834 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			834 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  --------------------------------------------------------------------------- | ||
|  |  Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved. | ||
|  | 
 | ||
|  |  LICENSE TERMS | ||
|  | 
 | ||
|  |  The free distribution and use of this software in both source and binary | ||
|  |  form is allowed (with or without changes) provided that: | ||
|  | 
 | ||
|  |    1. distributions of this source code include the above copyright | ||
|  |       notice, this list of conditions and the following disclaimer; | ||
|  | 
 | ||
|  |    2. distributions in binary form include the above copyright | ||
|  |       notice, this list of conditions and the following disclaimer | ||
|  |       in the documentation and/or other associated materials; | ||
|  | 
 | ||
|  |    3. the copyright holder's name is not used to endorse products | ||
|  |       built using this software without specific written permission. | ||
|  | 
 | ||
|  |  ALTERNATIVELY, provided that this notice is retained in full, this product | ||
|  |  may be distributed under the terms of the GNU General Public License (GPL), | ||
|  |  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
|  | 
 | ||
|  |  DISCLAIMER | ||
|  | 
 | ||
|  |  This software is provided 'as is' with no explicit or implied warranties | ||
|  |  in respect of its properties, including, but not limited to, correctness | ||
|  |  and/or fitness for purpose. | ||
|  |  --------------------------------------------------------------------------- | ||
|  |  Issue Date: 01/08/2005 | ||
|  | 
 | ||
|  |  This is a bit oriented version of SHA2 that operates on arrays of bytes | ||
|  |  stored in memory. This code implements sha256, sha384 and sha512 but the | ||
|  |  latter two functions rely on efficient 64-bit integer operations that | ||
|  |  may not be very efficient on 32-bit machines | ||
|  | 
 | ||
|  |  The sha256 functions use a type 'sha256_ctx' to hold details of the | ||
|  |  current hash state and uses the following three calls: | ||
|  | 
 | ||
|  |        void sha256_begin(sha256_ctx ctx[1]) | ||
|  |        void sha256_hash(const unsigned char data[], | ||
|  |                             unsigned long len, sha256_ctx ctx[1]) | ||
|  |        void sha_end1(unsigned char hval[], sha256_ctx ctx[1]) | ||
|  | 
 | ||
|  |  The first subroutine initialises a hash computation by setting up the | ||
|  |  context in the sha256_ctx context. The second subroutine hashes 8-bit | ||
|  |  bytes from array data[] into the hash state withinh sha256_ctx context, | ||
|  |  the number of bytes to be hashed being given by the the unsigned long | ||
|  |  integer len.  The third subroutine completes the hash calculation and | ||
|  |  places the resulting digest value in the array of 8-bit bytes hval[]. | ||
|  | 
 | ||
|  |  The sha384 and sha512 functions are similar and use the interfaces: | ||
|  | 
 | ||
|  |        void sha384_begin(sha384_ctx ctx[1]); | ||
|  |        void sha384_hash(const unsigned char data[], | ||
|  |                             unsigned long len, sha384_ctx ctx[1]); | ||
|  |        void sha384_end(unsigned char hval[], sha384_ctx ctx[1]); | ||
|  | 
 | ||
|  |        void sha512_begin(sha512_ctx ctx[1]); | ||
|  |        void sha512_hash(const unsigned char data[], | ||
|  |                             unsigned long len, sha512_ctx ctx[1]); | ||
|  |        void sha512_end(unsigned char hval[], sha512_ctx ctx[1]); | ||
|  | 
 | ||
|  |  In addition there is a function sha2 that can be used to call all these | ||
|  |  functions using a call with a hash length parameter as follows: | ||
|  | 
 | ||
|  |        int sha2_begin(unsigned long len, sha2_ctx ctx[1]); | ||
|  |        void sha2_hash(const unsigned char data[], | ||
|  |                             unsigned long len, sha2_ctx ctx[1]); | ||
|  |        void sha2_end(unsigned char hval[], sha2_ctx ctx[1]); | ||
|  | 
 | ||
|  |  My thanks to Erik Andersen <andersen@codepoet.org> for testing this code | ||
|  |  on big-endian systems and for his assistance with corrections | ||
|  | */ | ||
|  | 
 | ||
|  | #if 1
 | ||
|  | #define UNROLL_SHA2     /* for SHA2 loop unroll     */
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <string.h>     /* for memcpy() etc.        */
 | ||
|  | 
 | ||
|  | #include "sha2.h"
 | ||
|  | #include "brg_endian.h"
 | ||
