin),
|
|
|
|
assert_integer(LubMax),
|
|
|
|
assert_integer(CardMin),
|
|
|
|
assert_integer(CardMax),
|
|
|
|
gecode_new_setvar(Idx, Space_, GlbMin, GlbMax, LubMin, LubMax, CardMin, CardMax),
|
|
|
|
SVar='SetVar'(Idx,-1).
|
|
|
|
|
|
|
|
%% 5 arguments
|
|
|
|
%% (GlbMin,GlbMax,LubMin,LubMax,CardMin) 5 new_setvar_2
|
|
|
|
%% (Glb,LubMin,LubMax,CardMin,CardMax) 5 new_setvar_4
|
|
|
|
%% (GlbMin,GlbMax,Lub,CardMin,CardMax) 5 new_setvar_7
|
|
|
|
new_setvar(SVar, Space, X1, X2, X3, X4, X5) :-
|
|
|
|
assert_var(SVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
(integer(X1)
|
|
|
|
->
|
|
|
|
assert_integer(X2),
|
|
|
|
assert_integer(X4),
|
|
|
|
assert_integer(X5),
|
|
|
|
(is_IntSet(X3,X3_)
|
|
|
|
-> gecode_new_setvar_7(Idx,Space_,X1,X2,X3_,X4,X5)
|
|
|
|
; gecode_new_setvar_2(Idx,Space_,X1,X2,X3,X4,X5))
|
|
|
|
;
|
|
|
|
assert_is_IntSet(X1,X1_),
|
|
|
|
assert_integer(X2),
|
|
|
|
assert_integer(X3),
|
|
|
|
assert_integer(X4),
|
|
|
|
assert_integer(X5),
|
|
|
|
gecode_new_setvar_4(Idx,Space_,X1_,X2,X3,X4,X5)),
|
|
|
|
SVar='SetVar'(Idx,-1).
|
|
|
|
|
|
|
|
%% 4 arguments
|
|
|
|
%% (GlbMin,GlbMax,LubMin,LubMax) 4 new_setvar_3
|
|
|
|
%% (Glb,LubMin,LubMax,CardMin) 4 new_setvar_5
|
|
|
|
%% (GlbMin,GlbMax,Lub,CardMin) 4 new_setvar_8
|
|
|
|
%% (Glb,Lub,CardMin,CardMax) 4 new_setvar_10
|
|
|
|
new_setvar(SVar,Space,X1,X2,X3,X4) :-
|
|
|
|
assert_var(SVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
assert_integer(X4),
|
|
|
|
(is_IntSet(X1,X1_)
|
|
|
|
-> (is_IntSet(X2,X2_)
|
|
|
|
->
|
|
|
|
assert_integer(X3),
|
|
|
|
gecode_new_setvar_10(Idx,Space_,X1_,X2_,X3,X4)
|
|
|
|
;
|
|
|
|
assert_integer(X2),
|
|
|
|
assert_integer(X3),
|
|
|
|
gecode_new_setvar_5(Idx,Space_,X1_,X2,X3,X4))
|
|
|
|
;
|
|
|
|
assert_integer(X1),
|
|
|
|
assert_integer(X2),
|
|
|
|
(is_IntSet(X3,X3_)
|
|
|
|
->
|
|
|
|
gecode_new_setvar_8(Idx,Space_,X1,X2,X3_,X4)
|
|
|
|
;
|
|
|
|
assert_integer(X3),
|
|
|
|
gecode_new_setvar_3(Idx,Space_,X1,X2,X3,X4))),
|
|
|
|
SVar='SetVar'(Idx,-1).
|
|
|
|
|
|
|
|
%% 3 arguments
|
|
|
|
%% (Glb,LubMin,LubMax) 3 new_setvar_6
|
|
|
|
%% (GlbMin,GlbMax,Lub) 3 new_setvar_9
|
|
|
|
%% (Glb,Lub,CardMin) 3 new_setvar_11
|
|
|
|
new_setvar(SVar,Space,X1,X2,X3) :-
|
|
|
|
assert_var(SVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
(is_IntSet(X1,X1_)
|
|
|
|
-> (is_IntSet(X2,X2_)
|
|
|
|
->
|
|
|
|
assert_integer(X3),
|
|
|
|
gecode_new_setvar_11(Idx,Space_,X1_,X2_,X3)
|
|
|
|
;
|
|
|
|
assert_integer(X2),
|
|
|
|
assert_integer(X3),
|
|
|
|
gecode_new_setvar_6(Idx,Space_,X1_,X2,X3))
|
|
|
|
;
|
|
|
|
assert_integer(X1),
|
|
|
|
assert_integer(X2),
|
|
|
|
assert_is_IntSet(X3,X3_),
|
|
|
|
gecode_new_setvar_9(Idx,Space_,X1,X2,X3_)),
|
|
|
|
SVar='SetVar'(Idx,-1).
