2159 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
		
		
			
		
	
	
			2159 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
| 
								 | 
							
								/***************************************************************************/
							 | 
						||
| 
								 | 
							
								/*                                                                         */
							 | 
						||
| 
								 | 
							
								/* The SLG System                                                          */
							 | 
						||
| 
								 | 
							
								/* Authors: Weidong Chen and David Scott Warren                            */
							 | 
						||
| 
								 | 
							
								/* Copyright (C) 1993 Southern Methodist University                        */
							 | 
						||
| 
								 | 
							
								/*               1993 SUNY at Stony Brook                                  */
							 | 
						||
| 
								 | 
							
								/* See file COPYRIGHT_SLG for copying policies and disclaimer.             */
							 | 
						||
| 
								 | 
							
								/*                                                                         */
							 | 
						||
| 
								 | 
							
								/***************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*==========================================================================
							 | 
						||
| 
								 | 
							
								  File               : slg.pl
							 | 
						||
| 
								 | 
							
								  Last Modification  : November 14, 2007 by Fabrizio Riguzzi
							 | 
						||
| 
								 | 
							
								===========================================================================*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* ----------- beginning of system dependent features ---------------------
							 | 
						||
| 
								 | 
							
								   To run the SLG system under a version of Prolog other than Quintus,
							 | 
						||
| 
								 | 
							
								   comment out the following Quintus-specific code, and include the code
							 | 
						||
| 
								 | 
							
								   for the Prolog you are running.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Quintus
							 | 
						||
| 
								 | 
							
								/* Begin Quintus specific code */
							 | 
						||
| 
								 | 
							
								% :- use_module(library(basics)).
							 | 
						||
| 
								 | 
							
								% :- dynamic 'slg$prolog'/1, 'slg$tab'/2.
							 | 
						||
| 
								 | 
							
								% :- dynamic slg_expanding/0.
							 | 
						||
| 
								 | 
							
								% :- dynamic wfs_trace/0.
							 | 
						||
| 
								 | 
							
								/* End Quintus specific code */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Sicstus
							 | 
						||
| 
								 | 
							
								/* Begin Sicstus specific code */
							 | 
						||
| 
								 | 
							
								 append([],L,L).
							 | 
						||
| 
								 | 
							
								 append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 member(X,[X|_]).
							 | 
						||
| 
								 | 
							
								 member(X,[_|L]) :- member(X,L).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 memberchk(X,[X|_]) :- !.
							 | 
						||
| 
								 | 
							
								 memberchk(X,[_|L]) :- memberchk(X,L).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 :- dynamic 'slg$prolog'/1, 'slg$tab'/2.
							 | 
						||
| 
								 | 
							
								 :- dynamic slg_expanding/0.
							 | 
						||
| 
								 | 
							
								 :- dynamic wfs_trace/0.
							 | 
						||
| 
								 | 
							
								/* End Sicstus specific code */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% XSB
							 | 
						||
| 
								 | 
							
								/* Begin XSB specific code */
							 | 
						||
| 
								 | 
							
								/* To compile this under xsb, you must allocate more than the default stack
							 | 
						||
| 
								 | 
							
								   space when running xsb. E.g. use % xsb -m 2000
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								%:- import member/2, memberchk/2, append/3, ground/1 from basics.
							 | 
						||
| 
								 | 
							
								%:- import numbervars/3 from num_vars.
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								%:- dynamic slg_expanding/0.
							 | 
						||
| 
								 | 
							
								%:- dynamic 'slg$prolog'/1, 'slg$tab'/2.
							 | 
						||
| 
								 | 
							
								%:- dynamic wfs_trace/0.
							 | 
						||
| 
								 | 
							
								/* End XSB specific code */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* -------------- end of system dependent features ----------------------- */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* -------------- beginning of slg_load routines -------------------------
							 | 
						||
| 
								 | 
							
								  An input file may contain three kinds of directives (in addition to 
							 | 
						||
| 
								 | 
							
								  regular Prolog clauses and commands):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  a) :- default(prolog).
							 | 
						||
| 
								 | 
							
								     :- default(tabled).
							 | 
						||
| 
								 | 
							
								     All predicates defined from now on are prolog (tabled) predicates
							 | 
						||
| 
								 | 
							
								     unless specified otherwise later.
							 | 
						||
| 
								 | 
							
								  b) :- tabled pred_name/arity.
							 | 
						||
| 
								 | 
							
								     pred_name/arity is a tabled predicate. A comma separated list
							 | 
						||
| 
								 | 
							
								     is also acceptable.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  c) :- prolog pred_name/arity.
							 | 
						||
| 
								 | 
							
								     pred_name/arity is a prolog predicate. A comma separated list
							 | 
						||
| 
								 | 
							
								     is also acceptable.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  Besides Prolog clauses, we allow general clauses where the body is a 
							 | 
						||
| 
								 | 
							
								  universal disjunction of literals. Such clauses are specified in the form
							 | 
						||
| 
								 | 
							
								         Head <-- Body.
							 | 
						||
| 
								 | 
							
								  (Maybe <-- can be viewed as "All".) The head must be an atom of a tabled
							 | 
						||
| 
								 | 
							
								  predicate and the body should be a disjunction of literals (separated by ';')
							 | 
						||
| 
								 | 
							
								  and should not contain cut. The head must be ground whenever it is called. 
							 | 
						||
| 
								 | 
							
								  All variables in the body that do not occur in the head are universally 
							 | 
						||
| 
								 | 
							
								  quantified.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  There is NO support for module facilities. In particular, ALL TABLED
							 | 
						||
| 
								 | 
							
								  PREDICATES SHOULD BE DEFINED IN MODULE 'user'.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:- op(1200,xfx,<--).
							 | 
						||
| 
								 | 
							
								:- op(1150,fx,[(tabled),(prolog),(default)]).
							 | 
						||
| 
								 | 
							
								:- op(900,xfx,<-).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:- assert('slg$tabled'(0,0)), retractall('slg$tabled'(_,_)).
							 | 
						||
| 
								 | 
							
								:- assert('slg$default'((prolog))).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								do_term_expansion(end_of_file,_) :- !,
							 | 
						||
| 
								 | 
							
									retractall('slg$default'(_)),
							 | 
						||
| 
								 | 
							
									assert('slg$default'((prolog))),
							 | 
						||
| 
								 | 
							
									retractall('slg$prolog'(_)),
							 | 
						||
| 
								 | 
							
									retractall('slg$tab'(_,_)),
							 | 
						||
| 
								 | 
							
									fail.
							 | 
						||
| 
								 | 
							
								do_term_expansion((:-Com),Clauses) :- !,
							 | 
						||
| 
								 | 
							
									expand_command(Com,Clauses).
							 | 
						||
| 
								 | 
							
								do_term_expansion((H-->B),NewClause) :- !,
							 | 
						||
| 
								 | 
							
									\+ slg_expanding,
							 | 
						||
| 
								 | 
							
									assert(slg_expanding),
							 | 
						||
| 
								 | 
							
									expand_term((H-->B),Clause),
							 | 
						||
| 
								 | 
							
									retractall(slg_expanding),
							 | 
						||
| 
								 | 
							
									do_term_expansion(Clause,NewClause).
							 | 
						||
| 
								 | 
							
								do_term_expansion((Head <-- Body),Clauses) :- !,
							 | 
						||
| 
								 | 
							
									functor(Head,P,A),
							 | 
						||
| 
								 | 
							
									Pred = P/A,
							 | 
						||
| 
								 | 
							
									( 'slg$tab'(P,A) ->
							 | 
						||
| 
								 | 
							
									  convert_univ_clause(Head,Body,Clauses)
							 | 
						||
| 
								 | 
							
									; 'slg$prolog'(Pred) ->
							 | 
						||
| 
								 | 
							
									  write('Error: Prolog predicate '), write(Pred),
							 | 
						||
| 
								 | 
							
									  write(' in clauses with universal disjunction.'),nl,
							 | 
						||
| 
								 | 
							
									  write('       Clause ignored: '), write((Head <-- Body)), nl,
							 | 
						||
| 
								 | 
							
									  Clauses = []
							 | 
						||
| 
								 | 
							
									; 'slg$default'(Default),
							 | 
						||
| 
								 | 
							
									  ( Default == (prolog) ->
							 | 
						||
| 
								 | 
							
									    write('Error: Prolog predicate '), write(Pred),
							 | 
						||
| 
								 | 
							
									    write(' in clauses with universal disjunction.'),nl,
							 | 
						||
| 
								 | 
							
									    write('       Clause ignored: '), write((Head <-- Body)), nl,
							 | 
						||
| 
								 | 
							
									    Clauses = []
							 | 
						||
| 
								 | 
							
									  ; assert('slg$tab'(P,A)),
							 | 
						||
| 
								 | 
							
									    retractall('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									    assert('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									    functor(NewHead,P,A),
							 | 
						||
| 
								 | 
							
									    Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
							 | 
						||
| 
								 | 
							
								                         (NewHead :- slg(NewHead))|RestClauses],
							 | 
						||
| 
								 | 
							
								            convert_univ_clause(Head,Body,RestClauses)
							 | 
						||
| 
								 | 
							
									  )
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								do_term_expansion(Clause,Clauses) :-
							 | 
						||
| 
								 | 
							
									( Clause = (Head :- Body) -> true; Head = Clause, Body = true ),
							 | 
						||
| 
								 | 
							
									functor(Head,P,A),
							 | 
						||
| 
								 | 
							
									Pred = P/A,
							 | 
						||
| 
								 | 
							
									( 'slg$tab'(P,A) ->
							 | 
						||
| 
								 | 
							
									  convert_tabled_clause(Head,Body,Clauses)
							 | 
						||
| 
								 | 
							
								        ; 'slg$prolog'(Pred) ->
							 | 
						||
| 
								 | 
							
									  Clauses = Clause
							 | 
						||
| 
								 | 
							
								        ; 'slg$default'(Default),
							 | 
						||
| 
								 | 
							
									  ( Default == (prolog) ->
							 | 
						||
| 
								 | 
							
									    Clauses = Clause
							 | 
						||
| 
								 | 
							
									  ; ( 'slg$tab'(P,A) ->
							 | 
						||
| 
								 | 
							
									      convert_tabled_clause(Head,Body,Clauses)
							 | 
						||
| 
								 | 
							
									    ; assert('slg$tab'(P,A)),
							 | 
						||
| 
								 | 
							
									      retractall('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									      assert('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									      functor(NewHead,P,A),
							 | 
						||
| 
								 | 
							
									      Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
							 | 
						||
| 
								 | 
							
											 (NewHead :- slg(NewHead))|RestClauses],
							 | 
						||
| 
								 | 
							
								              convert_tabled_clause(Head,Body,RestClauses)
							 | 
						||
| 
								 | 
							
									    )
							 | 
						||
| 
								 | 
							
									  )
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								expand_command(tabled(Preds),Clauses) :-
							 | 
						||
| 
								 | 
							
									expand_command_table(Preds,Clauses,[]).
							 | 
						||
| 
								 | 
							
								expand_command(prolog(Preds),Clauses) :-
							 | 
						||
| 
								 | 
							
									expand_command_prolog(Preds,Clauses,[]).
							 | 
						||
| 
								 | 
							
								expand_command(multifile(Preds),(:-multifile(NewPreds))) :-
							 | 
						||
| 
								 | 
							
									add_table_preds(Preds,NewPreds,[]).
							 | 
						||
| 
								 | 
							
								expand_command(dynamic(Preds),(:-dynamic(NewPreds))) :-
							 | 
						||
| 
								 | 
							
									add_table_preds(Preds,NewPreds,[]).
							 | 
						||
| 
								 | 
							
								expand_command(default(D),[]) :-
							 | 
						||
| 
								 | 
							
									( (D == (prolog); D == (tabled)) ->
							 | 
						||
| 
								 | 
							
									  retractall('slg$default'(_)),
							 | 
						||
| 
								 | 
							
									  assert('slg$default'(D))
							 | 
						||
| 
								 | 
							
								        ; write('Warning: illegal default '),
							 | 
						||
| 
								 | 
							
									  write(D),
							 | 
						||
| 
								 | 
							
									  write(' ignored.'),
							 | 
						||
| 
								 | 
							
									  nl
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								expand_command_table((Pred,Preds),Clauses0,Clauses) :- !,
							 | 
						||
| 
								 | 
							
									expand_command_table_one(Pred,Clauses0,Clauses1),
							 | 
						||
| 
								 | 
							
									expand_command_table(Preds,Clauses1,Clauses).
							 | 
						||
| 
								 | 
							
								expand_command_table(Pred,Clauses0,Clauses) :-
							 | 
						||
| 
								 | 
							
									expand_command_table_one(Pred,Clauses0,Clauses).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								expand_command_table_one(Pspec,Clauses0,Clauses) :-
							 | 
						||
| 
								 | 
							
									  ( Pspec = P/A -> true; P = Pspec, A = 0 ),
							 | 
						||
| 
								 | 
							
									  Pred = P/A,
							 | 
						||
| 
								 | 
							
									  functor(H,P,A),
							 | 
						||
| 
								 | 
							
									  ( ( predicate_property(H,built_in); slg_built_in(H) ) ->
							 | 
						||
| 
								 | 
							
									    write('ERROR: Cannot table built_in '),
							 | 
						||
| 
								 | 
							
									    write(Pred), nl,
							 | 
						||
| 
								 | 
							
									    Clauses0 = Clauses
							 | 
						||
| 
								 | 
							
									  ; 'slg$prolog'(Pred) ->
							 | 
						||
| 
								 | 
							
									    write('ERROR: '),
							 | 
						||
| 
								 | 
							
									    write(Pred),
							 | 
						||
| 
								 | 
							
									    write(' assumed to be a Prolog predicate'),
							 | 
						||
| 
								 | 
							
									    nl,
							 | 
						||
| 
								 | 
							
									    tab(7),
							 | 
						||
| 
								 | 
							
									    write('But later declared a tabled predicate.'),
							 | 
						||
| 
								 | 
							
									    nl,
							 | 
						||
| 
								 | 
							
									    Clauses0 = Clauses
							 | 
						||
| 
								 | 
							
									  ; 'slg$tab'(P,A) ->
							 | 
						||
| 
								 | 
							
									    Clauses0 = Clauses
							 | 
						||
| 
								 | 
							
									  ; assert('slg$tab'(P,A)),
							 | 
						||
| 
								 | 
							
									    retractall('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									    assert('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									    Clauses0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
							 | 
						||
| 
								 | 
							
									                (H :- slg(H))|Clauses]
							 | 
						||
| 
								 | 
							
									  ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								expand_command_prolog((Pred,Preds),Clauses0,Clauses) :- !,
							 | 
						||
| 
								 | 
							
									expand_command_prolog_one(Pred,Clauses0,Clauses1),
							 | 
						||
| 
								 | 
							
									expand_command_prolog(Preds,Clauses1,Clauses).
							 | 
						||
| 
								 | 
							
								expand_command_prolog(Pred,Clauses0,Clauses) :-
							 | 
						||
| 
								 | 
							
									expand_command_prolog_one(Pred,Clauses0,Clauses).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								expand_command_prolog_one(Pspec,Clauses0,Clauses) :-
							 | 
						||
| 
								 | 
							
									  ( Pspec = P/A -> true; P = Pspec, A = 0 ),
							 | 
						||
| 
								 | 
							
									  Pred = P/A,
							 | 
						||
| 
								 | 
							
									  ( 'slg$tab'(P,A) ->
							 | 
						||
| 
								 | 
							
									    write('ERROR: '),
							 | 
						||
| 
								 | 
							
									    write(Pred),
							 | 
						||
| 
								 | 
							
									    write(' assumed to be a tabled predicate'),
							 | 
						||
| 
								 | 
							
									    nl,
							 | 
						||
| 
								 | 
							
									    tab(7),
							 | 
						||
| 
								 | 
							
									    write('But later declared a Prolog predicate.'),
							 | 
						||
| 
								 | 
							
									    nl,
							 | 
						||
| 
								 | 
							
									    Clauses0 = Clauses
							 | 
						||
| 
								 | 
							
									  ; retractall('slg$tab'(P,A)),
							 | 
						||
| 
								 | 
							
									    retractall('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									    ( 'slg$prolog'(Pred) ->
							 | 
						||
| 
								 | 
							
									      true
							 | 
						||
| 
								 | 
							
									    ; assert('slg$prolog'(Pred))
							 | 
						||
| 
								 | 
							
									    ),
							 | 
						||
| 
								 | 
							
									    Clauses0 = [(:- retractall('slg$tabled'(P,A)))|Clauses]
							 | 
						||
| 
								 | 
							
								          ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								add_table_preds(Preds,NewPreds0,NewPreds) :-
							 | 
						||
| 
								 | 
							
