102 lines
2.7 KiB
Plaintext
102 lines
2.7 KiB
Plaintext
|
% 4-queens problem
|
||
|
|
||
|
queens4([[S11, S12, S13, S14],
|
||
|
[S21, S22, S23, S24],
|
||
|
[S31, S32, S33, S34],
|
||
|
[S41, S42, S43, S44]
|
||
|
]) :-
|
||
|
%% rows
|
||
|
card(1,1,[S11, S12, S13, S14]),
|
||
|
card(1,1,[S21, S22, S23, S24]),
|
||
|
card(1,1,[S31, S32, S33, S34]),
|
||
|
card(1,1,[S41, S42, S43, S44]),
|
||
|
%% columns
|
||
|
card(1,1,[S11, S21, S31, S41]),
|
||
|
card(1,1,[S12, S22, S32, S42]),
|
||
|
card(1,1,[S13, S23, S33, S43]),
|
||
|
card(1,1,[S14, S24, S34, S44]),
|
||
|
%% diag left-right
|
||
|
card(0,1,[S14]),
|
||
|
card(0,1,[S13, S24]),
|
||
|
card(0,1,[S12, S23, S34]),
|
||
|
card(0,1,[S11, S22, S33, S44]),
|
||
|
card(0,1,[S21, S32, S43]),
|
||
|
card(0,1,[S31, S42]),
|
||
|
card(0,1,[S41]),
|
||
|
%% diag right-left
|
||
|
card(0,1,[S11]),
|
||
|
card(0,1,[S12, S21]),
|
||
|
card(0,1,[S13, S22, S31]),
|
||
|
card(0,1,[S14, S23, S32, S41]),
|
||
|
card(0,1,[S24, S33, S42]),
|
||
|
card(0,1,[S34, S43]),
|
||
|
card(0,1,[S44]).
|
||
|
|
||
|
/*
|
||
|
Article 4689 of comp.lang.prolog:
|
||
|
From: leonardo@dcs.qmw.ac.uk (Mike Hopkins)
|
||
|
Subject: Re: Solving 4 queens using boolean constraint
|
||
|
Message-ID: <1992Apr6.140627.10533@dcs.qmw.ac.uk>
|
||
|
Date: 6 Apr 92 14:06:27 GMT
|
||
|
References: <1992Apr6.105730.13467@corax.udac.uu.se>
|
||
|
|
||
|
The problem insists that each row and column contains exactly one
|
||
|
queens: therefore the program should be:
|
||
|
|
||
|
fourQueens(q(r(S11, S12, S13, S14),
|
||
|
r(S21, S22, S23, S24),
|
||
|
r(S31, S32, S33, S34),
|
||
|
r(S41, S42, S43, S44))) :-
|
||
|
%% rows
|
||
|
bool:sat(card([1],[S11, S12, S13, S14])),
|
||
|
bool:sat(card([1],[S21, S22, S23, S24])),
|
||
|
bool:sat(card([1],[S31, S32, S33, S34])),
|
||
|
bool:sat(card([1],[S41, S42, S43, S44])),
|
||
|
%% columns
|
||
|
bool:sat(card([1],[S11, S21, S31, S41])),
|
||
|
bool:sat(card([1],[S12, S22, S32, S42])),
|
||
|
bool:sat(card([1],[S13, S23, S33, S43])),
|
||
|
bool:sat(card([1],[S14, S24, S34, S44])),
|
||
|
%% diag left-right
|
||
|
bool:sat(card([0-1],[S14])),
|
||
|
bool:sat(card([0-1],[S13, S24])),
|
||
|
bool:sat(card([0-1],[S12, S23, S34])),
|
||
|
bool:sat(card([0-1],[S11, S22, S33, S44])),
|
||
|
bool:sat(card([0-1],[S21, S32, S43])),
|
||
|
bool:sat(card([0-1],[S31, S42])),
|
||
|
bool:sat(card([0-1],[S41])),
|
||
|
%% diag right-left
|
||
|
bool:sat(card([0-1],[S11])),
|
||
|
bool:sat(card([0-1],[S12, S21])),
|
||
|
bool:sat(card([0-1],[S13, S22, S31])),
|
||
|
bool:sat(card([0-1],[S14, S23, S32, S41])),
|
||
|
bool:sat(card([0-1],[S24, S33, S42])),
|
||
|
bool:sat(card([0-1],[S34, S43])),
|
||
|
bool:sat(card([0-1],[S44])).
|
||
|
|
||
|
This then gives the following result:
|
||
|
|
||
|
| ?- fourQueens(A).
|
||
|
|
||
|
A = q(r(0,_C,_B,0),r(_B,0,0,_A),r(_A,0,0,_B),r(0,_B,_A,0)),
|
||
|
bool:sat(_C=\=_B),
|
||
|
bool:sat(_A=\=_B) ? ;
|
||
|
|
||
|
no
|
||
|
| ?-
|
||
|
|
||
|
This therefore represents the desired two solutions!
|
||
|
|
||
|
===================================================
|
||
|
Mike Hopkins
|
||
|
Dept. of Computer Science, Queen Mary and Westfield College,
|
||
|
Mile End Road, London E1 4NS, UK
|
||
|
|
||
|
Tel: 071-975-5241
|
||
|
|
||
|
ARPA: leonardo%cs.qmw.ac.uk@nsfnet-relay.ac.uk
|
||
|
BITNET: leonardo%uk.ac.qmw.cs@UKACRL.BITNET
|
||
|
===================================================
|
||
|
|
||
|
*/
|