|
|
|
|
|
|
|
|
%% 2 arguments
|
|
|
|
%% (Glb,Lub) 2 new_setvar_12
|
|
|
|
new_setvar(SVar,Space,X1,X2) :-
|
|
|
|
assert_var(SVar),
|
|
|
|
assert_is_Space_or_Clause(Space,Space_),
|
|
|
|
assert_is_IntSet(X1,X1_),
|
|
|
|
assert_is_IntSet(X2,X2_),
|
|
|
|
gecode_new_setvar_12(Idx,Space_,X1_,X2_),
|
|
|
|
SVar='SetVar'(Idx,-1).
|
|
|
|
|
|
|
|
new_tupleset( TupleSet, List ) :-
|
|
|
|
gecode_new_tupleset(List, TupleSet_),
|
|
|
|
TupleSet = 'TupleSet'(TupleSet_).
|
|
|
|
|
|
|
|
new_dfa( DFA, S0, List, Finals ) :-
|
|
|
|
gecode_new_dfa(DFA_, S0, List, Finals),
|
|
|
|
DFA = 'DFA'(DFA_).
|
|
|
|
|
|
|
|
|
|
|
|
minimize(Space,IVar) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
assert_is_IntVar(IVar,IVar_),
|
|
|
|
gecode_space_minimize(Space_,IVar_).
|
|
|
|
maximize(Space,IVar) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
assert_is_IntVar(IVar,IVar_),
|
|
|
|
gecode_space_maximize(Space_,IVar_).
|
|
|
|
minimize(Space,IVar1,IVar2) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
assert_is_IntVar(IVar1,IVar1_),
|
|
|
|
assert_is_IntVar(IVar2,IVar2_),
|
|
|
|
gecode_space_minimize_ratio(Space_,IVar1_,IVar2_).
|
|
|
|
maximize(Space,IVar1,IVar2) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
assert_is_IntVar(IVar1,IVar1_),
|
|
|
|
assert_is_IntVar(IVar2,IVar2_),
|
|
|
|
gecode_space_maximize_ratio(Space_,IVar1_,IVar2_).
|
|
|
|
|
|
|
|
reify(Space,BVar,Mode,R) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
assert_is_BoolVar(BVar,BVar_),
|
|
|
|
assert_is_ReifyMode(Mode,Mode_),
|
|
|
|
assert_var(R),
|
|
|
|
gecode_new_reify(Space_,BVar_,Mode_,R_),
|
|
|
|
R = 'Reify'(R_).
|
|
|
|
|
|
|
|
gecode_search_options_init(search_options(0,1.0,8,2,'RM_NONE',0,1,0)).
|
|
|
|
gecode_search_options_offset(restart,1).
|
|
|
|
gecode_search_options_offset(threads,2).
|
|
|
|
gecode_search_options_offset(c_d ,3).
|
|
|
|
gecode_search_options_offset(a_d ,4).
|
|
|
|
gecode_search_options_offset(cutoff, 5).
|
|
|
|
gecode_search_options_offset(nogoods_limit, 6).
|
|
|
|
gecode_search_options_offset(clone, 7).
|
|
|
|
gecode_search_options_offset(stop, 8). % unimplemented
|
|
|
|
|
|
|
|
gecode_search_option_set(O,V,R) :-
|
|
|
|
gecode_search_options_offset(O,I),
|
|
|
|
setarg(I,R,V).
|
|
|
|
|
|
|
|
gecode_search_options_from_alist(L,R) :-
|
|
|
|
gecode_search_options_init(R),
|
|
|
|
gecode_search_options_process_alist(L,R).
|
|
|
|
|
|
|
|
gecode_search_options_process_alist([], _R).
|
|
|
|
gecode_search_options_process_alist([H|T], R) :- !,
|
|
|
|
gecode_search_options_process1(H, R),
|
|
|
|
gecode_search_options_process_alist(T, R).
|
|
|
|
|
|
|
|
gecode_search_options_process1(restart,R) :- !,
|
|
|
|
gecode_search_option_set(restart,1,R).
|
|
|
|
gecode_search_options_process1(threads=N,R) :- !,
|
|
|
|
(integer(N) -> V is float(N)
|
|
|
|
; (float(N) -> V=N
|
|
|
|
; throw(bad_search_option_value(threads=N)))),
|
|
|
|
gecode_search_option_set(threads,V,R).
|
|
|
|
gecode_search_options_process1(c_d=N,R) :- !,
|
|
|
|
(integer(N) -> V=N
|
|
|
|
; throw(bad_search_option_value(c_d=N))),
|
|
|
|
gecode_search_option_set(c_d,V,R).
|
|
|
|
gecode_search_options_process1(a_d=N,R) :- !,
|
|
|
|
(integer(N) -> V=N
|
|
|
|
; throw(bad_search_option_value(a_d=N))),
|
|
|
|
gecode_search_option_set(a_d,V,R).
|
|
|
|
gecode_search_options_process1(cutoff=C,R) :- !,
|
|
|
|
(is_RestartMode(C,C_) -> V=C_
|
|
|
|
; throw(bad_search_option_value(cutoff=C))),
|
|
|
|
gecode_search_option_set(cutoff,V,R).