									( Preds == [] ->
							 | 
						||
| 
								 | 
							
									  NewPreds0 = NewPreds
							 | 
						||
| 
								 | 
							
								        ; Preds = [P|Ps] ->
							 | 
						||
| 
								 | 
							
									  add_table_preds(P,NewPreds0,NewPreds1),
							 | 
						||
| 
								 | 
							
									  add_table_preds(Ps,NewPreds1,NewPreds)
							 | 
						||
| 
								 | 
							
								        ; Preds = (P,Ps) ->
							 | 
						||
| 
								 | 
							
									  add_table_preds(P,NewPreds0,NewPreds1),
							 | 
						||
| 
								 | 
							
									  add_table_preds(Ps,NewPreds1,NewPreds)
							 | 
						||
| 
								 | 
							
								        ; ( Preds = P/A -> true; P = Preds, A = 0 ),
							 | 
						||
| 
								 | 
							
									  ( 'slg$tab'(P,A) ->
							 | 
						||
| 
								 | 
							
									    name(P,Pl),
							 | 
						||
| 
								 | 
							
									    name(NewP,[115,108,103,36|Pl]), % 'slg$'
							 | 
						||
| 
								 | 
							
									    NewA is A+1,
							 | 
						||
| 
								 | 
							
									    NewPreds0 = [P/A,NewP/NewA|NewPreds]
							 | 
						||
| 
								 | 
							
									  ; NewPreds0 = [P/A|NewPreds]
							 | 
						||
| 
								 | 
							
								          )
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								convert_tabled_clause(Head,Body,Clauses0) :-
							 | 
						||
| 
								 | 
							
									  conj_to_list(Body,Blist),
							 | 
						||
| 
								 | 
							
									  extract_guard(Blist,Guard,[],Nbody,Clauses0,Clauses),
							 | 
						||
| 
								 | 
							
									  list_to_conj(Guard,Gconj),
							 | 
						||
| 
								 | 
							
									  new_slg_head(Head,Nbody,NewHead),
							 | 
						||
| 
								 | 
							
									  ( Gconj == true ->
							 | 
						||
| 
								 | 
							
									    Clauses = [NewHead]
							 | 
						||
| 
								 | 
							
									  ; Clauses = [(NewHead :- Gconj)]
							 | 
						||
| 
								 | 
							
								          ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								convert_univ_clause(Head,Body,Clauses) :-
							 | 
						||
| 
								 | 
							
									disj_to_list(Body,Blist),
							 | 
						||
| 
								 | 
							
									new_slg_head(Head,all(Blist),NewHead),
							 | 
						||
| 
								 | 
							
									Clauses = [(NewHead :- ( ground0(Head) -> 
							 | 
						||
| 
								 | 
							
									                         true
							 | 
						||
| 
								 | 
							
											       ; write('Error: Non-ground call '),
							 | 
						||
| 
								 | 
							
											         write(Head),
							 | 
						||
| 
								 | 
							
												 write(' in a clause with universal disjunction.'),
							 | 
						||
| 
								 | 
							
												 nl
							 | 
						||
| 
								 | 
							
											       ))].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								ground0(X) :- ground(X).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								conj_to_list(Term,List) :-
							 | 
						||
| 
								 | 
							
									conj_to_list(Term,List,[]).
							 | 
						||
| 
								 | 
							
								conj_to_list(Term,List0,List) :-
							 | 
						||
| 
								 | 
							
									( Term = (T1,T2) ->
							 | 
						||
| 
								 | 
							
									  conj_to_list(T1,List0,List1),
							 | 
						||
| 
								 | 
							
									  conj_to_list(T2,List1,List)
							 | 
						||
| 
								 | 
							
								        ; Term == true ->
							 | 
						||
| 
								 | 
							
									  List0 = List
							 | 
						||
| 
								 | 
							
								        ; List0 = [Term|List]
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								disj_to_list(Term,List) :-
							 | 
						||
| 
								 | 
							
									disj_to_list(Term,List,[]).
							 | 
						||
| 
								 | 
							
								disj_to_list(Term,List0,List) :-
							 | 
						||
| 
								 | 
							
									( Term = (T1;T2) ->
							 | 
						||
| 
								 | 
							
									  disj_to_list(T1,List0,List1),
							 | 
						||
| 
								 | 
							
									  disj_to_list(T2,List1,List)
							 | 
						||
| 
								 | 
							
								        ; Term == true ->
							 | 
						||
| 
								 | 
							
									  List0 = List
							 | 
						||
| 
								 | 
							
								        ; List0 = [Term|List]
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								extract_guard([],G,G,[],Cls,Cls).
							 | 
						||
| 
								 | 
							
								extract_guard([Lit|List],G0,G,Rest,Cls0,Cls) :-
							 | 
						||
| 
								 | 
							
									( Lit = (\+N) ->
							 | 
						||
| 
								 | 
							
									  Nlit = N
							 | 
						||
| 
								 | 
							
								        ; Nlit = Lit
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
									( ( predicate_property(Nlit,built_in); slg_built_in(Nlit) ) ->
							 | 
						||
| 
								 | 
							
									  G0 = [Lit|G1],
							 | 
						||
| 
								 | 
							
									  extract_guard(List,G1,G,Rest,Cls0,Cls)
							 | 
						||
| 
								 | 
							
								        ; functor(Nlit,P,A),
							 | 
						||
| 
								 | 
							
									  Pred = P/A,
							 | 
						||
| 
								 | 
							
									  ( 'slg$tab'(P,A) ->
							 | 
						||
| 
								 | 
							
									    G0 = G,
							 | 
						||
| 
								 | 
							
									    Rest = [Lit|List],
							 | 
						||
| 
								 | 
							
									    Cls0 = Cls
							 | 
						||
| 
								 | 
							
									  ; 'slg$prolog'(Pred) ->
							 | 
						||
| 
								 | 
							
									    G0 = [Lit|G1],
							 | 
						||
| 
								 | 
							
									    extract_guard(List,G1,G,Rest,Cls0,Cls)
							 | 
						||
| 
								 | 
							
									  ; 'slg$default'((prolog)) ->
							 | 
						||
| 
								 | 
							
									    G0 = [Lit|G1],
							 | 
						||
| 
								 | 
							
									    assert('slg$prolog'(Pred)),
							 | 
						||
| 
								 | 
							
									    Cls0 = [(:- 'slg$prolog'(Pred) -> true; assert('slg$prolog'(Pred)))|Cls1],
							 | 
						||
| 
								 | 
							
									    extract_guard(List,G1,G,Rest,Cls1,Cls)
							 | 
						||
| 
								 | 
							
									  ; 'slg$default'((tabled)) ->
							 | 
						||
| 
								 | 
							
									    G0 = G,
							 | 
						||
| 
								 | 
							
									    Rest = [Lit|List],
							 | 
						||
| 
								 | 
							
									    assert('slg$tab'(P,A)),
							 | 
						||
| 
								 | 
							
									    retractall('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
								            assert('slg$tabled'(P,A)),
							 | 
						||
| 
								 | 
							
									    functor(Head,P,A),
							 | 
						||
| 
								 | 
							
									    Cls0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
							 | 
						||
| 
								 | 
							
								                    (Head :- slg(Head))|Cls]
							 | 
						||
| 
								 | 
							
									  )
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								list_to_conj([],true).
							 | 
						||
| 
								 | 
							
								list_to_conj([Lit|List],G0) :-
							 | 
						||
| 
								 | 
							
									( List == [] ->
							 | 
						||
| 
								 | 
							
									  G0 = Lit
							 | 
						||
| 
								 | 
							
								        ; G0 = (Lit,G),
							 | 
						||
| 
								 | 
							
									  list_to_conj(List,G)
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								new_slg_head(Head,Body,NewHead) :-
							 | 
						||
| 
								 | 
							
									functor(Head,P,A),
							 | 
						||
| 
								 | 
							
									name(P,Pl),
							 | 
						||
| 
								 | 
							
									name(Npred,[115,108,103,36|Pl]), % 'slg$'
							 | 
						||
| 
								 | 
							
									Narity is A+1,
							 | 
						||
| 
								 | 
							
									functor(NewHead,Npred,Narity),
							 | 
						||
| 
								 | 
							
									arg(Narity,NewHead,Body),
							 | 
						||
| 
								 | 
							
									put_in_args(0,A,Head,NewHead).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								put_in_args(A,A,_,_).
							 | 
						||
| 
								 | 
							
								put_in_args(A0,A,Head,NewHead) :-
							 | 
						||
| 
								 | 
							
									A0 < A,
							 | 
						||
| 
								 | 
							
									A1 is A0+1,
							 | 
						||
| 
								 | 
							
									arg(A1,Head,Arg),
							 | 
						||
| 
								 | 
							
									arg(A1,NewHead,Arg),
							 | 
						||
| 
								 | 
							
									put_in_args(A1,A,Head,NewHead).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								slg_built_in(slg(_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(_<-_).
							 | 
						||
| 
								 | 
							
								slg_built_in(slgall(_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(slgall(_,_,_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(emptytable(_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(st(_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(stnot(_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(stall(_,_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(stall(_,_,_,_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(stselect(_,_,_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(stselect(_,_,_,_,_,_)).
							 | 
						||
| 
								 | 
							
								slg_built_in(xtrace).
							 | 
						||
| 
								 | 
							
								slg_built_in(xnotrace).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* ----------------- end of slg_load routines --------------------------- */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* SLG tracing:
							 | 
						||
| 
								 | 
							
								   xtrace: turns SLG trace on, which prints out tables at various 
							 | 
						||
| 
								 | 
							
								           points
							 | 
						||
| 
								 | 
							
								   xnotrace: turns off SLG trace
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								xtrace :- 
							 | 
						||
| 
								 | 
							
								    ( wfs_trace -> 
							 | 
						||
| 
								 | 
							
								      true 
							 | 
						||
| 
								 | 
							
								    ; assert(wfs_trace)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								xnotrace :- 
							 | 
						||
| 
								 | 
							
								    ( wfs_trace -> 
							 | 
						||
| 
								 | 
							
								      retractall(wfs_trace) 
							 | 
						||
| 
								 | 
							
								    ; true
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* isprolog(Call): Call is a Prolog subgoal */
							 | 
						||
| 
								 | 
							
								isprolog(Call) :-
							 | 
						||
| 
								 | 
							
								        functor(Call,P,A),
							 | 
						||
| 
								 | 
							
								        \+ 'slg$tabled'(P,A).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* slg(Call):
							 | 
						||
| 
								 | 
							
								   It returns all true answers of Call under the well-founded semantics
							 | 
						||
| 
								 | 
							
								   one by one.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								slg(Call) :-
							 | 
						||
| 
								 | 
							
								        ( isprolog(Call) ->
							 | 
						||
| 
								 | 
							
								          call(Call)
							 | 
						||
| 
								 | 
							
								        ; oldt(Call,Tab),
							 | 
						||
| 
								 | 
							
								          ground(Call,Ggoal),
							 | 
						||
| 
								 | 
							
								          find(Tab,Ggoal,Ent),
							 | 
						||
| 
								 | 
							
								          ent_to_anss(Ent,Anss),
							 | 
						||
| 
								 | 
							
								          member_anss(d(Call,[]),Anss)
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Call<-Cons:
							 | 
						||
| 
								 | 
							
								   It returns all true or undefined answers of Call one by one. In
							 | 
						||
| 
								 | 
							
								   case of a true answer, Cons = []. For an undefined answer,
							 | 
						||
| 
								 | 
							
								   Cons is a list of delayed literals.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								Call<-Cons :-
							 | 
						||
| 
								 | 
							
								        ( isprolog(Call) ->
							 | 
						||
| 
								 | 
							
								          call(Call),
							 | 
						||
| 
								 | 
							
								          Cons = []
							 | 
						||
| 
								 | 
							
								        ; oldt(Call,Tab),
							 | 
						||
| 
								 | 
							
								          ground(Call,Ggoal),
							 | 
						||
| 
								 | 
							
								          find(Tab,Ggoal,Ent),
							 | 
						||
| 
								 | 
							
								          ent_to_anss(Ent,Anss),
							 | 
						||
| 
								 | 
							
								          member_anss(d(Call,Cons),Anss)
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* emptytable(EmptTab): creates an initial empty stable.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								emptytable(0:[]).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* slgall(Call,Anss):
							 | 
						||
| 
								 | 
							
								   slgall(Call,Anss,N0-Tab0,N-Tab):
							 | 
						||
| 
								 | 
							
								   If Call is a prolog call, findall is used, and Tab = Tab0;
							 | 
						||
| 
								 | 
							
								   If Call is an atom of a tabled predicate, SLG evaluation
							 | 
						||
| 
								 | 
							
								   is carried out.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								slgall(Call,Anss) :-
							 | 
						||
| 
								 | 
							
									slgall(Call,Anss,0:[],_).
							 | 
						||
| 
								 | 
							
								slgall(Call,Anss,N0:Tab0,N:Tab) :-
							 | 
						||
| 
								 | 
							
								        ( isprolog(Call) ->
							 | 
						||
| 
								 | 
							
								          findall(Call,Call,Anss),
							 | 
						||
| 
								 | 
							
									  N = N0, Tab = Tab0
							 | 
						||
| 
								 | 
							
								        ; ground(Call,Ggoal),
							 | 
						||
| 
								 | 
							
								          ( find(Tab0,Ggoal,Ent) ->
							 | 
						||
| 
								 | 
							
								            ent_to_anss(Ent,Answers),
							 | 
						||
| 
								 | 
							
								            Tab = Tab0
							 | 
						||
| 
								 | 
							
								          ; new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1),
							 | 
						||
| 
								 | 
							
								            add_tab_ent(Ggoal,Ent,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
								            oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP),
							 | 
						||
| 
								 | 
							
								            find(Tab,Ggoal,NewEnt),
							 | 
						||
| 
								 | 
							
								            ent_to_anss(NewEnt,Answers)
							 | 
						||
| 
								 | 
							
								          ),
							 | 
						||
| 
								 | 
							
								          ansstree_to_list(Answers,Anss,[])
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* st(Call,PSM):
							 | 
						||
| 
								 | 
							
								   stnot(Call,PSM):
							 | 
						||
| 
								 | 
							
								   It finds a stable model in which Call must be true (false).
							 | 
						||
| 
								 | 
							
								   Call must be ground.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								st(Call,PSM) :-
							 | 
						||
| 
								 | 
							
									st_true_false(Call,true,PSM).
							 | 
						||
| 
								 | 
							
								stnot(Call,PSM) :-
							 | 
						||
| 
								 | 
							
									st_true_false(Call,false,PSM).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								st_true_false(Call,Val,PSM) :-
							 | 
						||
| 
								 | 
							
									( isprolog(Call) ->
							 | 
						||
| 
								 | 
							
									  PSM = [],
							 | 
						||
| 
								 | 
							
									  call(Call)
							 | 
						||
| 
								 | 
							
								        ; ground(Call) ->
							 | 
						||
| 
								 | 
							
									  wfs_newcall(Call,[],Tab1,0,_),
							 | 
						||
| 
								 | 
							
									  find(Tab1,Call,Ent),
							 | 
						||
| 
								 | 
							
									  ent_to_anss(Ent,Anss),
							 | 
						||
| 
								 | 
							
									  ( succeeded(Anss) ->
							 | 
						||
| 
								 | 
							
									    ( Val == true ->
							 | 
						||
| 
								 | 
							
									      PSM = []
							 | 
						||
| 
								 | 
							
									    ; fail
							 | 
						||
| 
								 | 
							
									    )
							 | 
						||
| 
								 | 
							
									  ; failed(Anss) ->
							 | 
						||
| 
								 | 
							
									    ( Val == false ->
							 | 
						||
| 
								 | 
							
									      PSM = []
							 | 
						||
| 
								 | 
							
									    ; fail
							 | 
						||
| 
								 | 
							
									    )
							 | 
						||
| 
								 | 
							
									  ; assume_one(Call,Val,Tab1,Tab2,[],Abd1,A0,A1),
							 | 
						||
| 
								 | 
							
									    collect_unds(Anss,A1,A),
							 | 
						||
| 
								 | 
							
									    st(A0,A,Tab2,Tab3,Abd1,Abd,[],DAbd,[],_Plits),
							 | 
						||
| 
								 | 
							
									    final_check(Abd,Tab3,_Tab,DAbd,PSM)
							 | 
						||
| 
								 | 
							
									  )
							 | 
						||
| 
								 | 
							
								        ; write('Error: non-ground call '),
							 | 
						||
| 
								 | 
							
									  write(Call),
							 | 
						||
| 
								 | 
							
									  write(' in st/2.'),
							 | 
						||
| 
								 | 
							
									  nl,
							 | 
						||
| 
								 | 
							
									  fail
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* stall(Call,Anss,PSM):
							 | 
						||
| 
								 | 
							
								   stall(Call,Anss,PSM,Tab0,Tab):
							 | 
						||
| 
								 | 
							
								   It computes a partial stable model PSM and collects all
							 | 
						||
| 
								 | 
							
								   answers of Call in that model.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								stall(Call,Anss,PSM) :-
							 | 
						||
| 
								 | 
							
									stall(Call,Anss,PSM,0:[],_).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								stall(Call,Anss,PSM,N0:Tab0,N:Tab) :-
							 | 
						||
| 
								 | 
							
									( isprolog(Call) ->
							 | 
						||
| 
								 | 
							
									  findall(Call,Call,Anss),
							 | 
						||
| 
								 | 
							
									  PSM = [], N = N0, Tab = Tab0
							 | 
						||
| 
								 | 
							
								        ; ground(Call,Ggoal),
							 | 
						||
| 
								 | 
							
									  ( find(Tab0,Ggoal,Ent) ->
							 | 
						||
| 
								 | 
							
									    Tab1 = Tab0, N = N0
							 | 
						||
| 
								 | 
							
								          ; wfs_newcall(Call,Tab0,Tab1,N0,N),
							 | 
						||
| 
								 | 
							
									    find(Tab1,Ggoal,Ent)
							 | 
						||
| 
								 | 
							
								          ),
							 | 
						||
| 
								 | 
							
									  ent_to_delay(Ent,Delay),
							 | 
						||
| 
								 | 
							
									  ( Delay == false ->
							 | 
						||
| 
								 | 
							
									    Fent = Ent, PSM = [], Tab = Tab1
							 | 
						||
| 
								 | 
							
									  ; ent_to_anss(Ent,Anss0),
							 | 
						||
| 
								 | 
							
									    collect_unds(Anss0,A0,A),
							 | 
						||
| 
								 | 
							
									    st(A0,A,Tab1,Tab2,[],Abd,[],DAbd,[],_Plits),
							 | 
						||
| 
								 | 
							
									    final_check(Abd,Tab2,Tab,DAbd,PSM),
							 | 
						||
| 
								 | 
							
									    find(Tab,Ggoal,Fent)
							 | 
						||
| 
								 | 
							
									  ),
							 | 
						||
| 
								 | 
							
									  ent_to_anss(Fent,Anss1),
							 | 
						||
| 
								 | 
							
								          ansstree_to_list(Anss1,Anss,[])
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* stselect(Call,PSM0,Anss,PSM):
							 | 
						||
| 
								 | 
							
								   stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab):
							 | 
						||
| 
								 | 
							
								   It computes a partial stable model PSM in which all ground
							 | 
						||
| 
								 | 
							
								   literals in PSM0 are true, and returns all answers of Call
							 | 
						||
| 
								 | 
							
								   in the partial stable model. Call must be an atom of a tabled
							 | 
						||
| 
								 | 
							
								   or stable predicate.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								stselect(Call,PSM0,Anss,PSM) :-
							 | 
						||
| 
								 | 
							
									stselect(Call,PSM0,Anss,PSM,0:[],_).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab) :-
							 | 
						||
| 
								 | 
							