|  | 
 | ||
|  | #if defined(__cplusplus)
 | ||
|  | extern "C" | ||
|  | { | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined( _MSC_VER ) && ( _MSC_VER > 800 )
 | ||
|  | #pragma intrinsic(memcpy)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if 0 && defined(_MSC_VER)
 | ||
|  | #define rotl32 _lrotl
 | ||
|  | #define rotr32 _lrotr
 | ||
|  | #else
 | ||
|  | #define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
 | ||
|  | #define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if !defined(bswap_32)
 | ||
|  | #define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
 | ||
|  | #define SWAP_BYTES
 | ||
|  | #else
 | ||
|  | #undef  SWAP_BYTES
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if 0
 | ||
|  | 
 | ||
|  | #define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
 | ||
|  | #define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 | ||
|  | 
 | ||
|  | #else   /* Thanks to Rich Schroeppel and Colin Plumb for the following      */
 | ||
|  | 
 | ||
|  | #define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
 | ||
|  | #define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* round transforms for SHA256 and SHA512 compression functions */ | ||
|  | 
 | ||
|  | #define vf(n,i) v[(n - i) & 7]
 | ||
|  | 
 | ||
|  | #define hf(i) (p[i & 15] += \
 | ||
|  |     g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15])) | ||
|  | 
 | ||
|  | #define v_cycle(i,j)                                \
 | ||
|  |     vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j]        \ | ||
|  |     + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i));   \ | ||
|  |     vf(3,i) += vf(7,i);                             \ | ||
|  |     vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i)) | ||
|  | 
 | ||
|  | #if defined(SHA_224) || defined(SHA_256)
 | ||
|  | 
 | ||
|  | #define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
 | ||
|  | 
 | ||
|  | #if defined(SWAP_BYTES)
 | ||
|  | #define bsw_32(p,n) \
 | ||
|  |     { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } | ||
|  | #else
 | ||
|  | #define bsw_32(p,n)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define s_0(x)  (rotr32((x),  2) ^ rotr32((x), 13) ^ rotr32((x), 22))
 | ||
|  | #define s_1(x)  (rotr32((x),  6) ^ rotr32((x), 11) ^ rotr32((x), 25))
 | ||
|  | #define g_0(x)  (rotr32((x),  7) ^ rotr32((x), 18) ^ ((x) >>  3))
 | ||
|  | #define g_1(x)  (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
 | ||
|  | #define k_0     k256
 | ||
|  | 
 | ||
|  | /* rotated SHA256 round definition. Rather than swapping variables as in    */ | ||
|  | /* FIPS-180, different variables are 'rotated' on each round, returning     */ | ||
|  | /* to their starting positions every eight rounds                           */ | ||
|  | 
 | ||
|  | #define q(n)  v##n
 | ||
|  | 
 | ||
|  | #define one_cycle(a,b,c,d,e,f,g,h,k,w)  \
 | ||
|  |     q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \ | ||
|  |     q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c)) | ||
|  | 
 | ||
|  | /* SHA256 mixing data   */ | ||
|  | 
 | ||
|  | const uint_32t k256[64] = | ||
|  | {   0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, | ||
|  |     0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, | ||
|  |     0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, | ||
|  |     0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, | ||
|  |     0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, | ||
|  |     0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, | ||
|  |     0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, | ||
|  |     0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, | ||
|  |     0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, | ||
|  |     0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, | ||
|  |     0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, | ||
|  |     0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, | ||
|  |     0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, | ||
|  |     0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, | ||
|  |     0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, | ||
|  |     0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul, | ||
|  | }; | ||
|  | 
 | ||
|  | /* Compile 64 bytes of hash data into SHA256 digest value   */ | ||
|  | /* NOTE: this routine assumes that the byte order in the    */ | ||