|
|
|
|
gecode_search_options_process1(nogoods_limit=N,R) :- !,
|
|
|
|
(integer(N), N >= 0 -> V=N
|
|
|
|
; throw(bad_search_option_value(nogoods_limit=N))),
|
|
|
|
gecode_search_option_set(nogoods_limit,V,R).
|
|
|
|
gecode_search_options_process1(clone=N,R) :- !,
|
|
|
|
((N == 0 ; N == 1)-> V=N
|
|
|
|
; throw(bad_search_option_value(clone=N))),
|
|
|
|
gecode_search_option_set(clone,V,R).
|
|
|
|
gecode_search_options_process1(O,_) :-
|
|
|
|
throw(gecode_error(unrecognized_search_option(O))).
|
|
|
|
|
|
|
|
search(Space, Solution) :-
|
|
|
|
search(Space, Solution, []).
|
|
|
|
|
|
|
|
search(Space, Solution, Alist) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
assert_var(Solution),
|
|
|
|
gecode_search_options_from_alist(Alist,O),
|
|
|
|
gecode_new_engine(Space_,Engine_,O),
|
|
|
|
gecode_engine_search(Engine_,Solution_),
|
|
|
|
Solution='Space'(Solution_).
|
|
|
|
|
|
|
|
|
|
|
|
%% INSPECTING VARIABLES
|
|
|
|
|
|
|
|
get_for_vars([],_Space,[],_F).
|
|
|
|
get_for_vars([V|Vs],Space,[V2|V2s],F) :-
|
|
|
|
call_with_args(F,V,Space,V2),
|
|
|
|
get_for_vars(Vs,Space,V2s,F).
|
|
|
|
|
|
|
|
get_assigned(Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_assigned(Space_,Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_assigned(Space_,Var_)
|
|
|
|
; is_FloatVar(Var,Var_)
|
|
|
|
-> gecode_floatvar_assigned(Space_,Var_)
|
|
|
|
; is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_assigned(Space_,Var_)
|
|
|
|
; throw(gecode_error(expected(variable)))).
|
|
|
|
|
|
|
|
get_min(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_min(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_min(X, Space_, Var_)
|
|
|
|
; is_FloatVar(Var,Var_)
|
|
|
|
-> gecode_floatvar_min(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_min)).
|
|
|
|
|
|
|
|
get_max(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_max(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_max(X, Space_, Var_)
|
|
|
|
; is_FloatVar(Var,Var_)
|
|
|
|
-> gecode_floatvar_max(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_max)).
|
|
|
|
|
|
|
|
get_med(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_med(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_med(X, Space_, Var_)
|
|
|
|
; is_FloatVar(Var,Var_)
|
|
|
|
-> gecode_floatvar_med(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_med)).
|
|
|
|
|
|
|
|
get_val(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_val(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_val(X, Space_, Var_)
|
|
|
|
; is_FloatVar(Var,Var_)
|
|
|
|
-> gecode_floatvar_val(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_val)).
|
|
|
|
|
|
|
|
get_size(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_size(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_size(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_size)).
|
|
|
|
|
|
|
|
get_width(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_width(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_width(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_width)).
|
|
|
|
|
|
|
|
get_regret_min(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_regret_min(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_regret_min(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_regret_min)).
|
|
|
|
|
|
|
|
get_regret_max(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_regret_max(X, Space_, Var_)
|
|
|
|
; is_BoolVar(Var,Var_)
|
|
|
|
-> gecode_boolvar_regret_max(X, Space_, Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_regret_max)).
|
|
|
|
|
|
|
|
get_glbSize(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_glbSize(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_glbSize)).
|
|
|
|
|
|
|
|
get_lubSize(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_lubSize(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_lubSize)).
|
|
|
|
|
|
|
|
get_unknownSize(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_unknownSize(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_unknownSize)).
|
|
|
|
|
|
|
|
get_cardMin(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_cardMin(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_cardMin)).
|
|
|
|
|
|
|
|
get_cardMax(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_cardMax(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_cardMax)).
|
|
|
|
|
|
|
|
get_lubMin(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_lubMin(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_lubMin)).
|
|
|
|
|
|
|
|
get_lubMax(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_lubMax(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_lubMax)).
|
|
|
|
|
|
|
|
get_glbMin(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_glbMin(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_glbMin)).
|
|
|
|
|
|
|
|
get_glbMax(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_glbMax(X,Space_,Var_)
|
|
|
|
; get_for_vars(X, Space, Var, gecode:get_glbMax)).
|
|
|
|
|
|
|
|
get_glb_ranges(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_glb_ranges(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_glb_ranges)).
|
|
|
|
|
|
|
|
get_lub_ranges(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_lub_ranges(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_lub_ranges)).
|
|
|
|
|
|
|
|
get_unknown_ranges(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_unknown_ranges(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_unknown_ranges)).
|
|
|
|
|
|
|
|
get_glb_values(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_glb_values(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_glb_values)).