									( isprolog(Call) ->
							 | 
						||
| 
								 | 
							
									  write('Error: Prolog predicate '),
							 | 
						||
| 
								 | 
							
									  write(Call),
							 | 
						||
| 
								 | 
							
									  write('stselect.'),
							 | 
						||
| 
								 | 
							
									  fail
							 | 
						||
| 
								 | 
							
								        ; wfsoldt(Call,PSM0,Ent,Tab0,Tab1,N0,N),
							 | 
						||
| 
								 | 
							
									  ent_to_delay(Ent,Delay),
							 | 
						||
| 
								 | 
							
									  assume_list(PSM0,true,Tab1,Tab2,[],Abd0,A0,A1),
							 | 
						||
| 
								 | 
							
									  ( Delay == false ->
							 | 
						||
| 
								 | 
							
									    A1 = A2
							 | 
						||
| 
								 | 
							
								          ; ent_to_anss(Ent,Anss0),
							 | 
						||
| 
								 | 
							
									    collect_unds(Anss0,A1,A2)
							 | 
						||
| 
								 | 
							
								          ),
							 | 
						||
| 
								 | 
							
									  st(A0,A2,Tab2,Tab3,Abd0,Abd,[],DAbd,[],_Plits),
							 | 
						||
| 
								 | 
							
									  final_check(Abd,Tab3,Tab,DAbd,PSM),
							 | 
						||
| 
								 | 
							
									  ground(Call,Ggoal),
							 | 
						||
| 
								 | 
							
									  find(Tab,Ggoal,Fent),
							 | 
						||
| 
								 | 
							
									  ent_to_anss(Fent,Anss1),
							 | 
						||
| 
								 | 
							
									  ansstree_to_list(Anss1,Anss,[])
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								wfsoldt(Call,PSM0,Ent,Tab0,Tab,N0,N) :-
							 | 
						||
| 
								 | 
							
									ground(Call,Ggoal),
							 | 
						||
| 
								 | 
							
									( find(Tab0,Ggoal,Ent) ->
							 | 
						||
| 
								 | 
							
									  Tab1 = Tab0, N1 = N0
							 | 
						||
| 
								 | 
							
								        ; wfs_newcall(Call,Tab0,Tab1,N0,N1),
							 | 
						||
| 
								 | 
							
									  find(Tab1,Ggoal,Ent)
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
									wfsoldt_ground(PSM0,Tab1,Tab,N1,N).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								wfsoldt_ground([],Tab,Tab,N,N).
							 | 
						||
| 
								 | 
							
								wfsoldt_ground([A|PSM],Tab0,Tab,N0,N) :-
							 | 
						||
| 
								 | 
							
									( ground(A) ->
							 | 
						||
| 
								 | 
							
									  true
							 | 
						||
| 
								 | 
							
								        ; write('Error: non-ground assumption in stable model selection: '),
							 | 
						||
| 
								 | 
							
									  write(A), nl, fail
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
									( A = (\+G) ->
							 | 
						||
| 
								 | 
							
									  true
							 | 
						||
| 
								 | 
							
								        ; A = G
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
									( isprolog(G) ->
							 | 
						||
| 
								 | 
							
									  Tab1 = Tab0, N1 = N0,
							 | 
						||
| 
								 | 
							
									  call(A)
							 | 
						||
| 
								 | 
							
								        ; find(Tab0,G,_) ->
							 | 
						||
| 
								 | 
							
									  Tab1 = Tab0, N1 = N0
							 | 
						||
| 
								 | 
							
								        ; wfs_newcall(G,Tab0,Tab1,N0,N1)
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
									wfsoldt_ground(PSM,Tab1,Tab,N1,N).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								wfs_newcall(Call,Tab0,Tab,N0,N) :-
							 | 
						||
| 
								 | 
							
									new_init_call(Call,Ggoal,Ent0,[],S1,1,Dfn1),
							 | 
						||
| 
								 | 
							
									add_tab_ent(Ggoal,Ent0,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
									oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP).
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
								/* collect_unds(Anss,A0,A):
							 | 
						||
| 
								 | 
							
								   collects all delayed literals in answers Anss in a open-ended difference
							 | 
						||
| 
								 | 
							
								   list A0/A. These delayed literals are assumed either false or true in the
							 | 
						||
| 
								 | 
							
								   stable model computation.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								collect_unds([],A,A).
							 | 
						||
| 
								 | 
							
								collect_unds(l(_GH,Lanss),A1,A) :-
							 | 
						||
| 
								 | 
							
									collect_unds_lanss(Lanss,A1,A).
							 | 
						||
| 
								 | 
							
								collect_unds(n2(T1,_,T2),A1,A) :-
							 | 
						||
| 
								 | 
							
									collect_unds(T1,A1,A2),
							 | 
						||
| 
								 | 
							
									collect_unds(T2,A2,A).
							 | 
						||
| 
								 | 
							
								collect_unds(n3(T1,_,T2,_,T3),A1,A) :-
							 | 
						||
| 
								 | 
							
									collect_unds(T1,A1,A2),
							 | 
						||
| 
								 | 
							
									collect_unds(T2,A2,A3),
							 | 
						||
| 
								 | 
							
									collect_unds(T3,A3,A).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								collect_unds_lanss([],A,A).
							 | 
						||
| 
								 | 
							
								collect_unds_lanss([d(_,D)|Lanss],A1,A) :-
							 | 
						||
| 
								 | 
							
									collect_unds_list(D,A1,A2),
							 | 
						||
| 
								 | 
							
									collect_unds_lanss(Lanss,A2,A).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								collect_unds_list([],A,A).
							 | 
						||
| 
								 | 
							
								collect_unds_list([Lit|D],[Lit|A1],A) :-
							 | 
						||
| 
								 | 
							
									collect_unds_list(D,A1,A).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits):
							 | 
						||
| 
								 | 
							
								   A0/A is an open-ended difference list containing a list of
							 | 
						||
| 
								 | 
							
								   delayed literals. st tries for each delayed literal to 
							 | 
						||
| 
								 | 
							
								   assume that it is true or false and checks to see if 
							 | 
						||
| 
								 | 
							
								   it leads to a partial stable model. Propagation of assumed
							 | 
						||
| 
								 | 
							
								   truth values is carried out as much as possible. It will 
							 | 
						||
| 
								 | 
							
								   fail if the relevant program contains p :- \+p.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   Abd0/Abd is an accumulator for a table of assumed truth 
							 | 
						||
| 
								 | 
							
								   values. They are checked against the table Tab0/Tab for
							 | 
						||
| 
								 | 
							
								   consistency later in check_consistency. DAbd0/DAbd is an 
							 | 
						||
| 
								 | 
							
								   accumulator for truth values of undefined literals that
							 | 
						||
| 
								 | 
							
								   are derived from assumed truth values of other literals.
							 | 
						||
| 
								 | 
							
								   Plits0/Plits is an accumulator for avoiding positive 
							 | 
						||
| 
								 | 
							
								   infinite loops in processing positive delayed literals.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) :-
							 | 
						||
| 
								 | 
							
									( % empty difference list
							 | 
						||
| 
								 | 
							
									  A0 == A ->
							 | 
						||
| 
								 | 
							
									  Tab = Tab0, Abd = Abd0, DAbd = DAbd0, Plits = Plits0
							 | 
						||
| 
								 | 
							
								        ; A0 = [Lit|A1],
							 | 
						||
| 
								 | 
							
									  ( % non-ground negative literals
							 | 
						||
| 
								 | 
							
									    Lit = (Ggoal - (\+GH)) ->
							 | 
						||
| 
								 | 
							
									    write('Error: cannot handle non-ground negative literals: '),
							 | 
						||
| 
								 | 
							
									    write(\+GH), nl, fail
							 | 
						||
| 
								 | 
							
									  ; % positive undefined literal
							 | 
						||
| 
								 | 
							
									    Lit = Ggoal-GH ->
							 | 
						||
| 
								 | 
							
									    ( % encountered before
							 | 
						||
| 
								 | 
							
									      find(Plits0,Lit,_) ->
							 | 
						||
| 
								 | 
							
									      st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits)
							 | 
						||
| 
								 | 
							
									    ; % otherwise, process undefined literals it depends upon
							 | 
						||
| 
								 | 
							
									      addkey(Plits0,Lit,_,Plits1),
							 | 
						||
| 
								 | 
							
									      find(Tab0,Ggoal,Ent),
							 | 
						||
| 
								 | 
							
									      ent_to_anss(Ent,Anss),
							 | 
						||
| 
								 | 
							
									      find(Anss,GH,Lanss),
							 | 
						||
| 
								 | 
							
									      collect_unds_lanss(Lanss,A,NewA),
							 | 
						||
| 
								 | 
							
									      st(A1,NewA,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits1,Plits)
							 | 
						||
| 
								 | 
							
									    )
							 | 
						||
| 
								 | 
							
									  ; % negative undefined literal
							 | 
						||
| 
								 | 
							
									    Lit = (\+G) ->
							 | 
						||
| 
								 | 
							
									    ( % has been assumed or derived to be true or false
							 | 
						||
| 
								 | 
							
									      ( find(Abd0,G,_Val); find(DAbd0,G,_) ) -> 
							 | 
						||
| 
								 | 
							
									      st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits)
							 | 
						||
| 
								 | 
							
									    ; find(Tab0,G,Gent),
							 | 
						||
| 
								 | 
							
									      ent_to_anss(Gent,Ganss),
							 | 
						||
| 
								 | 
							
									      ( % found to be false already
							 | 
						||
| 
								 | 
							
									        failed(Ganss) ->
							 | 
						||
| 
								 | 
							
										addkey(DAbd0,G,false,DAbd1),
							 | 
						||
| 
								 | 
							
									        st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits)
							 | 
						||
| 
								 | 
							
									      ; % found to be true already 
							 | 
						||
| 
								 | 
							
									        succeeded(Ganss) ->
							 | 
						||
| 
								 | 
							
										addkey(DAbd0,G,true,DAbd1),
							 | 
						||
| 
								 | 
							
									        st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits)
							 | 
						||
| 
								 | 
							
									      ; % create a choice point
							 | 
						||
| 
								 | 
							
									        addkey(Abd0,G,Val,Abd1),
							 | 
						||
| 
								 | 
							
										( Ganss = l(G,[d(G,Ds)]), memberchk(\+G,Ds) ->
							 | 
						||
| 
								 | 
							
										  Val = false
							 | 
						||
| 
								 | 
							
									        ; ( Val = false; Val = true )
							 | 
						||
| 
								 | 
							
									        ),
							 | 
						||
| 
								 | 
							
									        propagate_forward(G,Val,Tab0,Tab1,Abd1),
							 | 
						||
| 
								 | 
							
									        A = [G-G|NewA], % make sure delayed literals of G are checked
							 | 
						||
| 
								 | 
							
									        propagate_backward(G,Val,Ganss,Tab1,Tab2,Abd1,Abd2,NewA,NNA),
							 | 
						||
| 
								 | 
							
									        st(A1,NNA,Tab2,Tab,Abd2,Abd,DAbd0,DAbd,Plits0,Plits)
							 | 
						||
| 
								 | 
							
									      )
							 | 
						||
| 
								 | 
							
									    )
							 | 
						||
| 
								 | 
							
								          )
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* propagate_forward(G,Val,Tab0,Tab,Abd):
							 | 
						||
| 
								 | 
							
								   G has been assumed to be Val, and this information is propagated
							 | 
						||
| 
								 | 
							
								   using simplification or forward chaining links as much as 
							 | 
						||
| 
								 | 
							
								   possible.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								propagate_forward(G,Val,Tab0,Tab,Abd) :-
							 | 
						||
| 
								 | 
							
									updatevs(Tab0,G,Ent0,Ent,Tab1),
							 | 
						||
| 
								 | 
							
									Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist0),
							 | 
						||
| 
								 | 
							
									Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist),
							 | 
						||
| 
								 | 
							
									extract_known_by_abd(Slist0,Val,[],Slist,[],Klist),
							 | 
						||
| 
								 | 
							
									simplify(Klist,Tab1,Tab,Abd).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* The forward chaining is such that negative literals can fail 
							 | 
						||
| 
								 | 
							
								   or succeed by assumption, and positive literals can fail 
							 | 
						||
| 
								 | 
							
								   by assumption, but cannot succeed by assumption.
							 | 
						||
| 
								 | 
							
								   This avoids the construction of supported models that are 
							 | 
						||
| 
								 | 
							
								   not stable.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								extract_known_by_abd([],_,Slist,Slist,Klist,Klist).
							 | 
						||
| 
								 | 
							
								extract_known_by_abd([Link|Links],Val,Slist0,Slist,Klist0,Klist) :-
							 | 
						||
| 
								 | 
							
									( Link = (_ : (\+ _)) ->
							 | 
						||
| 
								 | 
							
									  ( Val == false ->
							 | 
						||
| 
								 | 
							
									    Slist1 = Slist0, 
							 | 
						||
| 
								 | 
							
									    Klist1 = [succ-Link|Klist0]
							 | 
						||
| 
								 | 
							
									  ; Val == true ->
							 | 
						||
| 
								 | 
							
									    Slist1 = Slist0, 
							 | 
						||
| 
								 | 
							
									    Klist1 = [fail-Link|Klist0]
							 | 
						||
| 
								 | 
							
									  ; Slist1 = [Link|Slist0], 
							 | 
						||
| 
								 | 
							
									    Klist1 = Klist0
							 | 
						||
| 
								 | 
							
									  )
							 | 
						||
| 
								 | 
							
								        ; % Link = (_ : _-GH) ->
							 | 
						||
| 
								 | 
							
									  ( Val = false ->
							 | 
						||
| 
								 | 
							
									    Slist1 = Slist0,
							 | 
						||
| 
								 | 
							
									    Klist1 = [fail-Link|Klist0]
							 | 
						||
| 
								 | 
							
									  ; % Val = true ->
							 | 
						||
| 
								 | 
							
									    Slist1 = [Link|Slist0],
							 | 
						||
| 
								 | 
							
									    Klist1 = Klist0
							 | 
						||
| 
								 | 
							
									  )
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
									extract_known_by_abd(Links,Val,Slist1,Slist,Klist1,Klist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA):
							 | 
						||
| 
								 | 
							
								   It tried to propagate the Val of G backward through answers
							 | 
						||
| 
								 | 
							
								   if possible. If G is assumed to be true, and G has only one
							 | 
						||
| 
								 | 
							
								   answer clause, then all literals in the body of the answer
							 | 
						||
| 
								 | 
							
								   clause must be true. If G is assumed to be false, then all
							 | 
						||
| 
								 | 
							
								   literals in answer clauses of G that have a single literal
							 | 
						||
| 
								 | 
							
								   are assumed to be false too. Otherwise, it is no-op.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA) :-
							 | 
						||
| 
								 | 
							
									( Ganss = l(G,Lanss) ->
							 | 
						||
| 
								 | 
							
									  ( Val == true, Lanss = [d(G,Ds)] ->
							 | 
						||
| 
								 | 
							
									    assume_list(Ds,true,Tab0,Tab,Abd0,Abd,A,NewA)
							 | 
						||
| 
								 | 
							
									  ; Val == false, findall(Lit,member(d(G,[Lit]),Lanss),Ds) ->
							 | 
						||
| 
								 | 
							
									    assume_list(Ds,false,Tab0,Tab,Abd0,Abd,A,NewA)
							 | 
						||
| 
								 | 
							
									  ; Tab = Tab0, Abd = Abd0, A = NewA
							 | 
						||
| 
								 | 
							
								          )
							 | 
						||
| 
								 | 
							
								        ; Tab = Tab0, Abd = Abd0, A = NewA
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								assume_list([],_Val,Tab,Tab,Abd,Abd,A,A).
							 | 
						||
| 
								 | 
							
								assume_list([Lit|Lits],Val,Tab0,Tab,Abd0,Abd,A0,A) :-
							 | 
						||
| 
								 | 
							
									assume_one(Lit,Val,Tab0,Tab1,Abd0,Abd1,A0,A1),
							 | 
						||
| 
								 | 
							
									assume_list(Lits,Val,Tab1,Tab,Abd1,Abd,A1,A).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A):
							 | 
						||
| 
								 | 
							
								   Due to back propagation, Lit is assumed to be Val.
							 | 
						||
| 
								 | 
							
								   However, this assumption is carried out only if 
							 | 
						||
| 
								 | 
							
								   Lit is a delayed literal of a ground call or most
							 | 
						||
| 
								 | 
							
								   general call.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								assume_one(Ggoal-GH,_Val,Tab0,Tab,Abd0,Abd,A0,A) :-
							 | 
						||
| 
								 | 
							
									Ggoal \== GH, 
							 | 
						||
| 
								 | 
							
									!,
							 | 
						||
| 
								 | 
							
									Tab = Tab0, Abd = Abd0, A = A0.
							 | 
						||
| 
								 | 
							
								assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A) :-
							 | 
						||
| 
								 | 
							
									( Lit = G-G ->
							 | 
						||
| 
								 | 
							
									  GVal = Val
							 | 
						||
| 
								 | 
							
								        ; Lit = (\+G) ->
							 | 
						||
| 
								 | 
							
									  ( Val == true -> GVal = false; GVal = true )
							 | 
						||
| 
								 | 
							
								        ; Lit = G ->
							 | 
						||
| 
								 | 
							
									  GVal = Val
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
									( find(Abd0,G,V) ->              % already assumed
							 | 
						||
| 
								 | 
							
