This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CHR/chr/examples/list.pl

363 lines
6.8 KiB
Perl
Raw Normal View History

% 931129 ECRC, 980312 LMU thom fruehwirth
% 961106 Christian Holzbaur, SICStus mods
:- use_module( library(chr)).
handler list.
constraints eqlist/2, lenlist/2.
operator(700,xfx,eqlist).
operator(700,xfx,lenlist).
% Rs eqlist L: Rs is a list of lists, whose concatentation is the single list L
[] eqlist L <=> L=[].
[R] eqlist L <=> R=L.
[R|Rs] eqlist [] <=> R=[], Rs eqlist [].
[[X|R]|Rs] eqlist L <=> L=[X|L1], [R|Rs] eqlist L1.
Rs eqlist L <=> delete(R,Rs,Rs1),R==[] | Rs1 eqlist L.
Rs eqlist L <=> delete(R,Rs,Rs1),R==L | Rs1 eqlist [].
constraints labeling/0.
labeling, ([R|Rs] eqlist L)#Ph <=> true |
(var(L) -> length(L,_) ; true),
(
R=[], Rs eqlist L
;
L=[X|L1], R=[X|R1], [R1|Rs] eqlist L1
),
labeling
pragma passive(Ph).
% L lenlist N: The length of the list L is N
% N can be an arithmetic expression
[] lenlist N <=> true | (var(N) -> N=0 ; N=:=0).
[_|L] lenlist N <=> positive(N), plus(M,1,N), L lenlist M.
L lenlist N <=> ground(N) | length(L,N).
% auxiliary predicates ---------------------------------------------------
delete( X, [X|L], L).
delete( Y, [X|Xs], [X|Xt]) :-
delete( Y, Xs, Xt).
length([],0).
length([_|L],N1):- length(L,N), N1 is N+1.
:- block plus(-,-,?), plus(-,?,-), plus(?,-,-).
%
plus( A, B, C) :- var(C), !, C is A+B.
plus( A, B, C) :- var(B), !, B is C-A.
plus( A, B, C) :- var(A), !, A is C-B.
plus( A, B, C) :- C is A+B.
:- block positive(-).
%
positive( X) :- X>0.
% EXAMPLES ================================================================
% Inspired by LISTLOG, Z. Farkas, TAPSOFT 87, Pisa, Italy
% these predicates have better (more fair) enumeration properties
chr_member(X,L):- [_,[X],_] eqlist L.
chr_append(L1,L2,L3):- [L1,L2] eqlist L3.
chr_last(L,X):- [_,[X]] eqlist L.
/*
[6]: chr_member(1,L),chr_member(2,L),labeling.
L = [1, 2] More? (;)
L = [2, 1] More? (;)
L = [1, 2, _g1240] More? (;)
L = [1, _g1062, 2] More? (;)
L = [2, 1, _g1240] More? (;)
L = [2, _g1062, 1] More? (;)
[7]: member(1,L),member(2,L). % compare with usual member/2
L = [1, 2|_g282] More? (;)
L = [1, _g280, 2|_g288] More? (;)
L = [1, _g280, _g286, 2|_g294] More? (;)
*/
palindrome([]).
palindrome([X]).
palindrome(L):-
X lenlist 1,
[X,L1,X] eqlist L,
palindrome(L1).
reverse([],[]).
reverse(R,L):-
R lenlist N,
L lenlist N,
X lenlist 1,
[X,R1] eqlist R,
[L1,X] eqlist L,
reverse(R1,L1).
/*
[19]: reverse(X,[a,b]).
X = [b, a] % does not loop like usual reverse/2
[10]: reverse([a,b|L],R).
L = []
R = [b, a] More? (;)
L = [_m1718]
R = [_m1718, b, a] More? (;)
L = [_m1718, _m2218]
R = [_m2218, _m1718, b, a] More? (;)
[11]: reverse(R,[a,b|L]).
R = [b, a]
L = [] More? (;)
R = [_m754, b, a]
L = [_m754] More? (;)
R = [_m754, _m1274, b, a]
L = [_m1274, _m754] More? (;)
*/
% Done myself (thom)
permute([],[]).
permute(R,L):-
R lenlist N,
L lenlist N,
X lenlist 1,
[X,R1] eqlist R,
[A,X,B] eqlist L,
[A,B] eqlist L1,
permute(R1,L1).
/*
[10]: permute(A,B).
A = []
B = [] More? (;)
A = [_m970]
B = [_m970] More? (;)
A = [_m970, _m1994]
B = [_m2392, _m2416]
Constraints:
[_m946, [_m970], _m994] eqlist [_m2392, _m2416]
[_m946, _m994] eqlist [_m1994]
More? (;)
A = [_m970, _m1994, _m3194]
B = [_m3948, _m3972, _m3996]
Constraints:
[_m1970, [_m1994], _m2018] eqlist [_m3592, _m3616]
[_m946, _m994] eqlist [_m3592, _m3616]
[_m946, [_m970], _m994] eqlist [_m3948, _m3972, _m3996]
[_m1970, _m2018] eqlist [_m3194]
More? (;)
[11]: permute(A,B),labeling.