|
|
|
|
|
|
|
|
get_lub_values(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_lub_values(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_lub_values)).
|
|
|
|
|
|
|
|
get_unknown_values(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_SetVar(Var,Var_)
|
|
|
|
-> gecode_setvar_unknown_values(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_unknown_values)).
|
|
|
|
|
|
|
|
get_ranges(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_ranges(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_ranges)).
|
|
|
|
|
|
|
|
get_values(X, Space, Var) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
(is_IntVar(Var,Var_)
|
|
|
|
-> gecode_intvar_values(X,Space_,Var_)
|
|
|
|
; get_for_vars(X,Space,Var,gecode:get_values)).
|
|
|
|
|
|
|
|
new_disjunctor(X, Space) :-
|
|
|
|
assert_is_Space(Space,Space_),
|
|
|
|
gecode_new_disjunctor(D,Space_),
|
|
|
|
X='Disjunctor'(D).
|
|
|
|
|
|
|
|
is_Disjunctor_('Disjunctor'(D),D).
|
|
|
|
is_Disjunctor(X,Y) :- nonvar(X), is_Disjunctor_(X,Y).
|
|
|
|
is_Disjunctor(X) :- is_Disjunctor(X,_).
|
|
|
|
|
|
|
|
assert_is_Disjunctor(X,Y) :-
|
|
|
|
is_Disjunctor(X,Y) -> true ; throw(gecode_error(expected(disjunctor))).
|
|
|
|
|
|
|
|
new_clause(X, Disj) :-
|
|
|
|
assert_is_Disjunctor(Disj,Disj_),
|
|
|
|
gecode_new_clause(C, Disj_),
|
|
|
|
X='Clause'(C).
|
|
|
|
|
|
|
|
is_Clause_('Clause'(C),C) :-
|
|
|
|
gecode_space_use_keep_index(C,B),
|
|
|
|
nb_setval(gecode_space_use_keep_index,B).
|
|
|
|
is_Clause(X,Y) :- nonvar(X), is_Clause_(X,Y).
|
|
|
|
is_Clause(X) :- is_Clause(X,_).
|
|
|
|
|
|
|
|
assert_is_Clause(X,Y) :-
|
|
|
|
is_Clause(X,Y) -> true ; throw(gecode_error(expected(clause))).
|
|
|
|
|
|
|
|
is_Space_or_Clause(X,Y) :-
|
|
|
|
(is_Space(X,Y);is_Clause(X,Y)), !.
|
|
|
|
assert_is_Space_or_Clause(X,Y) :-
|
|
|
|
is_Space_or_Clause(X,Y) -> true
|
|
|
|
; throw(gecode_error(expected(space,clause))).
|
|
|
|
|
|
|
|
new_forward(Clause, X, Y) :-
|
|
|
|
assert_is_Clause(Clause, Clause_),
|
|
|
|
(is_IntVar(X,X_)
|
|
|
|
-> (is_IntVar(Y,Y_)
|
|
|
|
-> gecode_clause_intvar_forward(Clause_,X_,Y_)
|
|
|
|
; throw(gecode_error(forward)))
|
|
|
|
; (is_BoolVar(X,X_)
|
|
|
|
-> (is_BoolVar(Y,Y_)
|
|
|
|
-> gecode_clause_boolvar_forward(Clause_,X_,Y_)
|
|
|
|
; throw(gecode_error(forward)))
|
|
|
|
; (is_SetVar(X,X_)
|
|
|
|
-> (is_SetVar(Y,Y_)
|
|
|
|
-> gecode_clause_setvar_forward(Clause_,X_,Y_)
|
|
|
|
; throw(gecode_error(forward)))
|
|
|
|
; (X=[]
|
|
|
|
-> Y=[]
|
|
|
|
;(X=[H1|T1],Y=[H2|T2])
|
|
|
|
-> (new_forward(Clause,H1,H2),
|
|
|
|
new_forward(Clause,T1,T2))
|
|
|
|
; throw(gecode_error(forward)))))).
|
|
|
|
|
|
|
|
new_intvars_(L,Space,N,I,J) :- length(L,N), new_intvars(L,Space,I,J).
|
|
|
|
new_intvars_(L,Space,N,IntSet) :- length(L,N), new_intvars(L,Space,IntSet).
|
|
|
|
new_boolvars_(L,Space,N) :- length(L,N), new_boolvars(L,Space).
|
|
|
|
new_setvars_(L,Space,N,X1,X2,X3,X4,X5,X6) :- length(L,N), new_setvars(L,Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
new_setvars_(L,Space,N,X1,X2,X3,X4,X5) :- length(L,N), new_setvars(L,Space,X1,X2,X3,X4,X5).
|
|
|
|
new_setvars_(L,Space,N,X1,X2,X3,X4) :- length(L,N), new_setvars(L,Space,X1,X2,X3,X4).
|
|
|
|
new_setvars_(L,Space,N,X1,X2,X3) :- length(L,N), new_setvars(L,Space,X1,X2,X3).