									  ( V == GVal ->
							 | 
						||
| 
								 | 
							
									    Tab = Tab0, Abd = Abd0, A = A0
							 | 
						||
| 
								 | 
							
									  ; fail
							 | 
						||
| 
								 | 
							
								          )
							 | 
						||
| 
								 | 
							
								        ; find(Tab0,G,Gent),
							 | 
						||
| 
								 | 
							
									  ent_to_anss(Gent,Ganss),
							 | 
						||
| 
								 | 
							
									  ( failed(Ganss) ->             % already known
							 | 
						||
| 
								 | 
							
									    ( GVal == true -> 
							 | 
						||
| 
								 | 
							
									      fail
							 | 
						||
| 
								 | 
							
									    ; Tab = Tab0, Abd = Abd0, A = A0
							 | 
						||
| 
								 | 
							
									    )
							 | 
						||
| 
								 | 
							
									  ; succeeded(Ganss) ->          % already known
							 | 
						||
| 
								 | 
							
									    ( GVal == false -> 
							 | 
						||
| 
								 | 
							
									      fail
							 | 
						||
| 
								 | 
							
									    ; Tab = Tab0, Abd = Abd0, A = A0
							 | 
						||
| 
								 | 
							
								            )
							 | 
						||
| 
								 | 
							
									  ; addkey(Abd0,G,GVal,Abd1),    % otherwise, propagate
							 | 
						||
| 
								 | 
							
									    propagate_forward(G,GVal,Tab0,Tab1,Abd1),
							 | 
						||
| 
								 | 
							
									    A0 = [G-G|A1],
							 | 
						||
| 
								 | 
							
									    propagate_backward(G,Ganss,GVal,Tab1,Tab,Abd1,Abd,A1,A)
							 | 
						||
| 
								 | 
							
									  )
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								final_check(Abd,Tab0,Tab,DAbd,Alist) :-
							 | 
						||
| 
								 | 
							
									check_consistency(Abd,Tab0,Tab,Alist0,Alist1),
							 | 
						||
| 
								 | 
							
									add_dabd(DAbd,Alist1,[]),
							 | 
						||
| 
								 | 
							
									sort(Alist0,Sorted),
							 | 
						||
| 
								 | 
							
									listval_to_listlit(Sorted,Alist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								listval_to_listlit([],[]).
							 | 
						||
| 
								 | 
							
								listval_to_listlit([Val|Vlist],[Lit|Llist]) :-
							 | 
						||
| 
								 | 
							
									val_to_lit(Val,Lit),
							 | 
						||
| 
								 | 
							
									listval_to_listlit(Vlist,Llist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								val_to_lit(G-true,G).
							 | 
						||
| 
								 | 
							
								val_to_lit(G-false,\+G).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* check_consistency(Abd,Tab0,Tab,Alist0,Alist):
							 | 
						||
| 
								 | 
							
								   A proposition may be assumed to be true, but no true answer
							 | 
						||
| 
								 | 
							
								   is derived at the end, which is inconsistency. A proposition
							 | 
						||
| 
								 | 
							
								   may be assumed to be false, but has a true answer. The latter
							 | 
						||
| 
								 | 
							
								   case is checked when the true answer is derived. Here Abd 
							 | 
						||
| 
								 | 
							
								   indicates the assumed truth values, and answers in Tab0
							 | 
						||
| 
								 | 
							
								   indicate the derived values by a fixpoint computation of
							 | 
						||
| 
								 | 
							
								   forward chaining.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   Also at the end of a fixpoint computation, a subgoal may
							 | 
						||
| 
								 | 
							
								   have only delayed answers with positive literals. These
							 | 
						||
| 
								 | 
							
								   have to be deleted in order for Tab0/Tab to be used
							 | 
						||
| 
								 | 
							
								   correctly later.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								check_consistency([],Tab,Tab,Alist,Alist).
							 | 
						||
| 
								 | 
							
								check_consistency(l(G,Val),Tab0,Tab,Alist0,Alist) :-
							 | 
						||
| 
								 | 
							
									updatevs(Tab0,G,Ent0,Ent,Tab),
							 | 
						||
| 
								 | 
							
									Ent0 = e(Nodes,ANegs,Anss0,_Delay,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
									Ent = e(Nodes,ANegs,Anss,false,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
									( Val == true ->
							 | 
						||
| 
								 | 
							
									  succeeded(Anss0),
							 | 
						||
| 
								 | 
							
									  Anss = l(G,[d(G,[])]), % delete answers with positive delays
							 | 
						||
| 
								 | 
							
									  Alist0 = [G-Val|Alist]
							 | 
						||
| 
								 | 
							
								        ; % Val == false -> 
							 | 
						||
| 
								 | 
							
									  Anss = [],
							 | 
						||
| 
								 | 
							
									  Alist0 = [G-Val|Alist]
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								check_consistency(n2(T1,_,T2),Tab0,Tab,Alist0,Alist) :-
							 | 
						||
| 
								 | 
							
									check_consistency(T1,Tab0,Tab1,Alist0,Alist1),
							 | 
						||
| 
								 | 
							
									check_consistency(T2,Tab1,Tab,Alist1,Alist).
							 | 
						||
| 
								 | 
							
								check_consistency(n3(T1,_,T2,_,T3),Tab0,Tab,Alist0,Alist) :-
							 | 
						||
| 
								 | 
							
									check_consistency(T1,Tab0,Tab1,Alist0,Alist1),
							 | 
						||
| 
								 | 
							
									check_consistency(T2,Tab1,Tab2,Alist1,Alist2),
							 | 
						||
| 
								 | 
							
									check_consistency(T3,Tab2,Tab,Alist2,Alist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								add_dabd([],Alist,Alist).
							 | 
						||
| 
								 | 
							
								add_dabd(l(G,Val),[G-Val|Alist],Alist).
							 | 
						||
| 
								 | 
							
								add_dabd(n2(T1,_,T2),Alist0,Alist) :-
							 | 
						||
| 
								 | 
							
									add_dabd(T1,Alist0,Alist1),
							 | 
						||
| 
								 | 
							
									add_dabd(T2,Alist1,Alist).
							 | 
						||
| 
								 | 
							
								add_dabd(n3(T1,_,T2,_,T3),Alist0,Alist) :-
							 | 
						||
| 
								 | 
							
									add_dabd(T1,Alist0,Alist1),
							 | 
						||
| 
								 | 
							
									add_dabd(T2,Alist1,Alist2),
							 | 
						||
| 
								 | 
							
									add_dabd(T3,Alist2,Alist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* oldt(QueryAtom,Table): top level call for SLG resolution.
							 | 
						||
| 
								 | 
							
								   It returns a table consisting of answers for each relevant
							 | 
						||
| 
								 | 
							
								   subgoal. For stable predicates, it basically extract the 
							 | 
						||
| 
								 | 
							
								   relevant set of ground clauses by solving Prolog predicates
							 | 
						||
| 
								 | 
							
								   and other well-founded predicates.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								oldt(Call,Tab) :-
							 | 
						||
| 
								 | 
							
								    new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1),
							 | 
						||
| 
								 | 
							
								    add_tab_ent(Ggoal,Ent,[],Tab1),
							 | 
						||
| 
								 | 
							
								    oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,0:[],_TP),
							 | 
						||
| 
								 | 
							
								    ( wfs_trace -> 
							 | 
						||
| 
								 | 
							
								      nl, write('Final '), display_table(Tab), nl
							 | 
						||
| 
								 | 
							
								    ; true 
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* oldt(Call,Ggoal,Tab0,Tab,Stack0,Stack,DFN0,DFN,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								   explores the initial set of edges, i.e., all the 
							 | 
						||
| 
								 | 
							
								   program clauses for Call. Ggoal is of the form 
							 | 
						||
| 
								 | 
							
								   Gcall-Gdfn, where Gcall is numbervar of Call and Gdfn
							 | 
						||
| 
								 | 
							
								   is the depth-first number of Gcall. Tab0/Tab,Stack0/Stack,
							 | 
						||
| 
								 | 
							
								   DFN0/DFN, and Dep0/Dep are accumulators for the table, 
							 | 
						||
| 
								 | 
							
								   the stack of subgoals, the DFN counter, and the dependencies.
							 | 
						||
| 
								 | 
							
								   TP0/TP is the accumulator for newly created clauses during
							 | 
						||
| 
								 | 
							
								   the processing of general clauss with universal disjunctions
							 | 
						||
| 
								 | 
							
								   in the body. These clauses are created in order to guarantee
							 | 
						||
| 
								 | 
							
								   polynomial data complexity in processing clauses with
							 | 
						||
| 
								 | 
							
								   universal disjuntions in the body of a clause. The newly 
							 | 
						||
| 
								 | 
							
								   created propositions are represented by numbers.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								oldt(Call,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    ( number(Call) ->
							 | 
						||
| 
								 | 
							
								      TP0 = (_ : Tcl),
							 | 
						||
| 
								 | 
							
								      find(Tcl,Call,Clause),
							 | 
						||
| 
								 | 
							
								      edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1)
							 | 
						||
| 
								 | 
							
								    ; findall(rule(d(Call,[]),Body),
							 | 
						||
| 
								 | 
							
									      (new_slg_head(Call,Body,NewHead),call(NewHead)),
							 | 
						||
| 
								 | 
							
									      Frames),
							 | 
						||
| 
								 | 
							
								      map_oldt(Frames,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1)
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    comp_tab_ent(Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								map_oldt([],_Ggoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								map_oldt([Clause|Frames],Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								  edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								  map_oldt(Frames,Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								   Clause may be one of the following forms:
							 | 
						||
| 
								 | 
							
								          rule(d(H,Dlist),Blist)
							 | 
						||
| 
								 | 
							
								          rule(d(H,all(Dlist)),all(Blist))
							 | 
						||
| 
								 | 
							
								   where the second form is for general clauses with a universal
							 | 
						||
| 
								 | 
							
								   disjunction of literals in the body. Dlist is a list of delayed 
							 | 
						||
| 
								 | 
							
								   literals, and Blist is the list of literals to be solved.
							 | 
						||
| 
								 | 
							
								   Clause represents a directed edge from Ggoal to the left most 
							 | 
						||
| 
								 | 
							
								   subgoal in Blist.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    Clause = rule(Ans,B),
							 | 
						||
| 
								 | 
							
								    ( B == [] ->
							 | 
						||
| 
								 | 
							
								      ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								    ; B = [Lit|_] ->
							 | 
						||
| 
								 | 
							
								      ( Lit = (\+N) ->
							 | 
						||
| 
								 | 
							
								        neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								      ; pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; B = all(Bl) ->
							 | 
						||
| 
								 | 
							
								      ( Bl == [] ->
							 | 
						||
| 
								 | 
							
								        ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								      ; Bl = [Lit|_],
							 | 
						||
| 
								 | 
							
								        ( Lit = (\+N) ->
							 | 
						||
| 
								 | 
							
								          aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								        ; apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    ( add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab1) -> 
							 | 
						||
| 
								 | 
							
								      ( Mode = new_head -> 
							 | 
						||
| 
								 | 
							
								        returned_ans(Ans,Ggoal,RAns),
							 | 
						||
| 
								 | 
							
								        map_nodes(Nodes,RAns,Tab1,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								      ; Mode = no_new_head ->
							 | 
						||
| 
								 | 
							
								        Tab = Tab1, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    Clause = rule(_,[\+N|_]),
							 | 
						||
| 
								 | 
							
								    ( ground(N) -> true
							 | 
						||
| 
								 | 
							
								    ; write('Flounder: '), write(\+N), nl, fail
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    Node = (Ggoal:Clause),
							 | 
						||
| 
								 | 
							
								    Ngoal = N,                 % N is already ground
							 | 
						||
| 
								 | 
							
								    ( isprolog(N) ->           % if N is a Prolog predicate
							 | 
						||
| 
								 | 
							
								      ( call(N) ->             %    then just call
							 | 
						||
| 
								 | 
							
								        Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
							 | 
						||
| 
								 | 
							
								      ; apply_subst(Node,d(\+ N,[]),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; ( find(Tab0,Ngoal,Nent) ->
							 | 
						||
| 
								 | 
							
								        Tab2 = Tab0, S2 = S0, Dfn2 = Dfn0, Dep1 = Dep0, TP1 = TP0
							 | 
						||
| 
								 | 
							
								      ; new_init_call(N,Ngoal,Ent,S0,S1,Dfn0,Dfn1),
							 | 
						||
| 
								 | 
							
									add_tab_ent(Ngoal,Ent,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
									oldt(N,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,maxint-maxint,Ndep,TP0,TP1),
							 | 
						||
| 
								 | 
							
									compute_mins(Dep0,Ndep,pos,Dep1),
							 | 
						||
| 
								 | 
							
								        find(Tab2,Ngoal,Nent)
							 | 
						||
| 
								 | 
							
								      ),
							 | 
						||
| 
								 | 
							
								      ent_to_comp(Nent,Ncomp),
							 | 
						||
| 
								 | 
							
								      ent_to_anss(Nent,Nanss),
							 | 
						||
| 
								 | 
							
								      ( succeeded(Nanss) ->
							 | 
						||
| 
								 | 
							
									Tab = Tab2, S = S2, Dfn = Dfn2, Dep = Dep1, TP = TP1
							 | 
						||
| 
								 | 
							
								      ; failed(Nanss), Ncomp == true ->
							 | 
						||
| 
								 | 
							
								        apply_subst(Node,d(\+N,[]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP)
							 | 
						||
| 
								 | 
							
								      ; apply_subst(Node,d(\+N,[\+N]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    Clause = rule(_H,[N|_B]),
							 | 
						||
| 
								 | 
							
								    Node = (Ggoal:Clause),
							 | 
						||
| 
								 | 
							
								    ground(N,Ngoal),
							 | 
						||
| 
								 | 
							
								    ( isprolog(N) ->
							 | 
						||
| 
								 | 
							
								      findall(d(N,[]),call(N),Nanss),
							 | 
						||
| 
								 | 
							
								      map_anss_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								    ; ( find(Tab0,Ngoal,Nent) ->
							 | 
						||
| 
								 | 
							
								        ent_to_comp(Nent,Ncomp),
							 | 
						||
| 
								 | 
							
								        ent_to_anss(Nent,Nanss),
							 | 
						||
| 
								 | 
							
								        ( Ncomp \== true ->
							 | 
						||
| 
								 | 
							
								          update_lookup_mins(Ggoal,Node,Ngoal,pos,Tab0,Tab1,Dep0,Dep1),
							 | 
						||
| 
								 | 
							
								          map_anss(Nanss,Node,Ngoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep1,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								        ; % N is completed. 
							 | 
						||
| 
								 | 
							
								          map_anss(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; % otherwise N is new
							 | 
						||
| 
								 | 
							
								        new_pos_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1),
							 | 
						||
| 
								 | 
							
								        add_tab_ent(Ngoal,Ent,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
								        oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP),
							 | 
						||
| 
								 | 
							
								        update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    Clause = rule(_H,all([\+N|_B])),
							 | 
						||
| 
								 | 
							
								    Node = (Ggoal:Clause),
							 | 
						||
| 
								 | 
							
								    ground(N,Ngoal),
							 | 
						||
| 
								 | 
							
								    ( isprolog(N) ->
							 | 
						||
| 
								 | 
							
								      findall(d(N,[]),call(N),Nanss),
							 | 
						||
| 
								 | 
							
								      return_to_disj_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								    ; ( find(Tab0,Ngoal,Nent) ->
							 | 
						||
| 
								 | 
							
								        ent_to_comp(Nent,Ncomp),
							 | 
						||
| 
								 | 
							
								        ent_to_anss(Nent,Nanss),
							 | 
						||
| 
								 | 
							
								        ( Ncomp \== true ->
							 | 
						||
| 
								 | 
							
								          update_lookup_mins(Ggoal,Node,Ngoal,aneg,Tab0,Tab,Dep0,Dep),
							 | 
						||
| 
								 | 
							
								          S = S0, Dfn = Dfn0, TP = TP0
							 | 
						||
| 
								 | 
							
								        ; % N is completed. 
							 | 
						||
| 
								 | 
							
								          return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; % otherwise N is new
							 | 
						||
| 
								 | 
							
								        new_aneg_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1),
							 | 
						||
| 
								 | 
							
								        add_tab_ent(Ngoal,Ent,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
								        oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP),
							 | 
						||
| 
								 | 
							
								        update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    Clause = rule(d(H,D),all([N|B])),
							 | 
						||
| 
								 | 
							
								    ( ground(N) -> true
							 | 
						||
| 
								 | 
							
								    ; write('Flounder in a universal disjunction: '), 
							 | 
						||
| 
								 | 
							
								      write(N), 
							 | 
						||
| 
								 | 
							
								      nl, 
							 | 
						||
| 
								 | 
							
								      fail
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    pos_edge(rule(d(H,[]),[N]),Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    edge_oldt(rule(d(H,D),all(B)),Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								apply_subst(Ggoal:Cl,d(An,Vr),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    copy_term(Cl,rule(d(Ac,Vc),Body)),
							 | 
						||
| 
								 | 
							
								    ( Body = [Call|NBody] ->
							 | 
						||
| 
								 | 
							
								      Call = An,
							 | 
						||
| 
								 | 
							
								      append(Vr,Vc,Vn)
							 | 
						||
| 
								 | 
							
								    ; Body = all([Call|Calls]),
							 | 
						||
| 
								 | 
							
								      % Call = An,              % An is the numbervar-ed version of Call.
							 | 
						||
| 
								 | 
							
								      ( Vc == [] ->
							 | 
						||
| 
								 | 
							
								        Vn = all(Vr)
							 | 
						||
| 
								 | 
							
								      ; Vc = all(Vc0),
							 | 
						||
| 
								 | 
							
								        append(Vr,Vc0,Vn0),
							 | 
						||
| 
								 | 
							
								        Vn = all(Vn0)
							 | 
						||
| 
								 | 
							
								      ),
							 | 
						||
| 
								 | 
							
								      NBody = all(Calls)
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    edge_oldt(rule(d(Ac,Vn),NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* map_nodes(Nodes,Ans,....):
							 | 
						||
| 
								 | 
							
								   return Ans to each of the waiting nodes in Nodes, where a node
							 | 
						||
| 
								 | 
							
								   is of the form Ggoal:Clause.
							 | 
						||
| 
								 | 
							
								*/  
							 | 
						||
| 
								 | 
							
								map_nodes([],_Ans,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								map_nodes([Node|Nodes],Ans,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    map_nodes(Nodes,Ans,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								map_anss([],_Node,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								map_anss(l(_GH,Lanss),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    ( Lanss == [] ->
							 | 
						||
| 
								 | 
							
								      Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
							 | 
						||
| 
								 | 
							