A = []
B = [] More? (;)
A = [_m976]
B = [_m976] More? (;)
A = [_m976, _m2000]
B = [_m976, _m2000] More? (;)
A = [_m976, _m2000]
B = [_m2000, _m976] More? (;)
A = [_m976, _m2000, _m3200]
B = [_m976, _m2000, _m3200] More? (;)
A = [_m976, _m2000, _m3200]
B = [_m2000, _m976, _m3200] More? (;)
A = [_m976, _m2000, _m3200]
B = [_m2000, _m3200, _m976] More? (;)
A = [_m976, _m2000, _m3200]
B = [_m976, _m3200, _m2000] More? (;)
A = [_m976, _m2000, _m3200]
B = [_m3200, _m976, _m2000] More? (;)
A = [_m976, _m2000, _m3200]
B = [_m3200, _m2000, _m976] More? (;)
*/
% From Cohen, Koiran, Perrin "Meta-Level Interpretation of CLP(Lists)"
% in "CLP: Selected Research", eds Benhamou, Colmerauer, MIT Press 1993.
% tree(Preorder,Postorder,Tree).
tree([A],[A],A):- freeze(A,atomic(A)).
tree(Pre,Post,t(A,L,R)):-
% Pre lenlist N,
% Post lenlist N,
[[A],X,Y] eqlist Pre,
[Z,W,[A]] eqlist Post,
tree(X,Z,L),
tree(Y,W,R).
/*
[50]: tree([a, b, b, a, a], [b, a, a, b, a], T).
T = t(a, b, t(b, a, a))
*/
% Inspired by talk by A. Colmerauer, WCLP Marseille, March 1993
transpose([],L):- [L,[[]]] eqlist [[]|L]. % list of []'s
transpose([X|R],L):- first_column(L,X,L1), transpose(R,L1).
first_column([],[],[]).
first_column([[X|L]|R],[X|S],[L|T]):- first_column(R,S,T).
/*
[36]: transpose([[], [], [], []], L_g85).
L = []
[37]: transpose(L_g69, [[], [], [], []]).
L = []
*/
/*
[18]: [X,Y,Z,Z,Y,X] eqlist [a,b,b,c,c,c,c,c,c,b,b,a], labeling.
Z = [c, c, c]
Y = [b, b]
X = [a]
[21]: [[a],X,[b],Y] eqlist L,
[Y,[b],X,[a]] eqlist L .
Y = Y_m654
X = X_m630
L = [a|_m678]
Constraints:
(3) [X_m630, [b], Y_m654] eqlist _m678
(4) [Y_m654, [b], X_m630, [a]] eqlist [a|_m678]
[4]: [[a],X,[b],Y] eqlist L,
[Y,[b],X,[a]] eqlist L, labeling.
Y = [a]
X = []
L = [a, b, a] More? (;)
Y = [a]
X = [b]
L = [a, b, b, a] More? (;)
Y = [a, b, a]
X = []
L = [a, b, a, b, a] More? (;)
Y = [a, a]
X = [a]
L = [a, a, b, a, a] More? (;)
Y = [a]
X = [b, b]
L = [a, b, b, b, a] More? (;)
Y = [a]
X = [b, b, b]
L = [a, b, b, b, b, a] More? (;)
*/
/*
% Unsolvable equation
{2]: [[2],X] eqlist L,
[X,[1]] eqlist L,
labeling.
% if there is no more solution for longer lists L, labeling does not terminate
% Unsolvable equation from dissertation of J.-P. Pecuchet, 1981
[5]: [[2],X,Y,[1]] eqlist L,
[X,[1],[2],X] eqlist L,
labeling.
% if there is no more solution for longer lists L, labeling does not terminate
% Solvable equation from paper by K. Schulz, 1988
[11]: [[1],X,[2],Z,X] eqlist L,
[Z,[3],Z,Y,Y,Y] eqlist L,
labeling.
X = [3, 1, 2, 1, 3, 1]
Z = [1]
Y = [2, 1, 3, 1]
L = [1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1] More? (;)
X = [A, 3, 1, A, 2, 1, A, A, 3, 1, A]
Z = [1, A]
Y = [2, 1, A, A, 3, 1, A]
L = [1, A, 3, 1, A, 2, 1, A, A, 3, 1, A, 2, 1, A, A, 3, 1, A, 2, 1, A, A, 3, 1, A] More? (;)
L = [1,_A,_B,3,1,_A,_B,2,1,_A|...],
X = [_A,_B,3,1,_A,_B,2,1,_A,_B|...],
Y = [2,1,_A,_B,_A,_B,3,1,_A,_B],
Z = [1,_A,_B],
etc.
% Solvable equation from talk by A. Colmerauer, WCLP Marseille, March 1993
[13]: X=[1,2,3,2,1],
[X,[1]] eqlist L1, [[U],Y,[U,U]] eqlist L1,
[Y,[2]] eqlist L2, [[V],Z,[V,V]] eqlist L2,
labeling.
X = [1, 2, 3, 2, 1]
U = 1
L1 = [1, 2, 3, 2, 1, 1]
Y = [2, 3, 2]
Z = [3]
V = 2
L2 = [2, 3, 2, 2]
*/
% end of handler list