|  | /* ctx->wbuf[] at this point is such that low address bytes */ | ||
|  | /* in the ORIGINAL byte stream will go into the high end of */ | ||
|  | /* words on BOTH big and little endian systems              */ | ||
|  | 
 | ||
|  | VOID_RETURN sha256_compile(sha256_ctx ctx[1]) | ||
|  | { | ||
|  | #if !defined(UNROLL_SHA2)
 | ||
|  | 
 | ||
|  |     uint_32t j, *p = ctx->wbuf, v[8]; | ||
|  | 
 | ||
|  |     memcpy(v, ctx->hash, 8 * sizeof(uint_32t)); | ||
|  | 
 | ||
|  |     for(j = 0; j < 64; j += 16) | ||
|  |     { | ||
|  |         v_cycle( 0, j); v_cycle( 1, j); | ||
|  |         v_cycle( 2, j); v_cycle( 3, j); | ||
|  |         v_cycle( 4, j); v_cycle( 5, j); | ||
|  |         v_cycle( 6, j); v_cycle( 7, j); | ||
|  |         v_cycle( 8, j); v_cycle( 9, j); | ||
|  |         v_cycle(10, j); v_cycle(11, j); | ||
|  |         v_cycle(12, j); v_cycle(13, j); | ||
|  |         v_cycle(14, j); v_cycle(15, j); | ||
|  |     } | ||
|  | 
 | ||
|  |     ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; | ||
|  |     ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; | ||
|  |     ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; | ||
|  |     ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  |     uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7; | ||
|  | 
 | ||
|  |     v0 = ctx->hash[0]; v1 = ctx->hash[1]; | ||
|  |     v2 = ctx->hash[2]; v3 = ctx->hash[3]; | ||
|  |     v4 = ctx->hash[4]; v5 = ctx->hash[5]; | ||
|  |     v6 = ctx->hash[6]; v7 = ctx->hash[7]; | ||
|  | 
 | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]); | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]); | ||
|  | 
 | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0)); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1)); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2)); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3)); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4)); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5)); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6)); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7)); | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8)); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9)); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10)); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11)); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12)); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13)); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14)); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15)); | ||
|  | 
 | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0)); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1)); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2)); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3)); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4)); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5)); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6)); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7)); | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8)); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9)); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10)); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11)); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12)); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13)); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14)); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15)); | ||
|  | 
 | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0)); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1)); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2)); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3)); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4)); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5)); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6)); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7)); | ||
|  |     one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8)); | ||
|  |     one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9)); | ||
|  |     one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10)); | ||
|  |     one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11)); | ||
|  |     one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12)); | ||
|  |     one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13)); | ||
|  |     one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14)); | ||