								    ; Lanss = [Ans|_],
							 | 
						||
| 
								 | 
							
								      returned_ans(Ans,Ngoal,RAns),
							 | 
						||
| 
								 | 
							
								      apply_subst(Node,RAns,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								map_anss(n2(T1,_,T2),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    map_anss(T2,Node,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								map_anss(n3(T1,_,T2,_,T3),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    map_anss(T2,Node,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,Dep1,Dep2,TP1,TP2),
							 | 
						||
| 
								 | 
							
								    map_anss(T3,Node,Ngoal,Tab2,Tab,S2,S,Dfn2,Dfn,Dep2,Dep,TP2,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								map_anss_list([],_Node,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								map_anss_list([Ans|Lanss],Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    map_anss_list(Lanss,Node,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								   Nanss: an answer table for Ngoal
							 | 
						||
| 
								 | 
							
								   Node: is of the form (Ggoal:Clause), where Clause is of the form
							 | 
						||
| 
								 | 
							
								         rule(d(H,D),all([\+N|B]))
							 | 
						||
| 
								 | 
							
								   It carries out resolution of each answer with Clause, and constructs
							 | 
						||
| 
								 | 
							
								   a new clause rule(Head,NBody), where the body is basically a 
							 | 
						||
| 
								 | 
							
								   conjunction of all the resolvents. If a resolvent is a disjunction
							 | 
						||
| 
								 | 
							
								   or a non-ground literal, a new proposition is created (which is 
							 | 
						||
| 
								 | 
							
								   actually represented by a number), which has a clause whose body
							 | 
						||
| 
								 | 
							
								   is the resolvent.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    Node = (Ggoal : Clause),
							 | 
						||
| 
								 | 
							
								    Clause = rule(Head,all(Body)),
							 | 
						||
| 
								 | 
							
								    TP0 = (N0 : Tcl0),
							 | 
						||
| 
								 | 
							
								    negative_return_all(Nanss,Body,Ngoal,NBody,[],N0,N,Tcl0,Tcl),
							 | 
						||
| 
								 | 
							
								    TP1 = (N : Tcl),
							 | 
						||
| 
								 | 
							
								    edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								negative_return_all([],_Body,_Ngoal,NBody,NBody,N,N,Tcl,Tcl).
							 | 
						||
| 
								 | 
							
								negative_return_all(l(_GH,Lanss),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
							 | 
						||
| 
								 | 
							
								    ( Lanss == [] ->
							 | 
						||
| 
								 | 
							
								      NBody0 = NBody, N = N0, Tcl = Tcl0
							 | 
						||
| 
								 | 
							
								    ; Lanss = [Ans|_],
							 | 
						||
| 
								 | 
							
								      negative_return_one(Ans,Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								negative_return_all(n2(T1,_,T2),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
							 | 
						||
| 
								 | 
							
								    negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1),
							 | 
						||
| 
								 | 
							
								    negative_return_all(T2,Body,Ngoal,NBody1,NBody,N1,N,Tcl1,Tcl).
							 | 
						||
| 
								 | 
							
								negative_return_all(n3(T1,_,T2,_,T3),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
							 | 
						||
| 
								 | 
							
								    negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1),
							 | 
						||
| 
								 | 
							
								    negative_return_all(T2,Body,Ngoal,NBody1,NBody2,N1,N2,Tcl1,Tcl2),
							 | 
						||
| 
								 | 
							
								    negative_return_all(T3,Body,Ngoal,NBody2,NBody,N2,N,Tcl2,Tcl).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								negative_return_one(d(H,Tv),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
							 | 
						||
| 
								 | 
							
								    copy_term(Body,[\+Call|Bs]),
							 | 
						||
| 
								 | 
							
								    H = Call,
							 | 
						||
| 
								 | 
							
								    ( Tv == [] ->                    % no delay
							 | 
						||
| 
								 | 
							
								      ( (Bs = [Lit], ground(Lit)) -> % resovlent is a ground literal
							 | 
						||
| 
								 | 
							
								        NBody0 = [Lit|NBody],
							 | 
						||
| 
								 | 
							
								        N = N0, Tcl = Tcl0
							 | 
						||
| 
								 | 
							
								      ; Lit = N0,                    % otherwise, replace it with a number
							 | 
						||
| 
								 | 
							
								        N is N0+1,
							 | 
						||
| 
								 | 
							
								        NBody0 = [Lit|NBody],
							 | 
						||
| 
								 | 
							
								        Clause = rule(d(Lit,[]),all(Bs)),
							 | 
						||
| 
								 | 
							
								        add_tab_ent(Lit,Clause,Tcl0,Tcl)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; ( ground(H) ->                 % if there is delay, always replace with number
							 | 
						||
| 
								 | 
							
									NewTv = [\+H]
							 | 
						||
| 
								 | 
							
								      ; ground(H,GH),
							 | 
						||
| 
								 | 
							
									NewTv = [Ngoal - (\+GH)]
							 | 
						||
| 
								 | 
							
								      ),
							 | 
						||
| 
								 | 
							
								      Lit = N0,
							 | 
						||
| 
								 | 
							
								      N is N0+1,
							 | 
						||
| 
								 | 
							
								      NBody0 = [Lit|NBody],
							 | 
						||
| 
								 | 
							
								      Clause = rule(d(Lit,all(NewTv)),all(Bs)),
							 | 
						||
| 
								 | 
							
								      add_tab_ent(Lit,Clause,Tcl0,Tcl)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								return_to_disj_list(Lanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    Node = (Ggoal : Clause),
							 | 
						||
| 
								 | 
							
								    Clause = rule(Head,all(Body)),
							 | 
						||
| 
								 | 
							
								    TP0 = (N0 : Tcl0),
							 | 
						||
| 
								 | 
							
								    negative_return_list(Lanss,Body,NBody,[],N0,N,Tcl0,Tcl),
							 | 
						||
| 
								 | 
							
								    TP1 = (N : Tcl),
							 | 
						||
| 
								 | 
							
								    edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								negative_return_list([],_Body,NBody,NBody,N,N,Tcl,Tcl).
							 | 
						||
| 
								 | 
							
								negative_return_list([d(H,[])|Lanss],Body,NBody0,NBody,N0,N,Tcl0,Tcl) :-
							 | 
						||
| 
								 | 
							
								    copy_term(Body,[\+Call|Bs]),
							 | 
						||
| 
								 | 
							
								    H = Call,
							 | 
						||
| 
								 | 
							
								    ( Bs = [Lit], ground(Lit) ->
							 | 
						||
| 
								 | 
							
								      NBody0 = [Lit|NBody1],
							 | 
						||
| 
								 | 
							
								      N1 = N0, Tcl1 = Tcl0
							 | 
						||
| 
								 | 
							
								    ; Lit = N0,
							 | 
						||
| 
								 | 
							
								      N1 is N0+1,
							 | 
						||
| 
								 | 
							
								      NBody0 = [Lit|NBody1],
							 | 
						||
| 
								 | 
							
								      Clause = rule(d(Lit,[]),all(Bs)),
							 | 
						||
| 
								 | 
							
								      add_tab_ent(Lit,Clause,Tcl0,Tcl1)
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    negative_return_list(Lanss,Body,NBody1,NBody,N1,N,Tcl1,Tcl).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								   check if Ggoal and subgoals on top of it on the stack are
							 | 
						||
| 
								 | 
							
								   completely evaluated.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    ( Dep0 == maxint-maxint ->
							 | 
						||
| 
								 | 
							
								      process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								    ; update_mins(Ggoal,Dep0,pos,Tab0,Tab1,Gdfn,Gdep),
							 | 
						||
| 
								 | 
							
								      Gdep = Gpmin-Gnmin,
							 | 
						||
| 
								 | 
							
								      ( Gdfn @=< Gpmin, Gnmin == maxint ->
							 | 
						||
| 
								 | 
							
								        process_pos_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								      ; Gdfn @=< Gpmin, Gdfn @=< Gnmin ->
							 | 
						||
| 
								 | 
							
								        process_neg_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
							 | 
						||
| 
								 | 
							
								      ; Tab = Tab1, S0 = S, Dfn = Dfn0, Dep = Gdep, TP = TP0
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    ( wfs_trace ->
							 | 
						||
| 
								 | 
							
								      write('Stack: '), nl, display_stack(S0,Tab0),
							 | 
						||
| 
								 | 
							
								      write('Completed call found: '), write(Ggoal), nl, 
							 | 
						||
| 
								 | 
							
								      display_table(Tab0),
							 | 
						||
| 
								 | 
							
								      write('Completing calls ......'), nl, nl
							 | 
						||
| 
								 | 
							
								    ; true
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    pop_subgoals(Ggoal,S0,S1,[],Scc),
							 | 
						||
| 
								 | 
							
								    complete_comp(Scc,Tab0,Tab1,Alist,[]),
							 | 
						||
| 
								 | 
							
								    return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn0,Dfn,maxint-maxint,Dep,TP0,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* pop_subgoals(Ggoal,S0,S,Scc0,Scc)
							 | 
						||
| 
								 | 
							
								   pop off the stack subgoals up to and including Ggoal
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								pop_subgoals(Ggoal,S0,S,Scc0,Scc) :-
							 | 
						||
| 
								 | 
							
								    S0 = [Sent|S1],
							 | 
						||
| 
								 | 
							
								    ( Ggoal == Sent ->
							 | 
						||
| 
								 | 
							
								      S = S1, 
							 | 
						||
| 
								 | 
							
								      Scc = [Sent|Scc0]
							 | 
						||
| 
								 | 
							
								    ; pop_subgoals(Ggoal,S1,S,[Sent|Scc0],Scc)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* complete_comp(Scc,Tab0,Tab,Alist0,Alist):
							 | 
						||
| 
								 | 
							
								   process the list Scc of subgoals that are 
							 | 
						||
| 
								 | 
							
								   completely evaluated.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								complete_comp([],Tab,Tab,Alist,Alist).
							 | 
						||
| 
								 | 
							
								complete_comp([Ggoal|Scc],Tab0,Tab,Alist0,Alist) :-
							 | 
						||
| 
								 | 
							
								    complete_one(Ggoal,Tab0,Tab1,Alist0,Alist1),
							 | 
						||
| 
								 | 
							
								    complete_comp(Scc,Tab1,Tab,Alist1,Alist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* complete_one(Ggoal,Tab0,Tab,Alist0,Alist)
							 | 
						||
| 
								 | 
							
								   process one subgoal that has been completely 
							 | 
						||
| 
								 | 
							
								   evaluated:
							 | 
						||
| 
								 | 
							
								   1. set its Nodes and Negs to [] and Comp to true;
							 | 
						||
| 
								 | 
							
								   2. simplify its answers and set up links
							 | 
						||
| 
								 | 
							
								      for further simplification later;
							 | 
						||
| 
								 | 
							
								   3. use the truth value of Ggoal to simplify
							 | 
						||
| 
								 | 
							
								      answers of other complete subgoals (possibly 
							 | 
						||
| 
								 | 
							
								      including itself).
							 | 
						||
| 
								 | 
							
								   4. set Alist0/Alist: a list of negation nodes with
							 | 
						||
| 
								 | 
							
								      universal disjunctions with associated answers
							 | 
						||
| 
								 | 
							
								      for the selected negative literal.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								complete_one(Ggoal,Tab0,Tab,Alist0,Alist) :-
							 | 
						||
| 
								 | 
							
								    updatevs(Tab0,Ggoal,Ent0,Ent,Tab1),
							 | 
						||
| 
								 | 
							
								    Ent0 = e(_Nodes,ANegs,Anss0,Delay,_Comp,Gdfn,Slist0),
							 | 
						||
| 
								 | 
							
								    Ent = e([],[],Anss,Delay,true,Gdfn,Slist),
							 | 
						||
| 
								 | 
							
								    ( Delay == true ->
							 | 
						||
| 
								 | 
							
								      reduce_ans(Anss0,Anss,Tab0),
							 | 
						||
| 
								 | 
							
								      setup_simp_links(Anss,Ggoal,Slist0,Slist1,Tab1,Tab2)
							 | 
						||
| 
								 | 
							
								    ; % Delay == false
							 | 
						||
| 
								 | 
							
								      Anss = Anss0,
							 | 
						||
| 
								 | 
							
								      Tab2 = Tab1,
							 | 
						||
| 
								 | 
							
								      Slist1 = Slist0
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    extract_known(Ggoal,Anss,Slist1,Slist,Klist),
							 | 
						||
| 
								 | 
							
								    simplify(Klist,Tab2,Tab,[]),
							 | 
						||
| 
								 | 
							
								    ( ANegs == [] ->
							 | 
						||
| 
								 | 
							
								      Alist0 = Alist
							 | 
						||
| 
								 | 
							
								    ; Alist0 = [(Anss,Ggoal)-ANegs|Alist]
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								setup_simp_links([],_,Slist,Slist,Tab,Tab).
							 | 
						||
| 
								 | 
							
								setup_simp_links(l(GH,Lanss),Ggoal,Slist0,Slist,Tab0,Tab) :-
							 | 
						||
| 
								 | 
							
								    setup_simp_links_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab).
							 | 
						||
| 
								 | 
							
								setup_simp_links(n2(T1,_,T2),Ggoal,Slist0,Slist,Tab0,Tab) :-
							 | 
						||
| 
								 | 
							
								    setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
								    setup_simp_links(T2,Ggoal,Slist1,Slist,Tab1,Tab).
							 | 
						||
| 
								 | 
							
								setup_simp_links(n3(T1,_,T2,_,T3),Ggoal,Slist0,Slist,Tab0,Tab) :-
							 | 
						||
| 
								 | 
							
								    setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
								    setup_simp_links(T2,Ggoal,Slist1,Slist2,Tab1,Tab2),
							 | 
						||
| 
								 | 
							
								    setup_simp_links(T3,Ggoal,Slist2,Slist,Tab2,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* setup_simp_link_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab)
							 | 
						||
| 
								 | 
							
								   Ggoal-GH is to tell what portion of answers of Ggoal can be 
							 | 
						||
| 
								 | 
							
								   simplified.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								setup_simp_links_list([],_,_,Slist,Slist,Tab,Tab).
							 | 
						||
| 
								 | 
							
								setup_simp_links_list([d(_,D)|Anss],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :-
							 | 
						||
| 
								 | 
							
								    ( D = all(Ds) ->
							 | 
						||
| 
								 | 
							
								      true
							 | 
						||
| 
								 | 
							
								    ; Ds = D
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    links_from_one_delay(Ds,GHead,Ggoal,Slist0,Slist1,Tab0,Tab1),
							 | 
						||
| 
								 | 
							
								    setup_simp_links_list(Anss,GHead,Ggoal,Slist1,Slist,Tab1,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* A link ((Ggoal-GH):Lit) in an entry for Ngoal means that 
							 | 
						||
| 
								 | 
							
								   the literal Lit in an answer with head GH in Ggoal can 
							 | 
						||
| 
								 | 
							
								   be potentially simplified if we know answers for Ngoal.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								links_from_one_delay([],_,_,Slist,Slist,Tab,Tab).
							 | 
						||
| 
								 | 
							
								links_from_one_delay([D|Ds],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :-
							 | 
						||
| 
								 | 
							
								    ( D = (\+ Ngoal) ->
							 | 
						||
| 
								 | 
							
								      ( Ggoal == Ngoal ->
							 | 
						||
| 
								 | 
							
								        Tab1 = Tab0,
							 | 
						||
| 
								 | 
							
									Slist1 = [GHead:D|Slist0]
							 | 
						||
| 
								 | 
							
								      ; add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1),
							 | 
						||
| 
								 | 
							
									Slist1 = Slist0
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; D = (Ngoal-_) ->
							 | 
						||
| 
								 | 
							
								      ( Ggoal == Ngoal ->
							 | 
						||
| 
								 | 
							
								        Slist1 = [GHead:D|Slist0],
							 | 
						||
| 
								 | 
							
								        Tab1 = Tab0
							 | 
						||
| 
								 | 
							
								      ; Slist1 = Slist0,
							 | 
						||
| 
								 | 
							
								        add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    links_from_one_delay(Ds,GHead,Ggoal,Slist1,Slist,Tab1,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* extract_known(Ggoal,Anss,Links,Slist,Klist):
							 | 
						||
| 
								 | 
							
								   Given Ggoal and its answers Anss, and its 
							 | 
						||
| 
								 | 
							
								   simplification Links, it partitioned Links 
							 | 
						||
| 
								 | 
							
								   into Slist and Klist of links, where Klist 
							 | 
						||
| 
								 | 
							
								   is a list of links that are known to be either
							 | 
						||
| 
								 | 
							
								   true or false.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   Klist is either of the form Val-Links, or a
							 | 
						||
| 
								 | 
							
								   list of the form Val-Link. In case of non-ground
							 | 
						||
| 
								 | 
							
								   calls, the corresponding portion of Anss has to 
							 | 
						||
| 
								 | 
							
								   be searched.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								extract_known(Ggoal,Anss,Links,Slist,Klist) :-
							 | 
						||
| 
								 | 
							
								    ( failed(Anss) ->
							 | 
						||
| 
								 | 
							
								      Klist = fail-Links,
							 | 
						||
| 
								 | 
							
								      Slist = []
							 | 
						||
| 
								 | 
							
								    ; Anss = l(GH,Lanss) ->
							 | 
						||
| 
								 | 
							
								      ( Ggoal == GH ->       % Ground or most general call
							 | 
						||
| 
								 | 
							
									( memberchk(d(_,[]),Lanss) ->
							 | 
						||
| 
								 | 
							
									  Klist = succ-Links,
							 | 
						||
| 
								 | 
							
									  Slist = []
							 | 
						||
| 
								 | 
							
								        ; Klist = [],
							 | 
						||
| 
								 | 
							
									  Slist = Links
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; % non-ground call
							 | 
						||
| 
								 | 
							
									extract_known_anss(Links,Anss,[],Slist,[],Klist)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; % non-ground call
							 | 
						||
| 
								 | 
							
								      extract_known_anss(Links,Anss,[],Slist,[],Klist)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								extract_known_anss([],_,Slist,Slist,Klist,Klist).
							 | 
						||
| 
								 | 
							
								extract_known_anss([Link|Links],Anss,Slist0,Slist,Klist0,Klist) :-
							 | 
						||
| 
								 | 
							