|
|
|
|
new_setvars_(L,Space,N,X1,X2) :- length(L,N), new_setvars(L,Space,X1,X2).
|
|
|
|
|
|
|
|
keep_(Space, Var) :-
|
|
|
|
(Var = 'IntVar'(I,J)
|
|
|
|
-> (J = -1 -> (gecode_intvar_keep(Space,I,K),setarg(2,Var,K))
|
|
|
|
; throw(gecode_error(variable_already_kept(Var))))
|
|
|
|
; (Var = 'BoolVar'(I,J)
|
|
|
|
-> (J = -1 -> (gecode_boolvar_keep(Space,I,K),setarg(2,Var,K))
|
|
|
|
; throw(gecode_error(variable_already_kept(Var))))
|
|
|
|
; (Var = 'SetVar'(I,J)
|
|
|
|
-> (J = -1 -> (gecode_setvar_keep(Space,I,K),setarg(2,Var,K))
|
|
|
|
; throw(gecode_error(variable_already_kept(Var))))
|
|
|
|
; keep_list_(Space,Var)))).
|
|
|
|
|
|
|
|
keep_list_(_Space, []) :- !.
|
|
|
|
keep_list_(Space, [H|T]) :- !,
|
|
|
|
keep_(Space,H), keep_list_(Space,T).
|
|
|
|
keep_list_(_, X) :-
|
|
|
|
throw(gecode_error(not_a_variable(X))).
|
|
|
|
|
|
|
|
%% more concise interface:
|
|
|
|
(X := Y) :- var(Y), !, throw(gecode_error((X := Y))).
|
|
|
|
(X := intset(I,J)) :- !, new_intset(X,I,J).
|
|
|
|
(X := intset(L)) :- !, new_intset(X,L).
|
|
|
|
(X := space) :- !, new_space(X).
|
|
|
|
(X := intvar(Space,I,J)) :- !, new_intvar(X,Space,I,J).
|
|
|
|
(X := intvar(Space,IntSet)) :- !, new_intvar(X,Space,IntSet).
|
|
|
|
(X := boolvar(Space)) :- !, new_boolvar(X,Space).
|
|
|
|
(X := setvar(Space,X1,X2,X3,X4,X5,X6)) :- !, new_setvar(X,Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(X := setvar(Space,X1,X2,X3,X4,X5)) :- !, new_setvar(X,Space,X1,X2,X3,X4,X5).
|
|
|
|
(X := setvar(Space,X1,X2,X3,X4)) :- !, new_setvar(X,Space,X1,X2,X3,X4).
|
|
|
|
(X := setvar(Space,X1,X2,X3)) :- !, new_setvar(X,Space,X1,X2,X3).
|
|
|
|
(X := setvar(Space,X1,X2)) :- !, new_setvar(X,Space,X1,X2).
|
|
|
|
(X := intvars(Space,N,I,J)) :- !, new_intvars_(X,Space,N,I,J).
|
|
|
|
(X := intvars(Space,N,IntSet)) :- !, new_intvars_(X,Space,N,IntSet).
|
|
|
|
(X := boolvars(Space,N)) :- !, new_boolvars_(X,Space,N).
|
|
|
|
(X := setvars(Space,N,X1,X2,X3,X4,X5,X6)) :- !, new_setvars_(X,Space,N,X1,X2,X3,X4,X5,X6).
|
|
|
|
(X := setvars(Space,N,X1,X2,X3,X4,X5)) :- !, new_setvars_(X,Space,N,X1,X2,X3,X4,X5).
|
|
|
|
(X := setvars(Space,N,X1,X2,X3,X4)) :- !, new_setvars_(X,Space,N,X1,X2,X3,X4).
|
|
|
|
(X := setvars(Space,N,X1,X2,X3)) :- !, new_setvars_(X,Space,N,X1,X2,X3).
|
|
|
|
(X := setvars(Space,N,X1,X2)) :- !, new_setvars_(X,Space,N,X1,X2).
|
|
|
|
(X := tupleset(Set)) :- !, new_tupleset(X, Set).
|
|
|
|
(X := dfa(S0, Transitions, Finals)) :- !, new_dfa(X, S0, Transitions, Finals).
|
|
|
|
|
|
|
|
(X := min(Space,Var)) :- !, get_min(X,Space,Var).
|
|
|
|
(X := max(Space,Var)) :- !, get_max(X,Space,Var).
|
|
|
|
(X := med(Space,Var)) :- !, get_med(X,Space,Var).
|
|
|
|
(X := val(Space,Var)) :- !, get_val(X,Space,Var).
|
|
|
|
(X := size(Space,Var)) :- !, get_size(X,Space,Var).
|
|
|
|
(X := width(Space,Var)) :- !, get_width(X,Space,Var).
|
|
|
|
(X := regret_min(Space,Var)) :- !, get_regret_min(X,Space,Var).
|
|
|
|
(X := regret_max(Space,Var)) :- !, get_regret_max(X,Space,Var).