|  |     one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15)); | ||
|  | 
 | ||
|  |     ctx->hash[0] += v0; ctx->hash[1] += v1; | ||
|  |     ctx->hash[2] += v2; ctx->hash[3] += v3; | ||
|  |     ctx->hash[4] += v4; ctx->hash[5] += v5; | ||
|  |     ctx->hash[6] += v6; ctx->hash[7] += v7; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /* SHA256 hash data in an array of bytes into hash buffer   */ | ||
|  | /* and call the hash_compile function as required.          */ | ||
|  | 
 | ||
|  | VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]) | ||
|  | {   uint_32t pos = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK), | ||
|  |             ofs = (ctx->count[0] & 7); | ||
|  |     const unsigned char *sp = data; | ||
|  |     unsigned char *w = (unsigned char*)ctx->wbuf; | ||
|  | 
 | ||
|  |     if((ctx->count[0] += len) < len) | ||
|  |         ++(ctx->count[1]); | ||
|  | 
 | ||
|  |     if(ofs)                 /* if not on a byte boundary    */ | ||
|  |     { | ||
|  |         if(ofs + len < 8)   /* if no added bytes are needed */ | ||
|  |         { | ||
|  |             w[pos] |= (*sp >> ofs); | ||
|  |         } | ||
|  |         else                /* otherwise and add bytes      */ | ||
|  |         {   unsigned char part = w[pos]; | ||
|  | 
 | ||
|  |             while((int)(ofs + (len -= 8)) >= 0) | ||
|  |             { | ||
|  |                 w[pos++] = part | (*sp >> ofs); | ||
|  |                 part = *sp++ << (8 - ofs); | ||
|  |                 if(pos == SHA256_BLOCK_SIZE) | ||
|  |                 { | ||
|  |                     bsw_32(w, SHA256_BLOCK_SIZE >> 2); | ||
|  |                     sha256_compile(ctx); pos = 0; | ||
|  |                 } | ||
|  |             } | ||
|  | 
 | ||
|  |             w[pos] = part; | ||
|  |         } | ||
|  |     } | ||
|  |     else    /* data is byte aligned */ | ||
|  |     {   uint_32t space = SHA256_BLOCK_SIZE - pos; | ||
|  | 
 | ||
|  |         while((int)(len - 8 * space) >= 0) | ||
|  |         { | ||
|  |             len -= 8 * space; | ||
|  |             memcpy(w + pos, sp, space); | ||
|  |             sp += space; | ||
|  |             space = SHA256_BLOCK_SIZE; | ||
|  |             bsw_32(w, SHA256_BLOCK_SIZE >> 2); | ||
|  |             sha256_compile(ctx); pos = 0; | ||
|  |         } | ||
|  |         memcpy(w + pos, sp, (len + 7) >> 3); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* SHA256 Final padding and digest calculation  */ | ||
|  | 
 | ||
|  | static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen) | ||
|  | {   uint_32t    i = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK), m1; | ||
|  | 
 | ||
|  |     /* put bytes in the buffer in an order in which references to   */ | ||
|  |     /* 32-bit words will put bytes with lower addresses into the    */ | ||
|  |     /* top of 32 bit words on BOTH big and little endian machines   */ | ||
|  |     bsw_32(ctx->wbuf, (i + 4) >> 2) | ||
|  | 
 | ||
|  |     /* we now need to mask valid bytes and add the padding which is */ | ||
|  |     /* a single 1 bit and as many zero bits as necessary. Note that */ | ||
|  |     /* we can always add the first padding byte here because the    */ | ||
|  |     /* buffer always has at least one empty slot                    */ | ||
|  |     m1 = (unsigned char)0x80 >> (ctx->count[0] & 7); | ||
|  |     ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3)); | ||
|  |     ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3)); | ||
|  | 
 | ||
|  |     /* we need 9 or more empty positions, one for the padding byte  */ | ||
|  |     /* (above) and eight for the length count.  If there is not     */ | ||
|  |     /* enough space pad and empty the buffer                        */ | ||
|  |     if(i > SHA256_BLOCK_SIZE - 9) | ||
|  |     { | ||
|  |         if(i < 60) ctx->wbuf[15] = 0; | ||
|  |         sha256_compile(ctx); | ||
|  |         i = 0; | ||
|  |     } | ||
|  |     else    /* compute a word index for the empty buffer positions  */ | ||
|  |         i = (i >> 2) + 1; | ||
|  | 
 | ||
|  |     while(i < 14) /* and zero pad all but last two positions        */ | ||
|  |         ctx->wbuf[i++] = 0; | ||
|  | 
 | ||
|  |     /* the following 32-bit length fields are assembled in the      */ | ||
|  |     /* wrong byte order on little endian machines but this is       */ | ||
|  |     /* corrected later since they are only ever used as 32-bit      */ | ||