								    Link = (_:Lit),
							 | 
						||
| 
								 | 
							
								    extract_lit_val(Lit,Anss,true,Val),
							 | 
						||
| 
								 | 
							
								    ( Val == undefined ->
							 | 
						||
| 
								 | 
							
								      Slist1 = [Link|Slist0],
							 | 
						||
| 
								 | 
							
								      Klist1 = Klist0
							 | 
						||
| 
								 | 
							
								    ; Slist1 = Slist0,
							 | 
						||
| 
								 | 
							
								      Klist1 = [Val-Link|Klist0]
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    extract_known_anss(Links,Anss,Slist1,Slist,Klist1,Klist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* extract_lit_val(Lit,Anss,Comp,Val):
							 | 
						||
| 
								 | 
							
								   extract the truth value of Lit according to Anss and Comp.
							 | 
						||
| 
								 | 
							
								   In case of a non-ground calls, the corresponding portion
							 | 
						||
| 
								 | 
							
								   of Anss has to be searched.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								extract_lit_val(Lit,Anss,Comp,Val) :-
							 | 
						||
| 
								 | 
							
								    ( Lit = (\+ _) ->
							 | 
						||
| 
								 | 
							
								      ( succeeded(Anss) ->
							 | 
						||
| 
								 | 
							
								        Val = fail
							 | 
						||
| 
								 | 
							
								      ; failed(Anss), Comp == true ->
							 | 
						||
| 
								 | 
							
								        Val = succ
							 | 
						||
| 
								 | 
							
								      ; Val = undefined
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; Lit = (_ - (\+GH)) ->
							 | 
						||
| 
								 | 
							
								      ( find(Anss,GH,Lanss) ->
							 | 
						||
| 
								 | 
							
								        ( (\+ \+ memberchk(d(GH,[]),Lanss)) ->
							 | 
						||
| 
								 | 
							
								          Val = fail
							 | 
						||
| 
								 | 
							
								        ; Lanss == [], Comp == true ->
							 | 
						||
| 
								 | 
							
									  Val = succ
							 | 
						||
| 
								 | 
							
								        ; Val = undefined
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; ( Comp == true ->
							 | 
						||
| 
								 | 
							
									  Val = succ
							 | 
						||
| 
								 | 
							
								        ; Val = undefined
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; Lit = (_-GH) ->
							 | 
						||
| 
								 | 
							
								      ( find(Anss,GH,Lanss) ->
							 | 
						||
| 
								 | 
							
								        ( (\+ \+ memberchk(d(GH,[]),Lanss)) ->
							 | 
						||
| 
								 | 
							
								          Val = succ
							 | 
						||
| 
								 | 
							
								        ; Lanss == [], Comp == true ->
							 | 
						||
| 
								 | 
							
									  Val = fail
							 | 
						||
| 
								 | 
							
								        ; Val = undefined
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; ( Comp == true ->
							 | 
						||
| 
								 | 
							
									  Val = fail
							 | 
						||
| 
								 | 
							
								        ; Val = undefined
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* simplify(KnownLinks,Tab0,Tab,Abd):
							 | 
						||
| 
								 | 
							
								   Given a list of KnownLinks, Tab0 and Abd,
							 | 
						||
| 
								 | 
							
								   it tries to simplify answers according to
							 | 
						||
| 
								 | 
							
								   KnownLinks. When a subgoal is found to be
							 | 
						||
| 
								 | 
							
								   true or false according to answers, 
							 | 
						||
| 
								 | 
							
								   consistency with assumed truth values in Abd
							 | 
						||
| 
								 | 
							
								   is checked.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								simplify([],Tab,Tab,_Abd).
							 | 
						||
| 
								 | 
							
								simplify([Val-Link|Klist],Tab0,Tab,Abd) :-
							 | 
						||
| 
								 | 
							
								    simplify_one(Val,Link,Tab0,Tab1,Abd),
							 | 
						||
| 
								 | 
							
								    simplify(Klist,Tab1,Tab,Abd).
							 | 
						||
| 
								 | 
							
								simplify(Val-Links,Tab0,Tab,Abd) :-
							 | 
						||
| 
								 | 
							
								    simplify_list(Links,Val,Tab0,Tab,Abd).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								simplify_list([],_,Tab,Tab,_Abd).
							 | 
						||
| 
								 | 
							
								simplify_list([Link|Links],Val,Tab0,Tab,Abd) :-
							 | 
						||
| 
								 | 
							
								    Link = (_ : Lit),
							 | 
						||
| 
								 | 
							
								    ( ( Lit = (\+_); Lit = (_ - (\+_)) ) ->
							 | 
						||
| 
								 | 
							
								      ( Val = fail -> LVal = succ; LVal = fail )
							 | 
						||
| 
								 | 
							
								    ; LVal = Val
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    simplify_one(LVal,Link,Tab0,Tab1,Abd),
							 | 
						||
| 
								 | 
							
								    simplify_list(Links,Val,Tab1,Tab,Abd).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								simplify_one(Val,Link,Tab0,Tab,Abd) :-
							 | 
						||
| 
								 | 
							
								    Link = ((Ngoal - GH) : Lit),
							 | 
						||
| 
								 | 
							
								    updatevs(Tab0,Ngoal,Ent0,Ent,Tab1),
							 | 
						||
| 
								 | 
							
								    Ent0 = e(Nodes,ANegs,Anss0,Delay,Comp,Dfn,Slist0),
							 | 
						||
| 
								 | 
							
								    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
								    ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) ->
							 | 
						||
| 
								 | 
							
								      simplify_anss(Lanss0,Val,Lit,[],Lanss,C),
							 | 
						||
| 
								 | 
							
								      ( C == true ->
							 | 
						||
| 
								 | 
							
									( find(Abd,GH,Aval) ->
							 | 
						||
| 
								 | 
							
									  ( Aval == true, Lanss == [] -> % deduced result inconsistent with assumption
							 | 
						||
| 
								 | 
							
									    fail
							 | 
						||
| 
								 | 
							
									  ; Aval == false, memberchk( d(_ , []), Lanss) ->
							 | 
						||
| 
								 | 
							
									    fail
							 | 
						||
| 
								 | 
							
									  ; true
							 | 
						||
| 
								 | 
							
								          )
							 | 
						||
| 
								 | 
							
									; true
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
								        extract_known(Ngoal,Anss,Slist0,Slist,Klist),
							 | 
						||
| 
								 | 
							
								        simplify(Klist,Tab1,Tab,Abd)
							 | 
						||
| 
								 | 
							
								      ; Tab = Tab0
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; Tab = Tab0
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* simplify_anss(List,Val,Lit,Lanss0,Lanss,C):
							 | 
						||
| 
								 | 
							
								   Given a List of answers, Val of Lit, it 
							 | 
						||
| 
								 | 
							
								   simplifies the List and construct a new list
							 | 
						||
| 
								 | 
							
								   Lanss0/Lanss of answers. C is unified with true
							 | 
						||
| 
								 | 
							
								   if some simplification is carried out.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   As soon as a true answer is detected, all
							 | 
						||
| 
								 | 
							
								   other answers with the same head are deleted.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								simplify_anss([],_,_,Anss,Anss,_).
							 | 
						||
| 
								 | 
							
								simplify_anss([Ans|Rest],Val,Lit,Anss0,Anss,C) :-
							 | 
						||
| 
								 | 
							
								    ( simplified_ans(Ans,Val,Lit,NewAns,C) ->
							 | 
						||
| 
								 | 
							
								      ( NewAns = d(_,[]) ->
							 | 
						||
| 
								 | 
							
								        Anss = [NewAns]
							 | 
						||
| 
								 | 
							
								      ; Anss1 = [NewAns|Anss0],
							 | 
						||
| 
								 | 
							
								        simplify_anss(Rest,Val,Lit,Anss1,Anss,C)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; C = true,
							 | 
						||
| 
								 | 
							
								      simplify_anss(Rest,Val,Lit,Anss0,Anss,C)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								simplified_ans(Ans,Val,Lit,NewAns,C) :-
							 | 
						||
| 
								 | 
							
								    Ans = d(H,Ds),
							 | 
						||
| 
								 | 
							
								    ( Ds == [] ->
							 | 
						||
| 
								 | 
							
								      NewAns = Ans
							 | 
						||
| 
								 | 
							
								    ; Ds = all(Dlist) ->
							 | 
						||
| 
								 | 
							
								      ( Val == fail ->
							 | 
						||
| 
								 | 
							
								        delete_lit(Dlist,Lit,NewDlist,[],C),
							 | 
						||
| 
								 | 
							
								        ( NewDlist == [] ->
							 | 
						||
| 
								 | 
							
								          fail
							 | 
						||
| 
								 | 
							
								        ; NewAns = d(H,all(NewDlist))
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; % Val == succ ->
							 | 
						||
| 
								 | 
							
								        ( memberchk(Lit,Dlist) ->
							 | 
						||
| 
								 | 
							
								          NewAns = d(H,[]),
							 | 
						||
| 
								 | 
							
								          C = true
							 | 
						||
| 
								 | 
							
								        ; NewAns = Ans
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; % Ds is a conjunction
							 | 
						||
| 
								 | 
							
								      ( Val == fail ->
							 | 
						||
| 
								 | 
							
								        ( memberchk(Lit,Ds) ->
							 | 
						||
| 
								 | 
							
								          fail
							 | 
						||
| 
								 | 
							
								        ; NewAns = Ans
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; % Val == succ ->
							 | 
						||
| 
								 | 
							
								        delete_lit(Ds,Lit,NewDs,[],C),
							 | 
						||
| 
								 | 
							
								        NewAns = d(H,NewDs)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* delete_lit(Delays,Lit,Ds0,Ds,C):
							 | 
						||
| 
								 | 
							
								   deletes Lit from Delays. Delays is 
							 | 
						||
| 
								 | 
							
								   a list of delayed literals and it
							 | 
						||
| 
								 | 
							
								   is guaranteed to have no duplicates.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								delete_lit([],_,Ds,Ds,_).
							 | 
						||
| 
								 | 
							
								delete_lit([D|Rest],Lit,Ds0,Ds,C) :-
							 | 
						||
| 
								 | 
							
								    ( D == Lit ->
							 | 
						||
| 
								 | 
							
								      Ds0 = Rest,
							 | 
						||
| 
								 | 
							
								      C = true
							 | 
						||
| 
								 | 
							
								    ; Ds0 = [D|Ds1],
							 | 
						||
| 
								 | 
							
								      delete_lit(Rest,Lit,Ds1,Ds,C)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% return answers to negative nodes within universal disjunctions
							 | 
						||
| 
								 | 
							
								return_aneg_nodes([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								return_aneg_nodes([(Anss,Ngoal)-ANegs|Alist],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    map_anegs(ANegs,Anss,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								map_anegs([],_Anss,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								map_anegs([Node|ANegs],Anss,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    return_to_disj(Anss,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    map_anegs(ANegs,Anss,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* process a component of subgoals that may be involved in 
							 | 
						||
| 
								 | 
							
								   negative loops.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								process_neg_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    ( wfs_trace ->
							 | 
						||
| 
								 | 
							
								      write('Stack: '), nl, display_stack(S0,Tab0),
							 | 
						||
| 
								 | 
							
								      write('Possible negative loop: '), write(Ggoal), nl, 
							 | 
						||
| 
								 | 
							
								      display_table(Tab0)
							 | 
						||
| 
								 | 
							
								    ; true
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    extract_subgoals(Ggoal,S0,Scc,[]),
							 | 
						||
| 
								 | 
							
								    reset_nmin(Scc,Tab0,Tab1,Ds,[]),
							 | 
						||
| 
								 | 
							
								    ( wfs_trace ->
							 | 
						||
| 
								 | 
							
								      write('Delaying: '), display_dlist(Ds)
							 | 
						||
| 
								 | 
							
								    ; true
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    delay_and_cont(Ds,Tab1,Tab2,S0,S1,Dfn0,Dfn1,maxint-maxint,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    recomp_scc(Scc,Tab2,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* extract_subgoals(Ggoal,S0,Scc0,Scc)
							 | 
						||
| 
								 | 
							
								   extract subgoals that may be involved in negative loops,
							 | 
						||
| 
								 | 
							
								   but leave the stack of subgoals intact.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								extract_subgoals(Ggoal,[Sent|S],[Sent|Scc0],Scc) :-
							 | 
						||
| 
								 | 
							
								    ( Ggoal == Sent ->
							 | 
						||
| 
								 | 
							
								      Scc0 = Scc
							 | 
						||
| 
								 | 
							
								    ; extract_subgoals(Ggoal,S,Scc0,Scc)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* reset_nmin(Scc,Tab0,Tab,Dnodes0,Dnodes)
							 | 
						||
| 
								 | 
							
								   reset NegLink and collect all waiting nodes that need to be 
							 | 
						||
| 
								 | 
							
								   delayed. Dnodes0/Dnodes is a difference list.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								reset_nmin([],Tab,Tab,Ds,Ds).
							 | 
						||
| 
								 | 
							
								reset_nmin([Ggoal|Scc],Tab0,Tab,Ds0,Ds) :-
							 | 
						||
| 
								 | 
							
								    get_and_reset_negs(Tab0,Ggoal,ANegs,Tab1),
							 | 
						||
| 
								 | 
							
								    ( ANegs == [] ->
							 | 
						||
| 
								 | 
							
								      Ds0 = Ds1
							 | 
						||
| 
								 | 
							
								    ; Ds0 = [Ggoal-ANegs|Ds1]
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    reset_nmin(Scc,Tab1,Tab,Ds1,Ds).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								delay_and_cont([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								delay_and_cont([Ggoal-Negs|Dnodes],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    map_nodes(Negs,d(\+Ggoal,[\+Ggoal]),Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    delay_and_cont(Dnodes,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								recomp_scc([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
							 | 
						||
| 
								 | 
							
								recomp_scc([Ggoal|Scc],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
							 | 
						||
| 
								 | 
							
								    comp_tab_ent(Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
							 | 
						||
| 
								 | 
							
								    recomp_scc(Scc,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* routines for incremental update of dependency information
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep)
							 | 
						||
| 
								 | 
							
								   update the PosLink and NegLink of Ggoal according to 
							 | 
						||
| 
								 | 
							
								   Dep and Sign
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep) :-
							 | 
						||
| 
								 | 
							
								    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep0,Slist),
							 | 
						||
| 
								 | 
							
								    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep,Slist),
							 | 
						||
| 
								 | 
							
								    updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
							 | 
						||
| 
								 | 
							
								    compute_mins(Gdep0,Dep,Sign,Gdep).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep)
							 | 
						||
| 
								 | 
							
								   There is a lookup edge (Node) from Ggoal to Ngoal 
							 | 
						||
| 
								 | 
							
								   with Sign. It adds Node to the corresponding waiting list
							 | 
						||
| 
								 | 
							
								   in Ngoal and then update the dependencies of Ggoal.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep) :-
							 | 
						||
| 
								 | 
							
								    updatevs(Tab0,Ngoal,Ent0,Ent,Tab1),
							 | 
						||
| 
								 | 
							
								    ( Sign == pos ->
							 | 
						||
| 
								 | 
							
								      pos_to_newent(Ent0,Ent,Node)
							 | 
						||
| 
								 | 
							
								    ; Sign == aneg ->
							 | 
						||
| 
								 | 
							
								      aneg_to_newent(Ent0,Ent,Node)
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    Ent0 = e(_,_,_,_,_,_Ndfn:Ndep,_),
							 | 
						||
| 
								 | 
							
								    compute_mins(Dep0,Ndep,Sign,Dep),
							 | 
						||
| 
								 | 
							
								    update_mins(Ggoal,Ndep,Sign,Tab1,Tab,_,_).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep)
							 | 
						||
| 
								 | 
							
								   There is an edge with Sign from Ggoal to Ngoal, where Ngoal is 
							 | 
						||
| 
								 | 
							
								   a new subgoal. Ndep is the final dependency information of 
							 | 
						||
| 
								 | 
							
								   Ngoal. Dep0/Dep is for the most recent enclosing new call.
							 | 
						||
| 
								 | 
							
								   This predicate is called after Ngoal is solved.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep) :-
							 | 
						||
| 
								 | 
							
								    find(Tab0,Ngoal,Nent),
							 | 
						||
| 
								 | 
							
								    ent_to_comp(Nent,Ncomp),
							 | 
						||
| 
								 | 
							
								    ( Ncomp == true ->
							 | 
						||
| 
								 | 
							
								      ( Ndep == maxint-maxint ->
							 | 
						||
| 
								 | 
							
								        Tab = Tab0, Dep = Dep0
							 | 
						||
| 
								 | 
							
								      ; update_mins(Ggoal,Ndep,pos,Tab0,Tab,_,_),
							 | 
						||
| 
								 | 
							
								        compute_mins(Dep0,Ndep,pos,Dep)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; update_mins(Ggoal,Ndep,Sign,Tab0,Tab,_,_),
							 | 
						||
| 
								 | 
							
								      compute_mins(Dep0,Ndep,Sign,Dep)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								compute_mins(Gpmin-Gnmin,Npmin-Nnmin,Sign,Newpmin-Newnmin) :-
							 | 
						||
| 
								 | 
							
								    ( Sign == pos ->
							 | 
						||
| 
								 | 
							
								      min(Gpmin,Npmin,Newpmin),
							 | 
						||
| 
								 | 
							
								      min(Gnmin,Nnmin,Newnmin)
							 | 
						||
| 
								 | 
							
								    ; % (Sign == neg; Sign == aneg) ->
							 | 
						||
| 
								 | 
							
								      Newpmin=Gpmin,
							 | 
						||
| 
								 | 
							
								      min(Gnmin,Npmin,Imin), 
							 | 
						||
| 
								 | 
							
								      min(Imin,Nnmin,Newnmin)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								min(X,Y,M) :- ( X @< Y -> M=X; M=Y ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%%%%%%%%%%%%%%% Local table manipulation predicates %%%%%%%%%%
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Table Entry Structure:
							 | 
						||
| 
								 | 
							
								   For each Call, its table entry is identified with its number-vared
							 | 
						||
| 
								 | 
							
								   version -- Ggoal. Its value is a term of the form
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    e(Nodes,ANegs,Anss,Delay,Comp,Dfn:Dep,Slist)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   where
							 | 
						||
| 
								 | 
							
