2010-08-26 13:44:10 +01:00
|
|
|
%%% -*- Mode: Prolog; -*-
|
|
|
|
|
2009-03-09 00:40:50 +00:00
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% ProbLog program describing a probabilistic graph
|
|
|
|
% (running example from ProbLog presentations)
|
2010-10-05 17:26:40 +01:00
|
|
|
% $Id: learn_graph.pl 4875 2010-10-05 15:28:35Z theo $
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2009-03-09 00:40:50 +00:00
|
|
|
% example for parameter learning with LeProbLog
|
|
|
|
%
|
|
|
|
% training and test examples are included at the end of the file
|
2010-10-05 17:26:40 +01:00
|
|
|
% query ?- do_learning(20).
|
|
|
|
% will run 20 iterations of learning with default settings
|
2009-03-09 00:40:50 +00:00
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
2010-09-29 17:40:34 +01:00
|
|
|
:- use_module('../problog').
|
2010-08-26 13:44:10 +01:00
|
|
|
:- use_module('../problog_learning').
|
2009-03-09 00:40:50 +00:00
|
|
|
|
|
|
|
%%%%
|
|
|
|
% background knowledge
|
|
|
|
%%%%
|
|
|
|
% definition of acyclic path using list of visited nodes
|
|
|
|
path(X,Y) :- path(X,Y,[X],_).
|
|
|
|
|
|
|
|
path(X,X,A,A).
|
|
|
|
path(X,Y,A,R) :-
|
2010-10-05 17:26:40 +01:00
|
|
|
X\==Y,
|
|
|
|
edge(X,Z),
|
|
|
|
absent(Z,A),
|
|
|
|
path(Z,Y,[Z|A],R).
|
2009-03-09 00:40:50 +00:00
|
|
|
|
|
|
|
% using directed edges in both directions
|
|
|
|
edge(X,Y) :- dir_edge(Y,X).
|
|
|
|
edge(X,Y) :- dir_edge(X,Y).
|
|
|
|
|
|
|
|
% checking whether node hasn't been visited before
|
|
|
|
absent(_,[]).
|
|
|
|
absent(X,[Y|Z]):-X \= Y, absent(X,Z).
|
|
|
|
|
|
|
|
%%%%
|
|
|
|
% probabilistic facts
|
|
|
|
% - probability represented by t/1 term means learnable parameter
|
|
|
|
% - argument of t/1 is real value (used to compare against in evaluation when known), use t(_) if unknown
|
|
|
|
%%%%
|
|
|
|
t(0.9)::dir_edge(1,2).
|
|
|
|
t(0.8)::dir_edge(2,3).
|
|
|
|
t(0.6)::dir_edge(3,4).
|
|
|
|
t(0.7)::dir_edge(1,6).
|
|
|
|
t(0.5)::dir_edge(2,6).
|
|
|
|
t(0.4)::dir_edge(6,5).
|
|
|
|
t(0.7)::dir_edge(5,3).
|
|
|
|
t(0.2)::dir_edge(5,4).
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%
|
|
|
|
% training examples of form example(ID,Query,DesiredProbability)
|
|
|
|
%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
example(1,path(1,2),0.94).
|
|
|
|
example(2,path(1,3),0.81).
|
|
|
|
example(3,path(1,4),0.54).
|
|
|
|
example(4,path(1,5),0.70).
|
|
|
|
example(5,path(1,6),0.87).
|
|
|
|
example(6,path(2,3),0.85).
|
|
|
|
example(7,path(2,4),0.57).
|
|
|
|
example(8,path(2,5),0.72).
|
|
|
|
example(9,path(2,6),0.86).
|
|
|
|
example(10,path(3,4),0.66).
|
|
|
|
example(11,path(3,5),0.80).
|
|
|
|
example(12,path(3,6),0.75).
|
|
|
|
example(13,path(4,5),0.57).
|
|
|
|
example(14,path(4,6),0.51).
|
|
|
|
example(15,path(5,6),0.69).
|
|
|
|
% some examples for learning from proofs:
|
|
|
|
example(16,(dir_edge(2,3),dir_edge(2,6),dir_edge(6,5),dir_edge(5,4)),0.032).
|
|
|
|
example(17,(dir_edge(1,6),dir_edge(2,6),dir_edge(2,3),dir_edge(3,4)),0.168).
|
|
|
|
example(18,(dir_edge(5,3),dir_edge(5,4)),0.14).
|
|
|
|
example(19,(dir_edge(2,6),dir_edge(6,5)),0.2).
|
|
|
|
example(20,(dir_edge(1,2),dir_edge(2,3),dir_edge(3,4)),0.432).
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%
|
|
|
|
% test examples of form test_example(ID,Query,DesiredProbability)
|
|
|
|
% note: ID namespace is shared with training example IDs
|
|
|
|
%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
test_example(21,path(2,1),0.94).
|
|
|
|
test_example(22,path(3,1),0.81).
|
|
|
|
test_example(23,path(4,1),0.54).
|
|
|
|
test_example(24,path(5,1),0.70).
|
|
|
|
test_example(25,path(6,1),0.87).
|
|
|
|
test_example(26,path(3,2),0.85).
|
|
|
|
test_example(27,path(4,2),0.57).
|
|
|
|
test_example(28,path(5,2),0.72).
|
|
|
|
test_example(29,path(6,2),0.86).
|
|
|
|
test_example(30,path(4,3),0.66).
|
|
|
|
test_example(31,path(5,3),0.80).
|
|
|
|
test_example(32,path(6,3),0.75).
|
|
|
|
test_example(33,path(5,4),0.57).
|
|
|
|
test_example(34,path(6,4),0.51).
|
|
|
|
test_example(35,path(6,5),0.69).
|
|
|
|
|