|  |     /* word values.                                                 */ | ||
|  |     ctx->wbuf[14] = ctx->count[1]; | ||
|  |     ctx->wbuf[15] = ctx->count[0]; | ||
|  |     sha256_compile(ctx); | ||
|  | 
 | ||
|  |     /* extract the hash value as bytes in case the hash buffer is   */ | ||
|  |     /* mislaigned for 32-bit words                                  */ | ||
|  |     for(i = 0; i < hlen; ++i) | ||
|  |         hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SHA_224)
 | ||
|  | 
 | ||
|  | const uint_32t i224[8] = | ||
|  | { | ||
|  |     0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul, | ||
|  |     0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul | ||
|  | }; | ||
|  | 
 | ||
|  | VOID_RETURN sha224_begin(sha224_ctx ctx[1]) | ||
|  | { | ||
|  |     ctx->count[0] = ctx->count[1] = 0; | ||
|  |     memcpy(ctx->hash, i224, 8 * sizeof(uint_32t)); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]) | ||
|  | { | ||
|  |     sha_end1(hval, ctx, SHA224_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len) | ||
|  | {   sha224_ctx  cx[1]; | ||
|  | 
 | ||
|  |     sha224_begin(cx); | ||
|  |     sha224_hash(data, len, cx); | ||
|  |     sha_end1(hval, cx, SHA224_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SHA_256)
 | ||
|  | 
 | ||
|  | const uint_32t i256[8] = | ||
|  | { | ||
|  |     0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, | ||
|  |     0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul | ||
|  | }; | ||
|  | 
 | ||
|  | VOID_RETURN sha256_begin(sha256_ctx ctx[1]) | ||
|  | { | ||
|  |     ctx->count[0] = ctx->count[1] = 0; | ||
|  |     memcpy(ctx->hash, i256, 8 * sizeof(uint_32t)); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]) | ||
|  | { | ||
|  |     sha_end1(hval, ctx, SHA256_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len) | ||
|  | {   sha256_ctx  cx[1]; | ||
|  | 
 | ||
|  |     sha256_begin(cx); | ||
|  |     sha256_hash(data, len, cx); | ||
|  |     sha_end1(hval, cx, SHA256_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SHA_384) || defined(SHA_512)
 | ||
|  | 
 | ||
|  | #define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
 | ||
|  | 
 | ||
|  | #define rotr64(x,n)   (((x) >> n) | ((x) << (64 - n)))
 | ||
|  | 
 | ||
|  | #if !defined(bswap_64)
 | ||
|  | #define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SWAP_BYTES)
 | ||
|  | #define bsw_64(p,n) \
 | ||
|  |     { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); } | ||
|  | #else
 | ||
|  | #define bsw_64(p,n)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* SHA512 mixing function definitions   */ | ||
|  | 
 | ||
|  | #ifdef   s_0
 | ||
|  | # undef  s_0
 | ||
|  | # undef  s_1
 | ||
|  | # undef  g_0
 | ||
|  | # undef  g_1
 | ||
|  | # undef  k_0
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define s_0(x)  (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
 | ||
|  | #define s_1(x)  (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
 | ||
|  | #define g_0(x)  (rotr64((x),  1) ^ rotr64((x),  8) ^ ((x) >>  7))
 | ||
|  | #define g_1(x)  (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >>  6))
 | ||
|  | #define k_0     k512
 | ||
|  | 
 | ||
|  | /* SHA384/SHA512 mixing data    */ | ||
|  | 
 | ||
|  | const uint_64t  k512[80] = | ||
|  | { | ||
|  |     li_64(428a2f98d728ae22), li_64(7137449123ef65cd), | ||
|  |     li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc), | ||
|  |     li_64(3956c25bf348b538), li_64(59f111f1b605d019), | ||
|  |     li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118), | ||
|  |     li_64(d807aa98a3030242), li_64(12835b0145706fbe), | ||
|  |     li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2), | ||
|  |     li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1), | ||
|  |     li_64(9bdc06a725c71235), li_64(c19bf174cf692694), | ||
|  |     li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3), | ||
|  |     li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65), | ||
|  |     li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483), | ||
|  |     li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5), | ||
|  |     li_64(983e5152ee66dfab), li_64(a831c66d2db43210), | ||
|  |     li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4), | ||
|  |     li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725), | ||
|  |     li_64(06ca6351e003826f), li_64(142929670a0e6e70), | ||