								     Nodes:  positive suspension list
							 | 
						||
| 
								 | 
							
								     ANegs:  negative suspension list (for universal disjunction clauss)
							 | 
						||
| 
								 | 
							
								     Anss:   another table.
							 | 
						||
| 
								 | 
							
								     Delay:  whether Anss contains any answer with delay
							 | 
						||
| 
								 | 
							
								     Comp:   whether Call is completely evaluated or not
							 | 
						||
| 
								 | 
							
								     Dfn:    depth-first number of Gcall
							 | 
						||
| 
								 | 
							
								     Dep:    (PosLink-NegLink) --- dependency information
							 | 
						||
| 
								 | 
							
								     Slist:  a list of nodes whose answers may be simplified
							 | 
						||
| 
								 | 
							
								             if the truth value of Ggoal is known. Each element of Slist
							 | 
						||
| 
								 | 
							
								         is of the form (Ngoal-GH):Literal.
							 | 
						||
| 
								 | 
							
								   Stack Entry Structure:
							 | 
						||
| 
								 | 
							
								     Ggoal
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* routines for accessing individual fields of an entry
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								ent_to_nodes(e(Nodes,_,_,_,_,_,_),Nodes).
							 | 
						||
| 
								 | 
							
								ent_to_anegs(e(_,ANegs,_,_,_,_,_),ANegs).
							 | 
						||
| 
								 | 
							
								ent_to_anss(e(_,_,Anss,_,_,_,_),Anss).
							 | 
						||
| 
								 | 
							
								ent_to_delay(e(_,_,_,Delay,_,_,_),Delay).
							 | 
						||
| 
								 | 
							
								ent_to_comp(e(_,_,_,_,Comp,_,_),Comp).
							 | 
						||
| 
								 | 
							
								ent_to_dfn(e(_,_,_,_,_,Dfn,_),Dfn).
							 | 
						||
| 
								 | 
							
								ent_to_slist(e(_,_,_,_,_,_,Slist),Slist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								get_and_reset_negs(Tab0,Ggoal,ANegs,Tab) :-
							 | 
						||
| 
								 | 
							
								    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn: (Gpmin - _),Slist),
							 | 
						||
| 
								 | 
							
								    Ent = e(Nodes,[],Anss,Delay,Comp,Gdfn:Gpmin-maxint,Slist),
							 | 
						||
| 
								 | 
							
								    updatevs(Tab0,Ggoal,Ent0,Ent,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* adding a new table entry
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								add_tab_ent(Ggoal,Ent,Tab0,Tab) :- 
							 | 
						||
| 
								 | 
							
								    addkey(Tab0,Ggoal,Ent,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* The following three routines are for creating
							 | 
						||
| 
								 | 
							
								   new calls
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								/* a new call with empty suspensions 
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								new_init_call(Call,Ggoal,Ent,S0,S,Dfn0,Dfn) :-
							 | 
						||
| 
								 | 
							
								    ground(Call,Ggoal),
							 | 
						||
| 
								 | 
							
								    S = [Ggoal|S0],
							 | 
						||
| 
								 | 
							
								    Dfn is Dfn0+1,
							 | 
						||
| 
								 | 
							
								    Ent = e([],[],[],false,false,Dfn0:Dfn0-maxint,[]).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* a new call with an initial negative suspension from 
							 | 
						||
| 
								 | 
							
								   inside a universal disjunction
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								new_aneg_call(Ngoal,Neg,Ent,S0,S,Dfn0,Dfn) :-
							 | 
						||
| 
								 | 
							
								    S = [Ngoal|S0],
							 | 
						||
| 
								 | 
							
								    Dfn is Dfn0+1,
							 | 
						||
| 
								 | 
							
								    Ent = e([],[Neg],[],false,false,Dfn0:Dfn0-maxint,[]).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* a new call with an initial positive suspension
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								new_pos_call(Ngoal,Node,Ent,S0,S,Dfn0,Dfn) :-
							 | 
						||
| 
								 | 
							
								    S = [Ngoal|S0],
							 | 
						||
| 
								 | 
							
								    Dfn is Dfn0+1,
							 | 
						||
| 
								 | 
							
								    Ent = e([Node],[],[],false,false,Dfn0:Dfn0-maxint,[]).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* routines for adding more information to a
							 | 
						||
| 
								 | 
							
								   table entry.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								aneg_to_newent(Ent0,Ent,ANeg) :-
							 | 
						||
| 
								 | 
							
								    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
								    Ent = e(Nodes,[ANeg|ANegs],Anss,Delay,Comp,Dfn,Slist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								pos_to_newent(Ent0,Ent,Node) :-
							 | 
						||
| 
								 | 
							
								    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
								    Ent = e([Node|Nodes],ANegs,Anss,Delay,Comp,Dfn,Slist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								add_link_to_ent(Tab0,Ggoal,Link,Tab) :-
							 | 
						||
| 
								 | 
							
								    updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
							 | 
						||
| 
								 | 
							
								    link_to_newent(Ent0,Ent,Link).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								link_to_newent(Ent0,Ent,Link) :-
							 | 
						||
| 
								 | 
							
								    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
								    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,[Link|Slist]).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* routines for manipulating answers */
							 | 
						||
| 
								 | 
							
								ansstree_to_list([],L,L).
							 | 
						||
| 
								 | 
							
								ansstree_to_list(l(_GH,Lanss),L0,L) :-
							 | 
						||
| 
								 | 
							
								    attach(Lanss,L0,L).
							 | 
						||
| 
								 | 
							
								ansstree_to_list(n2(T1,_M,T2),L0,L) :-
							 | 
						||
| 
								 | 
							
								    ansstree_to_list(T1,L0,L1),
							 | 
						||
| 
								 | 
							
								    ansstree_to_list(T2,L1,L).
							 | 
						||
| 
								 | 
							
								ansstree_to_list(n3(T1,_M2,T2,_M3,T3),L0,L) :-
							 | 
						||
| 
								 | 
							
								    ansstree_to_list(T1,L0,L1),
							 | 
						||
| 
								 | 
							
								    ansstree_to_list(T2,L1,L2),
							 | 
						||
| 
								 | 
							
								    ansstree_to_list(T3,L2,L).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								attach([],L,L).
							 | 
						||
| 
								 | 
							
								attach([d(H,B)|R],[X|L0],L) :-
							 | 
						||
| 
								 | 
							
								    ( B == [] ->
							 | 
						||
| 
								 | 
							
								      X = H
							 | 
						||
| 
								 | 
							
								    ; X = (H <- B)
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    attach(R,L0,L).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								member_anss(Ans,Anss) :-
							 | 
						||
| 
								 | 
							
									member_anss_1(Anss,Ans).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								member_anss_1(l(_,Lanss),Ans) :-
							 | 
						||
| 
								 | 
							
									member(Ans,Lanss).
							 | 
						||
| 
								 | 
							
								member_anss_1(n2(T1,_,T2),Ans) :-
							 | 
						||
| 
								 | 
							
									( member_anss_1(T1,Ans)
							 | 
						||
| 
								 | 
							
								        ; member_anss_1(T2,Ans)
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								member_anss_1(n3(T1,_,T2,_,T3),Ans) :-
							 | 
						||
| 
								 | 
							
									( member_anss_1(T1,Ans)
							 | 
						||
| 
								 | 
							
								        ; member_anss_1(T2,Ans)
							 | 
						||
| 
								 | 
							
								        ; member_anss_1(T3,Ans)
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* failed(Anss): Anss is empty */
							 | 
						||
| 
								 | 
							
								failed([]).
							 | 
						||
| 
								 | 
							
								failed(l(_,[])).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* succeeded(Anss): Anss contains a single definite answer */
							 | 
						||
| 
								 | 
							
								succeeded(l(_,Lanss)) :-
							 | 
						||
| 
								 | 
							
									memberchk(d(_,[]),Lanss).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* add_ans(Tab0,Goal,Ans,Nodes,Mode,Tab):
							 | 
						||
| 
								 | 
							
								   If Ans is not subsumed by any existing answer then
							 | 
						||
| 
								 | 
							
								      Ans is added to Anss(Goal);
							 | 
						||
| 
								 | 
							
								      If some existing answer also has head H then
							 | 
						||
| 
								 | 
							
								         Mode = no_new_head
							 | 
						||
| 
								 | 
							
								      else 
							 | 
						||
| 
								 | 
							
								         Mode = new_head
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								      fail.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab) :-
							 | 
						||
| 
								 | 
							
								    updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
							 | 
						||
| 
								 | 
							
								    Ans = d(H,Ds),
							 | 
						||
| 
								 | 
							
								    ( Ds == [] ->
							 | 
						||
| 
								 | 
							
								      new_ans_ent(Ent0,Ent,Ans,Nodes,Mode)
							 | 
						||
| 
								 | 
							
								    ; setof(X,member(X,Ds),NewDs),
							 | 
						||
| 
								 | 
							
								      new_ans_ent(Ent0,Ent,d(H,NewDs),Nodes,Mode)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								new_ans_ent(Ent0,Ent,Ans,Nodes,Mode) :-
							 | 
						||
| 
								 | 
							
								    Ent0 = e(Nodes,ANegs,Anss0,Delay0,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
								    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
							 | 
						||
| 
								 | 
							
								    Ans = d(H,D),
							 | 
						||
| 
								 | 
							
								    ground(H,GH),
							 | 
						||
| 
								 | 
							
								    ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) ->
							 | 
						||
| 
								 | 
							
								      ( D == [] ->
							 | 
						||
| 
								 | 
							
								        \+(memberchk(d(_,[]),Lanss0)),
							 | 
						||
| 
								 | 
							
								        Lanss = [Ans]
							 | 
						||
| 
								 | 
							
								      ; not_subsumed_ans(Ans,Lanss0),
							 | 
						||
| 
								 | 
							
								        Lanss = [Ans|Lanss0]
							 | 
						||
| 
								 | 
							
								      ),
							 | 
						||
| 
								 | 
							
								      Mode = no_new_head
							 | 
						||
| 
								 | 
							
								    ; addkey(Anss0,GH,[Ans],Anss),
							 | 
						||
| 
								 | 
							
								      Mode = new_head
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    ( D == [] -> 
							 | 
						||
| 
								 | 
							
								      Delay = Delay0
							 | 
						||
| 
								 | 
							
								    ; Delay = true
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* returned_ans(Ans,Ggoal,RAns):
							 | 
						||
| 
								 | 
							
								   determines whether SLG resolution or SLG factoring should 
							 | 
						||
| 
								 | 
							
								   be applied.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								returned_ans(d(H,Tv),Ggoal,d(H,NewTv)) :-
							 | 
						||
| 
								 | 
							
								    ( Tv = [] ->
							 | 
						||
| 
								 | 
							
								      NewTv = []
							 | 
						||
| 
								 | 
							
								    ; ground(H,GH),
							 | 
						||
| 
								 | 
							
								      NewTv = [Ggoal-GH]
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% reduce a list of answers, by reducing delay list, and by subsumption
							 | 
						||
| 
								 | 
							
								reduce_ans(Anss0,Anss,Tab) :-
							 | 
						||
| 
								 | 
							
								    reduce_completed_ans(Anss0,Anss,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% simplify all the delay lists in a list of answers.
							 | 
						||
| 
								 | 
							
								reduce_completed_ans([],[],_Tab).
							 | 
						||
| 
								 | 
							
								reduce_completed_ans(l(GH,Lanss0),l(GH,Lanss),Tab) :-
							 | 
						||
| 
								 | 
							
								    reduce_completed_anslist(Lanss0,[],Lanss,Tab).
							 | 
						||
| 
								 | 
							
								reduce_completed_ans(n2(T1,M,T2),n2(NT1,M,NT2),Tab) :-
							 | 
						||
| 
								 | 
							
								    reduce_completed_ans(T1,NT1,Tab),
							 | 
						||
| 
								 | 
							
								    reduce_completed_ans(T2,NT2,Tab).
							 | 
						||
| 
								 | 
							
								reduce_completed_ans(n3(T1,M2,T2,M3,T3),n3(NT1,M2,NT2,M3,NT3),Tab) :-
							 | 
						||
| 
								 | 
							
								    reduce_completed_ans(T1,NT1,Tab),
							 | 
						||
| 
								 | 
							
								    reduce_completed_ans(T2,NT2,Tab),
							 | 
						||
| 
								 | 
							
								    reduce_completed_ans(T3,NT3,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								reduce_completed_anslist([],Lanss,Lanss,_Tab).
							 | 
						||
| 
								 | 
							
								reduce_completed_anslist([d(G,D0)|List],Lanss0,Lanss,Tab) :-
							 | 
						||
| 
								 | 
							
								    ( D0 = all(Dlist1) ->
							 | 
						||
| 
								 | 
							
								      ( filter_delays(Dlist1,[],Dlist,disj,V,Tab) ->
							 | 
						||
| 
								 | 
							
								        ( V == true ->       % true answer
							 | 
						||
| 
								 | 
							
								          Lanss = [d(G,[])]
							 | 
						||
| 
								 | 
							
								        ; Dlist == [] ->     % false answer, ignore
							 | 
						||
| 
								 | 
							
								          reduce_completed_anslist(List,Lanss0,Lanss,Tab)
							 | 
						||
| 
								 | 
							
								        ; reduce_completed_anslist(List,[d(G,all(Dlist))|Lanss0],Lanss,Tab)
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; reduce_completed_anslist(List,Lanss0,Lanss,Tab)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; ( filter_delays(D0,[],D,conj,_V,Tab) ->
							 | 
						||
| 
								 | 
							
									( D == [] ->
							 | 
						||
| 
								 | 
							
									  Lanss = [d(G,[])]
							 | 
						||
| 
								 | 
							
								        ; reduce_completed_anslist(List,[d(G,D)|Lanss0],Lanss,Tab)
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								      ; reduce_completed_anslist(List,Lanss0,Lanss,Tab)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% simplify a delay list by the completed table: delete true negations,
							 | 
						||
| 
								 | 
							
								%    fail if a false one.
							 | 
						||
| 
								 | 
							
								filter_delays([],Fds,Fds,_DC,_V,_Tab).
							 | 
						||
| 
								 | 
							
								filter_delays([Lit|Ds],Fds0,Fds,DC,V,Tab) :-
							 | 
						||
| 
								 | 
							
								    lit_to_call(Lit,Gcall),
							 | 
						||
| 
								 | 
							
								    find(Tab,Gcall,Gent),
							 | 
						||
| 
								 | 
							
								    ent_to_comp(Gent,Gcomp),
							 | 
						||
| 
								 | 
							
								    ent_to_anss(Gent,Ganss),
							 | 
						||
| 
								 | 
							
								    extract_lit_val(Lit,Ganss,Gcomp,Val),
							 | 
						||
| 
								 | 
							
								    ( Val == succ ->
							 | 
						||
| 
								 | 
							
								      ( DC == conj ->
							 | 
						||
| 
								 | 
							
								        filter_delays(Ds,Fds0,Fds,DC,V,Tab)
							 | 
						||
| 
								 | 
							
								      ; DC == disj ->
							 | 
						||
| 
								 | 
							
								        V = true
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; Val == fail ->
							 | 
						||
| 
								 | 
							
								      ( DC == conj ->
							 | 
						||
| 
								 | 
							
								        fail
							 | 
						||
| 
								 | 
							
								      ; DC == disj ->
							 | 
						||
| 
								 | 
							
								        filter_delays(Ds,Fds0,Fds,DC,V,Tab)
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ; % Val == undefined
							 | 
						||
| 
								 | 
							
								      filter_delays(Ds,[Lit|Fds0],Fds,DC,V,Tab)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								lit_to_call(\+G,G).
							 | 
						||
| 
								 | 
							
								lit_to_call(Gcall-_,Gcall).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								not_subsumed_ans(Ans,Lanss0) :-
							 | 
						||
| 
								 | 
							
								    \+
							 | 
						||
| 
								 | 
							
								    ( numbervars(Ans,0,_),
							 | 
						||
| 
								 | 
							
								      subsumed_ans1(Ans,Lanss0)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% succeed if answer is subsumed by any in list1 or 2.
							 | 
						||
| 
								 | 
							
								subsumed_ans(Tv,List1,List2) :- 
							 | 
						||
| 
								 | 
							
								    \+ 
							 | 
						||
| 
								 | 
							
								    (numbervars(Tv,0,_),
							 | 
						||
| 
								 | 
							
								     \+ subsumed_ans1(Tv,List1),
							 | 
						||
| 
								 | 
							
								     \+ subsumed_ans1(Tv,List2)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% check if a delay is subsumed one of the element in the list
							 | 
						||
| 
								 | 
							
								subsumed_ans1(d(T,V),List) :-
							 | 
						||
| 
								 | 
							
								    member(d(T,V1),List),
							 | 
						||
| 
								 | 
							
								    ( V1 == []
							 | 
						||
| 
								 | 
							
								    ; V = all(LV), V1 = all(LV1) ->
							 | 
						||
| 
								 | 
							
								      subset(LV,LV1)
							 | 
						||
| 
								 | 
							
								    ; subset(V1,V)
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/****************** auxiliary routines *******************/
							 | 
						||
| 
								 | 
							
								% variantchk/2 finds a variant in a list of atoms.
							 | 
						||
| 
								 | 
							
								variantchk(G,[G1|_]) :- variant(G,G1), !.
							 | 
						||
| 
								 | 
							
								variantchk(G,[_|L]) :- variantchk(G,L).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								variant(A, B) :-
							 | 
						||
| 
								 | 
							
								    A == B
							 | 
						||
| 
								 | 
							
								     ->    true
							 | 
						||
| 
								 | 
							
								     ;     subsumes_chk(A, B),
							 | 
						||
| 
								 | 
							
								           subsumes_chk(B, A),
							 | 
						||
| 
								 | 
							
								           A = B.
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								subsumes_chk(General, Specific) :-
							 | 
						||
| 
								 | 
							