|
|
|
|
(X := ranges(Space,Var)) :- !, get_ranges(X,Space,Var).
|
|
|
|
(X := values(Space,Var)) :- !, get_values(X,Space,Var).
|
|
|
|
|
|
|
|
(X := glbSize(Space,Var)) :- !, get_glbSize(X,Space,Var).
|
|
|
|
(X := lubSize(Space,Var)) :- !, get_lubSize(X,Space,Var).
|
|
|
|
(X := unknownSize(Space,Var)) :- !, get_unknownSize(X,Space,Var).
|
|
|
|
(X := cardMin(Space,Var)) :- !, get_cardMin(X,Space,Var).
|
|
|
|
(X := cardMax(Space,Var)) :- !, get_cardMax(X,Space,Var).
|
|
|
|
(X := lubMin(Space,Var)) :- !, get_lubMin(X,Space,Var).
|
|
|
|
(X := lubMax(Space,Var)) :- !, get_lubMax(X,Space,Var).
|
|
|
|
(X := glbMin(Space,Var)) :- !, get_glbMin(X,Space,Var).
|
|
|
|
(X := glbMax(Space,Var)) :- !, get_glbMax(X,Space,Var).
|
|
|
|
(X := glb_ranges(Space,Var)) :- !, get_glb_ranges(X,Space,Var).
|
|
|
|
(X := lub_ranges(Space,Var)) :- !, get_lub_ranges(X,Space,Var).
|
|
|
|
(X := unknown_ranges(Space,Var)) :- !, get_unknown_ranges(X,Space,Var).
|
|
|
|
(X := glb_values(Space,Var)) :- !, get_glb_values(X,Space,Var).
|
|
|
|
(X := lub_values(Space,Var)) :- !, get_lub_values(X,Space,Var).
|
|
|
|
(X := unknown_values(Space,Var)) :- !, get_unknown_values(X,Space,Var).
|
|
|
|
|
|
|
|
(X := disjunctor(Space)) :- !, new_disjunctor(X,Space).
|
|
|
|
(X := clause(Disj)) :- !, new_clause(X,Disj).
|
|
|
|
|
|
|
|
(X := search(Y)) :- !, search(Y,X).
|
|
|
|
(X := search(Y,L)) :- !, search(Y,X,L).
|
|
|
|
|
|
|
|
% these should be autogenerated:
|
|
|
|
(C += forward(X,Y)) :- !, new_forward(C,X,Y).
|
|
|
|
(Space += abs(X1,X2)) :- !, abs(Space,X1,X2).
|
|
|
|
(Space += abs(X1,X2,X3)) :- !, abs(Space,X1,X2,X3).
|
|
|
|
(Space += assign(X1,X2)) :- !, assign(Space,X1,X2).
|
|
|
|
(Space += atmostOne(X1,X2)) :- !, atmostOne(Space,X1,X2).
|
|
|
|
(Space += binpacking(X1,X2,X3)) :- !, binpacking(Space,X1,X2,X3).
|
|
|
|
(Space += binpacking(X1,X2,X3,X4)) :- !, binpacking(Space,X1,X2,X3,X4).
|
|
|
|
(Space += branch(X1,X2)) :- !, branch(Space,X1,X2).
|
|
|
|
(Space += branch(X1,X2,X3)) :- !, branch(Space,X1,X2,X3).
|
|
|
|
(Space += cardinality(X1,X2)) :- !, cardinality(Space,X1,X2).
|
|
|
|
(Space += cardinality(X1,X2,X3)) :- !, cardinality(Space,X1,X2,X3).
|
|
|
|
(Space += channel(X1,X2)) :- !, channel(Space,X1,X2).
|
|
|
|
(Space += channel(X1,X2,X3)) :- !, channel(Space,X1,X2,X3).
|
|
|
|
(Space += channel(X1,X2,X3,X4)) :- !, channel(Space,X1,X2,X3,X4).
|
|
|
|
(Space += channel(X1,X2,X3,X4,X5)) :- !, channel(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += channelSorted(X1,X2)) :- !, channelSorted(Space,X1,X2).
|
|
|
|
(Space += circuit(X1)) :- !, circuit(Space,X1).
|
|
|
|
(Space += circuit(X1,X2)) :- !, circuit(Space,X1,X2).
|
|
|
|
(Space += circuit(X1,X2,X3)) :- !, circuit(Space,X1,X2,X3).
|
|
|
|
(Space += circuit(X1,X2,X3,X4)) :- !, circuit(Space,X1,X2,X3,X4).
|
|
|
|
(Space += circuit(X1,X2,X3,X4,X5)) :- !, circuit(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += circuit(X1,X2,X3,X4,X5,X6)) :- !, circuit(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += clause(X1,X2,X3,X4)) :- !, clause(Space,X1,X2,X3,X4).
|
|
|
|
(Space += clause(X1,X2,X3,X4,X5)) :- !, clause(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += convex(X1)) :- !, convex(Space,X1).