|  |     li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926), | ||
|  |     li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df), | ||
|  |     li_64(650a73548baf63de), li_64(766a0abb3c77b2a8), | ||
|  |     li_64(81c2c92e47edaee6), li_64(92722c851482353b), | ||
|  |     li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001), | ||
|  |     li_64(c24b8b70d0f89791), li_64(c76c51a30654be30), | ||
|  |     li_64(d192e819d6ef5218), li_64(d69906245565a910), | ||
|  |     li_64(f40e35855771202a), li_64(106aa07032bbd1b8), | ||
|  |     li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53), | ||
|  |     li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8), | ||
|  |     li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb), | ||
|  |     li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3), | ||
|  |     li_64(748f82ee5defb2fc), li_64(78a5636f43172f60), | ||
|  |     li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec), | ||
|  |     li_64(90befffa23631e28), li_64(a4506cebde82bde9), | ||
|  |     li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b), | ||
|  |     li_64(ca273eceea26619c), li_64(d186b8c721c0c207), | ||
|  |     li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178), | ||
|  |     li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6), | ||
|  |     li_64(113f9804bef90dae), li_64(1b710b35131c471b), | ||
|  |     li_64(28db77f523047d84), li_64(32caab7b40c72493), | ||
|  |     li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c), | ||
|  |     li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a), | ||
|  |     li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817) | ||
|  | }; | ||
|  | 
 | ||
|  | /* Compile 128 bytes of hash data into SHA384/512 digest    */ | ||
|  | /* NOTE: this routine assumes that the byte order in the    */ | ||
|  | /* ctx->wbuf[] at this point is such that low address bytes */ | ||
|  | /* in the ORIGINAL byte stream will go into the high end of */ | ||
|  | /* words on BOTH big and little endian systems              */ | ||
|  | 
 | ||
|  | VOID_RETURN sha512_compile(sha512_ctx ctx[1]) | ||
|  | {   uint_64t    v[8], *p = ctx->wbuf; | ||
|  |     uint_32t    j; | ||
|  | 
 | ||
|  |     memcpy(v, ctx->hash, 8 * sizeof(uint_64t)); | ||
|  | 
 | ||
|  |     for(j = 0; j < 80; j += 16) | ||
|  |     { | ||
|  |         v_cycle( 0, j); v_cycle( 1, j); | ||
|  |         v_cycle( 2, j); v_cycle( 3, j); | ||
|  |         v_cycle( 4, j); v_cycle( 5, j); | ||
|  |         v_cycle( 6, j); v_cycle( 7, j); | ||
|  |         v_cycle( 8, j); v_cycle( 9, j); | ||
|  |         v_cycle(10, j); v_cycle(11, j); | ||
|  |         v_cycle(12, j); v_cycle(13, j); | ||
|  |         v_cycle(14, j); v_cycle(15, j); | ||
|  |     } | ||
|  | 
 | ||
|  |     ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; | ||
|  |     ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; | ||
|  |     ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; | ||
|  |     ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; | ||
|  | } | ||
|  | 
 | ||
|  | /* Compile 128 bytes of hash data into SHA256 digest value  */ | ||
|  | /* NOTE: this routine assumes that the byte order in the    */ | ||
|  | /* ctx->wbuf[] at this point is in such an order that low   */ | ||
|  | /* address bytes in the ORIGINAL byte stream placed in this */ | ||
|  | /* buffer will now go to the high end of words on BOTH big  */ | ||
|  | /* and little endian systems                                */ | ||
|  | 
 | ||
|  | VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]) | ||
|  | {   uint_32t pos = (uint_32t)(ctx->count[0] >> 3) & SHA512_MASK, | ||
|  |             ofs = (uint_32t)(ctx->count[0] & 7); | ||
|  |     const unsigned char *sp = data; | ||
|  |     unsigned char *w = (unsigned char*)ctx->wbuf; | ||
|  | 
 | ||
|  |     if((ctx->count[0] += len) < len) | ||
|  |         ++(ctx->count[1]); | ||
|  | 
 | ||
|  |     if(ofs)                 /* if not on a byte boundary    */ | ||
|  |     { | ||
|  |         if(ofs + len < 8)   /* if no added bytes are needed */ | ||
|  |         { | ||
|  |             w[pos] |= (*sp >> ofs); | ||
|  |         } | ||
|  |         else                /* otherwise and add bytes      */ | ||
|  |         {   unsigned char part = w[pos]; | ||
|  | 
 | ||
|  |             while((int)(ofs + (len -= 8)) >= 0) | ||
|  |             { | ||
|  |                 w[pos++] = part | (*sp >> ofs); | ||