								        \+ (    numbervars(Specific, 0, _),
							 | 
						||
| 
								 | 
							
								                \+ General = Specific
							 | 
						||
| 
								 | 
							
								         ).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								ground(O,C) :- ground(O) -> C = O ; copy_term(O,C), numbervars(C,0,_).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								subset([],_).
							 | 
						||
| 
								 | 
							
								subset([E|L1],L2) :- memberchk(E,L2), subset(L1,L2).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								reverse([],R,R).
							 | 
						||
| 
								 | 
							
								reverse([Goal|Scc],R0,R) :- reverse(Scc,[Goal|R0],R).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/***************** routines for debugging *******************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Debugging help: pretty-prints strongly connected components and local table.
							 | 
						||
| 
								 | 
							
								display_stack(Stack,Tab) :-
							 | 
						||
| 
								 | 
							
								    reverse(Stack,[],Rstack),
							 | 
						||
| 
								 | 
							
								    display_st(Rstack,Tab).
							 | 
						||
| 
								 | 
							
								display_st([],_Tab).
							 | 
						||
| 
								 | 
							
								display_st([Ggoal|Scc],Tab) :-
							 | 
						||
| 
								 | 
							
								    find(Tab,Ggoal,Ent),
							 | 
						||
| 
								 | 
							
								    ent_to_dfn(Ent,Dfn:Pmin-Nmin),
							 | 
						||
| 
								 | 
							
								    tab(2), 
							 | 
						||
| 
								 | 
							
								    write(Ggoal-Dfn),
							 | 
						||
| 
								 | 
							
								    write(':  '),
							 | 
						||
| 
								 | 
							
								    write('Pmin='),
							 | 
						||
| 
								 | 
							
								    write(Pmin),
							 | 
						||
| 
								 | 
							
								    write(';  '),
							 | 
						||
| 
								 | 
							
								    write('Nmin='),
							 | 
						||
| 
								 | 
							
								    write(Nmin),
							 | 
						||
| 
								 | 
							
								    write(';  '),
							 | 
						||
| 
								 | 
							
								    nl,
							 | 
						||
| 
								 | 
							
								    display_st(Scc,Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								display_dlist([]) :- nl,nl.
							 | 
						||
| 
								 | 
							
								display_dlist([Ngoal-_|Dlist]) :-
							 | 
						||
| 
								 | 
							
								    write(\+ Ngoal), 
							 | 
						||
| 
								 | 
							
								    write('; '), 
							 | 
						||
| 
								 | 
							
								    display_dlist(Dlist).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								display_table(Tab) :-
							 | 
						||
| 
								 | 
							
								    write('Table: '), 
							 | 
						||
| 
								 | 
							
								    nl,
							 | 
						||
| 
								 | 
							
								    write_tab(Tab).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								display_final(Tab) :-
							 | 
						||
| 
								 | 
							
								    write(' Final Set of Answers: '), 
							 | 
						||
| 
								 | 
							
								    nl,
							 | 
						||
| 
								 | 
							
								    display_final1(Tab).
							 | 
						||
| 
								 | 
							
								display_final1([]).
							 | 
						||
| 
								 | 
							
								display_final1(l(_,e(_,_,Anss,_,_,_,_))) :-
							 | 
						||
| 
								 | 
							
								    write_anss(Anss).
							 | 
						||
| 
								 | 
							
								display_final1(n2(X,_,Y)) :- 
							 | 
						||
| 
								 | 
							
								    display_final1(X),
							 | 
						||
| 
								 | 
							
								    display_final1(Y).
							 | 
						||
| 
								 | 
							
								display_final1(n3(X,_,Y,_,Z)) :- 
							 | 
						||
| 
								 | 
							
								    display_final1(X),
							 | 
						||
| 
								 | 
							
								    display_final1(Y),
							 | 
						||
| 
								 | 
							
								    display_final1(Z).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								write_tab([]).
							 | 
						||
| 
								 | 
							
								write_tab(l(G,e(Nodes,ANegs,Anss,_,Comp,Dfn:_,_))) :-
							 | 
						||
| 
								 | 
							
								    write(' Entry: '),
							 | 
						||
| 
								 | 
							
								    write(G-Dfn),
							 | 
						||
| 
								 | 
							
								    write(': '),
							 | 
						||
| 
								 | 
							
								    ( Comp == true -> 
							 | 
						||
| 
								 | 
							
								      write('Complete!')
							 | 
						||
| 
								 | 
							
								    ; write('Incomplete!') 
							 | 
						||
| 
								 | 
							
								    ), 
							 | 
						||
| 
								 | 
							
								    nl,
							 | 
						||
| 
								 | 
							
								    ( Anss == [] -> 
							 | 
						||
| 
								 | 
							
								      true
							 | 
						||
| 
								 | 
							
								    ; write('   Anss: '), 
							 | 
						||
| 
								 | 
							
								      nl,
							 | 
						||
| 
								 | 
							
								      write_anss(Anss)
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    ( ( Comp == true; Nodes == []) -> 
							 | 
						||
| 
								 | 
							
								      true 
							 | 
						||
| 
								 | 
							
								    ; write('   Nodes: '),
							 | 
						||
| 
								 | 
							
								      write(Nodes),
							 | 
						||
| 
								 | 
							
								      nl
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    ( ( Comp == true; ANegs == []) ->
							 | 
						||
| 
								 | 
							
								      true
							 | 
						||
| 
								 | 
							
								    ; write('   ANegs: '),
							 | 
						||
| 
								 | 
							
								      write(ANegs),
							 | 
						||
| 
								 | 
							
								      nl
							 | 
						||
| 
								 | 
							
								    ).
							 | 
						||
| 
								 | 
							
								write_tab(n2(X,_,Y)) :- 
							 | 
						||
| 
								 | 
							
								    write_tab(X),
							 | 
						||
| 
								 | 
							
								    write_tab(Y).
							 | 
						||
| 
								 | 
							
								write_tab(n3(X,_,Y,_,Z)) :- 
							 | 
						||
| 
								 | 
							
								    write_tab(X),
							 | 
						||
| 
								 | 
							
								    write_tab(Y),
							 | 
						||
| 
								 | 
							
								    write_tab(Z).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								write_anss([]).
							 | 
						||
| 
								 | 
							
								write_anss(l(_,Lanss)) :-
							 | 
						||
| 
								 | 
							
								    write_anss_list(Lanss).
							 | 
						||
| 
								 | 
							
								write_anss(n2(T1,_,T2)) :-
							 | 
						||
| 
								 | 
							
								    write_anss(T1),
							 | 
						||
| 
								 | 
							
								    write_anss(T2).
							 | 
						||
| 
								 | 
							
								write_anss(n3(T1,_,T2,_,T3)) :-
							 | 
						||
| 
								 | 
							
								    write_anss(T1),
							 | 
						||
| 
								 | 
							
								    write_anss(T2),
							 | 
						||
| 
								 | 
							
								    write_anss(T3).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								write_anss_list([]).
							 | 
						||
| 
								 | 
							
								write_anss_list([Ans|Anss]) :-
							 | 
						||
| 
								 | 
							
								    write_ans(Ans),
							 | 
						||
| 
								 | 
							
								    write_anss_list(Anss).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								write_ans(d(H,Ds)) :-
							 | 
						||
| 
								 | 
							
								    write('         '), 
							 | 
						||
| 
								 | 
							
								    write(H),
							 | 
						||
| 
								 | 
							
								    ( Ds == [] -> 
							 | 
						||
| 
								 | 
							
								      true
							 | 
						||
| 
								 | 
							
								    ; write(' :- '),
							 | 
						||
| 
								 | 
							
								      ( Ds = all([D|Ds1]) ->
							 | 
						||
| 
								 | 
							
								        ( D = (_-GH) ->
							 | 
						||
| 
								 | 
							
								          write(GH)
							 | 
						||
| 
								 | 
							
								        ; write(D)
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
								        write_delay(Ds1,'; ')
							 | 
						||
| 
								 | 
							
								      ; Ds = [D|Ds1],
							 | 
						||
| 
								 | 
							
								        ( D = (_-GH) ->
							 | 
						||
| 
								 | 
							
								          write(GH)
							 | 
						||
| 
								 | 
							
								        ; write(D)
							 | 
						||
| 
								 | 
							
								        ),
							 | 
						||
| 
								 | 
							
								        write_delay(Ds1,', ')
							 | 
						||
| 
								 | 
							
								      )
							 | 
						||
| 
								 | 
							
								    ), 
							 | 
						||
| 
								 | 
							
								    write('.'), 
							 | 
						||
| 
								 | 
							
								    nl.
							 | 
						||
| 
								 | 
							
								write_delay([],_).
							 | 
						||
| 
								 | 
							
								write_delay([D|Ds1],Sep) :-
							 | 
						||
| 
								 | 
							
								    write(Sep),
							 | 
						||
| 
								 | 
							
								    ( D = (_Gcall-GH) -> 
							 | 
						||
| 
								 | 
							
								      write(GH)
							 | 
						||
| 
								 | 
							
								    ; write(D) 
							 | 
						||
| 
								 | 
							
								    ),
							 | 
						||
| 
								 | 
							
								    write_delay(Ds1,Sep).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
							 | 
						||
| 
								 | 
							
								/* 
							 | 
						||
| 
								 | 
							
								This is a set of routines that supports indexed tables. Tables
							 | 
						||
| 
								 | 
							
								are sets of key-value_list pairs. With each key is associated a list
							 | 
						||
| 
								 | 
							
								of values. It uses 2-3 trees for the index (modified by D.S. Warren
							 | 
						||
| 
								 | 
							
								from Ivan Bratko: ``Prolog Programming for Artificial
							 | 
						||
| 
								 | 
							
								Intelligence'', Addison Wesley, 1986). Operations are: 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Keys must be ground! (so numbervar them)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								addkey(Tree,Key,V,Tree1) adds a new Key with value V, returning 
							 | 
						||
| 
								 | 
							
								    new Tree1. Fails if the key is already there.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								find(Tree,Key,V) finds the entry with Key and returns associated
							 | 
						||
| 
								 | 
							
								    values in V.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								updatevs(Tree,Key,OldV,NewV,Tree1) replaces value of entry with key
							 | 
						||
| 
								 | 
							
								    Key and value OldV with NewV.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								addkey(Tree,X,V,Tree1) :-
							 | 
						||
| 
								 | 
							
									ins2(Tree,X,V,Trees),
							 | 
						||
| 
								 | 
							
									cmb0(Trees,Tree1).
							 | 
						||
| 
								 | 
							
								addkey([],X,V,l(X,V)).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								find(l(X,V),Xs,V) :- X == Xs.
							 | 
						||
| 
								 | 
							
								find(n2(T1,M,T2),X,V) :-
							 | 
						||
| 
								 | 
							
									M @=< X
							 | 
						||
| 
								 | 
							
									 ->	find(T2,X,V)
							 | 
						||
| 
								 | 
							
									 ;	find(T1,X,V).
							 | 
						||
| 
								 | 
							
								find(n3(T1,M2,T2,M3,T3),X,V) :-
							 | 
						||
| 
								 | 
							
									M2 @=< X
							 | 
						||
| 
								 | 
							
									 ->	(M3 @=< X
							 | 
						||
| 
								 | 
							
										 ->	find(T3,X,V)
							 | 
						||
| 
								 | 
							
										 ;	find(T2,X,V)
							 | 
						||
| 
								 | 
							
										)
							 | 
						||
| 
								 | 
							
									 ;	find(T1,X,V).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% updatevs(Tab0,X,Ov,Nv,Tab) updates Tab0 to Tab, by replacing
							 | 
						||
| 
								 | 
							
								% Ov of entry with key X by Nv.
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								updatevs(Tab0,X,Ov,Nv,Tab) :-
							 | 
						||
| 
								 | 
							
									updatevs(Tab0,X,Ov,Nv),
							 | 
						||
| 
								 | 
							
									Tab = Tab0.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								updatevs(Tab,X,Ov,Nv) :-
							 | 
						||
| 
								 | 
							
									( Tab = l(Xs,Ov), Xs == X ->
							 | 
						||
| 
								 | 
							
									  setarg(2,Tab,Nv)
							 | 
						||
| 
								 | 
							
								        ; Tab = n2(T1,M,T2) ->
							 | 
						||
| 
								 | 
							
									  ( M @=< X ->
							 | 
						||
| 
								 | 
							
									    updatevs(T2,X,Ov,Nv)
							 | 
						||
| 
								 | 
							
									  ; updatevs(T1,X,Ov,Nv)
							 | 
						||
| 
								 | 
							
								          )
							 | 
						||
| 
								 | 
							
								        ; Tab = n3(T1,M2,T2,M3,T3) ->
							 | 
						||
| 
								 | 
							
									  ( M2 @=< X ->
							 | 
						||
| 
								 | 
							
									    ( M3 @=< X ->
							 | 
						||
| 
								 | 
							
									      updatevs(T3,X,Ov,Nv)
							 | 
						||
| 
								 | 
							
									    ; updatevs(T2,X,Ov,Nv)
							 | 
						||
| 
								 | 
							
									    )
							 | 
						||
| 
								 | 
							
									  ; updatevs(T1,X,Ov,Nv)
							 | 
						||
| 
								 | 
							
								          )
							 | 
						||
| 
								 | 
							
								        ).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								updatevs(l(X,Ov),Xs,Ov,Nv,l(X,Nv)) :- X == Xs.
							 | 
						||
| 
								 | 
							
								updatevs(n2(T1,M,T2),X,Ov,Nv,n2(NT1,M,NT2)) :-
							 | 
						||
| 
								 | 
							
									M @=< X
							 | 
						||
| 
								 | 
							
									 ->	NT1=T1, updatevs(T2,X,Ov,Nv,NT2)
							 | 
						||
| 
								 | 
							
									 ;	NT2=T2, updatevs(T1,X,Ov,Nv,NT1).
							 | 
						||
| 
								 | 
							
								updatevs(n3(T1,M2,T2,M3,T3),X,Ov,Nv,n3(NT1,M2,NT2,M3,NT3)) :-
							 | 
						||
| 
								 | 
							
									M2 @=< X
							 | 
						||
| 
								 | 
							
									 ->	(M3 @=< X
							 | 
						||
| 
								 | 
							
										 ->	NT2=T2, NT1=T1, updatevs(T3,X,Ov,Nv,NT3)
							 | 
						||
| 
								 | 
							
										 ;	NT1=T1, NT3=T3, updatevs(T2,X,Ov,Nv,NT2)
							 | 
						||
| 
								 | 
							
										)
							 | 
						||
| 
								 | 
							
									 ;	NT2=T2, NT3=T3, updatevs(T1,X,Ov,Nv,NT1).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								ins2(n2(T1,M,T2),X,V,Tree) :- 
							 | 
						||
| 
								 | 
							
									M @=< X
							 | 
						||
| 
								 | 
							
									 ->	ins2(T2,X,V,Tree1),
							 | 
						||
| 
								 | 
							
										cmb2(Tree1,T1,M,Tree)
							 | 
						||
| 
								 | 
							
									 ;	ins2(T1,X,V,Tree1),
							 | 
						||
| 
								 | 
							
										cmb1(Tree1,M,T2,Tree).
							 | 
						||
| 
								 | 
							
								ins2(n3(T1,M2,T2,M3,T3),X,V,Tree) :- 
							 | 
						||
| 
								 | 
							
									M2 @=< X
							 | 
						||
| 
								 | 
							
									 ->	(M3 @=< X
							 | 
						||
| 
								 | 
							
										 ->	ins2(T3,X,V,Tree1),
							 | 
						||
| 
								 | 
							
											cmb4(Tree1,T1,M2,T2,M3,Tree)
							 | 
						||
| 
								 | 
							
										 ;	ins2(T2,X,V,Tree1),
							 | 
						||
| 
								 | 
							
											cmb5(Tree1,T1,M2,M3,T3,Tree)
							 | 
						||
| 
								 | 
							
										)
							 | 
						||
| 
								 | 
							
									 ;	ins2(T1,X,V,Tree1),
							 | 
						||
| 
								 | 
							
										cmb3(Tree1,M2,T2,M3,T3,Tree).
							 | 
						||
| 
								 | 
							
								ins2(l(A,V),X,Vn,Tree) :-
							 | 
						||
| 
								 | 
							
									A @=< X
							 | 
						||
| 
								 | 
							
									 ->	(X @=< A
							 | 
						||
| 
								 | 
							
										 ->	fail
							 | 
						||
| 
								 | 
							
										 ;	Tree = t(l(A,V),X,l(X,Vn))
							 | 
						||
| 
								 | 
							
										)
							 | 
						||
| 
								 | 
							
									 ;	Tree = t(l(X,Vn),A,l(A,V)).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								cmb0(t(Tree),Tree).
							 | 
						||
| 
								 | 
							
								cmb0(t(T1,M,T2),n2(T1,M,T2)).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								cmb1(t(NT1),M,T2,t(n2(NT1,M,T2))).
							 | 
						||
| 
								 | 
							
								cmb1(t(NT1a,Mb,NT1b),M,T2,t(n3(NT1a,Mb,NT1b,M,T2))).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								cmb2(t(NT2),T1,M,t(n2(T1,M,NT2))).
							 | 
						||
| 
								 | 
							
								cmb2(t(NT2a,Mb,NT2b),T1,M,t(n3(T1,M,NT2a,Mb,NT2b))).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								cmb3(t(NT1),M2,T2,M3,T3,t(n3(NT1,M2,T2,M3,T3))).
							 | 
						||
| 
								 | 
							
								cmb3(t(NT1a,Mb,NT1b),M2,T2,M3,T3,t(n2(NT1a,Mb,NT1b),M2,n2(T2,M3,T3))).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								cmb4(t(NT3),T1,M2,T2,M3,t(n3(T1,M2,T2,M3,NT3))).
							 | 
						||
| 
								 | 
							
								cmb4(t(NT3a,Mb,NT3b),T1,M2,T2,M3,t(n2(T1,M2,T2),M3,n2(NT3a,Mb,NT3b))).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								cmb5(t(NT2),T1,M2,M3,T3,t(n3(T1,M2,NT2,M3,T3))).
							 | 
						||
| 
								 | 
							
								cmb5(t(NT2a,Mb,NT2b),T1,M2,M3,T3,t(n2(T1,M2,NT2a),Mb,n2(NT2b,M3,T3))).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								start_slg:- assertz((
							 | 
						||
| 
								 | 
							
									term_expansion(X,Y) :- !,
							 | 
						||
| 
								 | 
							
									        do_term_expansion(X,Y)
							 | 
						||
| 
								 | 
							
									    )).
							 | 
						||
| 
								 | 
							
								
							 |