|
|
|
|
(Space += convex(X1,X2)) :- !, convex(Space,X1,X2).
|
|
|
|
(Space += count(X1,X2)) :- !, count(Space,X1,X2).
|
|
|
|
(Space += count(X1,X2,X3)) :- !, count(Space,X1,X2,X3).
|
|
|
|
(Space += count(X1,X2,X3,X4)) :- !, count(Space,X1,X2,X3,X4).
|
|
|
|
(Space += count(X1,X2,X3,X4,X5)) :- !, count(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += cumulative(X1,X2,X3,X4)) :- !, cumulative(Space,X1,X2,X3,X4).
|
|
|
|
(Space += cumulative(X1,X2,X3,X4,X5)) :- !, cumulative(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += cumulative(X1,X2,X3,X4,X5,X6)) :- !, cumulative(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += cumulative(X1,X2,X3,X4,X5,X6,X7)) :- !, cumulative(Space,X1,X2,X3,X4,X5,X6,X7).
|
|
|
|
(Space += cumulatives(X1,X2,X3,X4,X5,X6,X7)) :- !, cumulatives(Space,X1,X2,X3,X4,X5,X6,X7).
|
|
|
|
(Space += cumulatives(X1,X2,X3,X4,X5,X6,X7,X8)) :- !, cumulatives(Space,X1,X2,X3,X4,X5,X6,X7,X8).
|
|
|
|
(Space += distinct(X1)) :- !, distinct(Space,X1).
|
|
|
|
(Space += distinct(X1,X2)) :- !, distinct(Space,X1,X2).
|
|
|
|
(Space += distinct(X1,X2,X3)) :- !, distinct(Space,X1,X2,X3).
|
|
|
|
(Space += div(X1,X2,X3)) :- !, div(Space,X1,X2,X3).
|
|
|
|
(Space += div(X1,X2,X3,X4)) :- !, div(Space,X1,X2,X3,X4).
|
|
|
|
(Space += divmod(X1,X2,X3,X4)) :- !, divmod(Space,X1,X2,X3,X4).
|
|
|
|
(Space += divmod(X1,X2,X3,X4,X5)) :- !, divmod(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += dom(X1,X2)) :- !, dom(Space,X1,X2).
|
|
|
|
(Space += dom(X1,X2,X3)) :- !, dom(Space,X1,X2,X3).
|
|
|
|
(Space += dom(X1,X2,X3,X4)) :- !, dom(Space,X1,X2,X3,X4).
|
|
|
|
(Space += dom(X1,X2,X3,X4,X5)) :- !, dom(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += element(X1,X2,X3)) :- !, element(Space,X1,X2,X3).
|
|
|
|
(Space += element(X1,X2,X3,X4)) :- !, element(Space,X1,X2,X3,X4).
|
|
|
|
(Space += element(X1,X2,X3,X4,X5)) :- !, element(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += element(X1,X2,X3,X4,X5,X6)) :- !, element(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += element(X1,X2,X3,X4,X5,X6,X7)) :- !, element(Space,X1,X2,X3,X4,X5,X6,X7).
|
|
|
|
(Space += extensional(X1,X2)) :- !, extensional(Space,X1,X2).
|
|
|
|
(Space += extensional(X1,X2,X3)) :- !, extensional(Space,X1,X2,X3).
|
|
|
|
(Space += linear(X1,X2,X3)) :- !, linear(Space,X1,X2,X3).
|
|
|
|
(Space += linear(X1,X2,X3,X4)) :- !, linear(Space,X1,X2,X3,X4).
|
|
|
|
(Space += linear(X1,X2,X3,X4,X5)) :- !, linear(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += linear(X1,X2,X3,X4,X5,X6)) :- !, linear(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += max(X1,X2)) :- !, max(Space,X1,X2).
|
|
|
|
(Space += max(X1,X2,X3)) :- !, max(Space,X1,X2,X3).
|
|
|
|
(Space += max(X1,X2,X3,X4)) :- !, max(Space,X1,X2,X3,X4).
|
|
|
|
(Space += min(X1,X2)) :- !, min(Space,X1,X2).
|
|
|
|
(Space += min(X1,X2,X3)) :- !, min(Space,X1,X2,X3).
|
|
|
|
(Space += min(X1,X2,X3,X4)) :- !, min(Space,X1,X2,X3,X4).
|
|
|
|
(Space += mod(X1,X2,X3)) :- !, mod(Space,X1,X2,X3).
|
|
|
|
(Space += mod(X1,X2,X3,X4)) :- !, mod(Space,X1,X2,X3,X4).
|
|
|
|
(Space += mult(X1,X2,X3)) :- !, mult(Space,X1,X2,X3).
|
|
|
|
(Space += mult(X1,X2,X3,X4)) :- !, mult(Space,X1,X2,X3,X4).
|
|
|
|
(Space += nooverlap(X1,X2,X3,X4)) :- !, nooverlap(Space,X1,X2,X3,X4).