|  |                 part = *sp++ << (8 - ofs); | ||
|  |                 if(pos == SHA512_BLOCK_SIZE) | ||
|  |                 { | ||
|  |                     bsw_64(w, SHA512_BLOCK_SIZE >> 3); | ||
|  |                     sha512_compile(ctx); pos = 0; | ||
|  |                 } | ||
|  |             } | ||
|  | 
 | ||
|  |             w[pos] = part; | ||
|  |         } | ||
|  |     } | ||
|  |     else    /* data is byte aligned */ | ||
|  |     {   uint_32t space = SHA512_BLOCK_SIZE - pos; | ||
|  | 
 | ||
|  |         while((int)(len - 8 * space) >= 0) | ||
|  |         { | ||
|  |             len -= 8 * space; | ||
|  |             memcpy(w + pos, sp, space); | ||
|  |             sp += space; | ||
|  |             space = SHA512_BLOCK_SIZE; | ||
|  |             bsw_64(w, SHA512_BLOCK_SIZE >> 3); | ||
|  |             sha512_compile(ctx); pos = 0; | ||
|  |         } | ||
|  |         memcpy(w + pos, sp, (len + 7) >> 3); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* SHA384/512 Final padding and digest calculation  */ | ||
|  | 
 | ||
|  | static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen) | ||
|  | {   uint_32t     i = (uint_32t)((ctx->count[0] >> 3) & SHA512_MASK); | ||
|  |     uint_64t     m1; | ||
|  | 
 | ||
|  |     /* put bytes in the buffer in an order in which references to   */ | ||
|  |     /* 32-bit words will put bytes with lower addresses into the    */ | ||
|  |     /* top of 32 bit words on BOTH big and little endian machines   */ | ||
|  |     bsw_64(ctx->wbuf, (i + 8) >> 3); | ||
|  | 
 | ||
|  |     /* we now need to mask valid bytes and add the padding which is */ | ||
|  |     /* a single 1 bit and as many zero bits as necessary. Note that */ | ||
|  |     /* we can always add the first padding byte here because the    */ | ||
|  |     /* buffer always has at least one empty slot                    */ | ||
|  |     m1 = (unsigned char)0x80 >> (ctx->count[0] & 7); | ||
|  |     ctx->wbuf[i >> 3] &= ((li_64(ffffffffffffff00) | (~m1 + 1)) << 8 * (~i & 7)); | ||
|  |     ctx->wbuf[i >> 3] |= (m1 << 8 * (~i & 7)); | ||
|  | 
 | ||
|  |     /* we need 17 or more empty byte positions, one for the padding */ | ||
|  |     /* byte (above) and sixteen for the length count.  If there is  */ | ||
|  |     /* not enough space pad and empty the buffer                    */ | ||
|  |     if(i > SHA512_BLOCK_SIZE - 17) | ||
|  |     { | ||
|  |         if(i < 120) ctx->wbuf[15] = 0; | ||
|  |         sha512_compile(ctx); | ||
|  |         i = 0; | ||
|  |     } | ||
|  |     else | ||
|  |         i = (i >> 3) + 1; | ||
|  | 
 | ||
|  |     while(i < 14) | ||
|  |         ctx->wbuf[i++] = 0; | ||
|  | 
 | ||
|  |     /* the following 64-bit length fields are assembled in the      */ | ||
|  |     /* wrong byte order on little endian machines but this is       */ | ||
|  |     /* corrected later since they are only ever used as 64-bit      */ | ||
|  |     /* word values.                                                 */ | ||
|  |     ctx->wbuf[14] = ctx->count[1]; | ||
|  |     ctx->wbuf[15] = ctx->count[0]; | ||
|  |     sha512_compile(ctx); | ||
|  | 
 | ||
|  |     /* extract the hash value as bytes in case the hash buffer is   */ | ||
|  |     /* misaligned for 32-bit words                                  */ | ||
|  |     for(i = 0; i < hlen; ++i) | ||
|  |         hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7))); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SHA_384)
 | ||
|  | 
 | ||
|  | /* SHA384 initialisation data   */ | ||
|  | 
 | ||
|  | const uint_64t  i384[80] = | ||
|  | { | ||
|  |     li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507), | ||
|  |     li_64(9159015a3070dd17), li_64(152fecd8f70e5939), | ||
|  |     li_64(67332667ffc00b31), li_64(8eb44a8768581511), | ||
|  |     li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4) | ||
|  | }; | ||
|  | 
 | ||
|  | VOID_RETURN sha384_begin(sha384_ctx ctx[1]) | ||
|  | { | ||
|  |     ctx->count[0] = ctx->count[1] = 0; | ||
|  |     memcpy(ctx->hash, i384, 8 * sizeof(uint_64t)); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]) | ||
|  | { | ||
|  |     sha_end2(hval, ctx, SHA384_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len) | ||
|  | {   sha384_ctx  cx[1]; | ||
|  | 
 | ||
|  |     sha384_begin(cx); | ||
|  |     sha384_hash(data, len, cx); | ||
|  |     sha_end2(hval, cx, SHA384_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SHA_512)
 | ||
|  | 
 | ||