|
|
|
|
(Space += nooverlap(X1,X2,X3,X4,X5)) :- !, nooverlap(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += nooverlap(X1,X2,X3,X4,X5,X6)) :- !, nooverlap(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += nooverlap(X1,X2,X3,X4,X5,X6,X7)) :- !, nooverlap(Space,X1,X2,X3,X4,X5,X6,X7).
|
|
|
|
(Space += nooverlap(X1,X2,X3,X4,X5,X6,X7,X8)) :- !, nooverlap(Space,X1,X2,X3,X4,X5,X6,X7,X8).
|
|
|
|
(Space += notMax(X1,X2)) :- !, notMax(Space,X1,X2).
|
|
|
|
(Space += notMin(X1,X2)) :- !, notMin(Space,X1,X2).
|
|
|
|
(Space += path(X1,X2,X3)) :- !, path(Space,X1,X2,X3).
|
|
|
|
(Space += path(X1,X2,X3,X4)) :- !, path(Space,X1,X2,X3,X4).
|
|
|
|
(Space += path(X1,X2,X3,X4,X5)) :- !, path(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += path(X1,X2,X3,X4,X5,X6)) :- !, path(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += path(X1,X2,X3,X4,X5,X6,X7)) :- !, path(Space,X1,X2,X3,X4,X5,X6,X7).
|
|
|
|
(Space += path(X1,X2,X3,X4,X5,X6,X7,X8)) :- !, path(Space,X1,X2,X3,X4,X5,X6,X7,X8).
|
|
|
|
(Space += precede(X1,X2)) :- !, precede(Space,X1,X2).
|
|
|
|
(Space += precede(X1,X2,X3)) :- !, precede(Space,X1,X2,X3).
|
|
|
|
(Space += precede(X1,X2,X3,X4)) :- !, precede(Space,X1,X2,X3,X4).
|
|
|
|
(Space += reify(X1,X2,X3)) :- !, reify(Space,X1,X2,X3).
|
|
|
|
(Space += rel(X1,X2)) :- !, rel(Space,X1,X2).
|
|
|
|
(Space += rel(X1,X2,X3)) :- !, rel(Space,X1,X2,X3).
|
|
|
|
(Space += rel(X1,X2,X3,X4)) :- !, rel(Space,X1,X2,X3,X4).
|
|
|
|
(Space += rel(X1,X2,X3,X4,X5)) :- !, rel(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += rel(X1,X2,X3,X4,X5,X6)) :- !, rel(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += sequence(X1)) :- !, sequence(Space,X1).
|
|
|
|
(Space += sequence(X1,X2)) :- !, sequence(Space,X1,X2).
|
|
|
|
(Space += sequence(X1,X2,X3,X4,X5)) :- !, sequence(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += sequence(X1,X2,X3,X4,X5,X6)) :- !, sequence(Space,X1,X2,X3,X4,X5,X6).
|
|
|
|
(Space += sorted(X1,X2)) :- !, sorted(Space,X1,X2).
|
|
|
|
(Space += sorted(X1,X2,X3)) :- !, sorted(Space,X1,X2,X3).
|
|
|
|
(Space += sorted(X1,X2,X3,X4)) :- !, sorted(Space,X1,X2,X3,X4).
|
|
|
|
(Space += sqr(X0,X1,X2,X3)) :- !, sqr(Space,X0,X1,X2,X3).
|
|
|
|
(Space += sqr(X1,X2)) :- !, sqr(Space,X1,X2).
|
|
|
|
(Space += sqrt(X1,X2)) :- !, sqrt(Space,X1,X2).
|
|
|
|
(Space += sqrt(X1,X2,X3)) :- !, sqrt(Space,X1,X2,X3).
|
|
|
|
(Space += unary(X1,X2)) :- !, unary(Space,X1,X2).
|
|
|
|
(Space += unary(X1,X2,X3)) :- !, unary(Space,X1,X2,X3).
|
|
|
|
(Space += unary(X1,X2,X3,X4)) :- !, unary(Space,X1,X2,X3,X4).
|
|
|
|
(Space += unary(X1,X2,X3,X4,X5)) :- !, unary(Space,X1,X2,X3,X4,X5).
|
|
|
|
(Space += unshare(X1)) :- !, unshare(Space,X1).
|
|
|
|
(Space += unshare(X1,X2)) :- !, unshare(Space,X1,X2).
|
|
|
|
(Space += weights(X1,X2,X3,X4)) :- !; weights(Space,X1,X2,X3,X4).
|
|
|
|
|
|
|
|
(Space += minimize(X)) :- !, minimize(Space,X).
|
|
|
|
(Space += maximize(X)) :- !, maximize(Space,X).
|
|
|
|
(Space += minimize(X,Y)) :- !, minimize(Space,X,Y).
|
|
|
|
(Space += maximize(X,Y)) :- !, maximize(Space,X,Y).
|
|
|
|
|
|
|
|
(Space += keep(X)) :- !, keep_(Space,X).
|