|  | /* SHA512 initialisation data   */ | ||
|  | 
 | ||
|  | const uint_64t  i512[80] = | ||
|  | { | ||
|  |     li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b), | ||
|  |     li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1), | ||
|  |     li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f), | ||
|  |     li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179) | ||
|  | }; | ||
|  | 
 | ||
|  | VOID_RETURN sha512_begin(sha512_ctx ctx[1]) | ||
|  | { | ||
|  |     ctx->count[0] = ctx->count[1] = 0; | ||
|  |     memcpy(ctx->hash, i512, 8 * sizeof(uint_64t)); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]) | ||
|  | { | ||
|  |     sha_end2(hval, ctx, SHA512_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len) | ||
|  | {   sha512_ctx  cx[1]; | ||
|  | 
 | ||
|  |     sha512_begin(cx); | ||
|  |     sha512_hash(data, len, cx); | ||
|  |     sha_end2(hval, cx, SHA512_DIGEST_SIZE); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SHA_2)
 | ||
|  | 
 | ||
|  | #define CTX_224(x)  ((x)->uu->ctx256)
 | ||
|  | #define CTX_256(x)  ((x)->uu->ctx256)
 | ||
|  | #define CTX_384(x)  ((x)->uu->ctx512)
 | ||
|  | #define CTX_512(x)  ((x)->uu->ctx512)
 | ||
|  | 
 | ||
|  | /* SHA2 initialisation */ | ||
|  | 
 | ||
|  | INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1]) | ||
|  | { | ||
|  |     switch(len) | ||
|  |     { | ||
|  | #if defined(SHA_224)
 | ||
|  |         case 224: | ||
|  |         case  28:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; | ||
|  |                     memcpy(CTX_256(ctx)->hash, i224, 32); | ||
|  |                     ctx->sha2_len = 28; return EXIT_SUCCESS; | ||
|  | #endif
 | ||
|  | #if defined(SHA_256)
 | ||
|  |         case 256: | ||
|  |         case  32:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; | ||
|  |                     memcpy(CTX_256(ctx)->hash, i256, 32); | ||
|  |                     ctx->sha2_len = 32; return EXIT_SUCCESS; | ||
|  | #endif
 | ||
|  | #if defined(SHA_384)
 | ||
|  |         case 384: | ||
|  |         case  48:   CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0; | ||
|  |                     memcpy(CTX_384(ctx)->hash, i384, 64); | ||
|  |                     ctx->sha2_len = 48; return EXIT_SUCCESS; | ||
|  | #endif
 | ||
|  | #if defined(SHA_512)
 | ||
|  |         case 512: | ||
|  |         case  64:   CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0; | ||
|  |                     memcpy(CTX_512(ctx)->hash, i512, 64); | ||
|  |                     ctx->sha2_len = 64; return EXIT_SUCCESS; | ||
|  | #endif
 | ||
|  |         default:    return EXIT_FAILURE; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]) | ||
|  | { | ||
|  |     switch(ctx->sha2_len) | ||
|  |     { | ||
|  | #if defined(SHA_224)
 | ||
|  |         case 28: sha224_hash(data, len, CTX_224(ctx)); return; | ||
|  | #endif
 | ||
|  | #if defined(SHA_256)
 | ||
|  |         case 32: sha256_hash(data, len, CTX_256(ctx)); return; | ||
|  | #endif
 | ||
|  | #if defined(SHA_384)
 | ||
|  |         case 48: sha384_hash(data, len, CTX_384(ctx)); return; | ||
|  | #endif
 | ||
|  | #if defined(SHA_512)
 | ||
|  |         case 64: sha512_hash(data, len, CTX_512(ctx)); return; | ||
|  | #endif
 | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]) | ||
|  | { | ||
|  |     switch(ctx->sha2_len) | ||
|  |     { | ||
|  | #if defined(SHA_224)
 | ||
|  |         case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return; | ||
|  | #endif
 | ||
|  | #if defined(SHA_256)
 | ||
|  |         case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return; | ||
|  | #endif
 | ||
|  | #if defined(SHA_384)
 | ||
|  |         case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return; | ||
|  | #endif
 | ||
|  | #if defined(SHA_512)
 | ||
|  |         case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return; | ||
|  | #endif
 | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | INT_RETURN sha2(unsigned char hval[], unsigned long size, | ||
|  |                                 const unsigned char data[], unsigned long len) | ||
|  | {   sha2_ctx    cx[1]; | ||
|  | 
 | ||
|  |     if(sha2_begin(size, cx) == EXIT_SUCCESS) | ||
|  |     { | ||
|  |         sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS; | ||
|  |     } | ||
|  |     else | ||
|  |         return EXIT_FAILURE; | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(__cplusplus)
 | ||
|  | } | ||
|  | #endif
 |