249 lines
5.8 KiB
Plaintext
249 lines
5.8 KiB
Plaintext
|
=================================================================
|
||
|
Logtalk - Object oriented extension to Prolog
|
||
|
Release 2.8.4
|
||
|
|
||
|
Copyright (c) 1998-2001 Paulo Moura. All Rights Reserved.
|
||
|
=================================================================
|
||
|
|
||
|
|
||
|
% farmer, cabbage, goat and wolf problem
|
||
|
|
||
|
| ?- farmer::initial_state(Initial), depth_first(10)::solve(farmer, Initial, Path), farmer::print_path(Path).
|
||
|
|
||
|
cgwf.<__>..........____
|
||
|
c_w_..........<__>.f_g_
|
||
|
c_wf.<__>..........__g_
|
||
|
__w_..........<__>.fcg_
|
||
|
_gwf.<__>.........._c__
|
||
|
_g__..........<__>.fc_w
|
||
|
_g_f.<__>.........._c_w
|
||
|
____..........<__>.fcgw
|
||
|
|
||
|
Path = [(north,north,north,north),(north,south,north,south),(north,south,north,north),(south,south,north,south),(south,north,north,north),(south,north,south,south),(south,north,south,north),(south,south,south,south)],
|
||
|
Initial = (north,north,north,north) ?
|
||
|
|
||
|
yes
|
||
|
|
||
|
|
||
|
% missionaires and cannibals problem, solved using a hill-climbing strategy
|
||
|
|
||
|
| ?- miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path).
|
||
|
|
||
|
MMMCCC.<__>..........
|
||
|
MMCC..........<__>.MC
|
||
|
MMMCC.<__>..........C
|
||
|
MMM..........<__>.CCC
|
||
|
MMMC.<__>..........CC
|
||
|
MC..........<__>.MMCC
|
||
|
MMCC.<__>..........MC
|
||
|
CC..........<__>.MMMC
|
||
|
CCC.<__>..........MMM
|
||
|
C..........<__>.MMMCC
|
||
|
CC.<__>..........MMMC
|
||
|
..........<__>.MMMCCC
|
||
|
|
||
|
Cost = 15,
|
||
|
Path = [((3,3),esq,0,0),((2,2),dir,1,1),((3,2),esq,0,1),((3,0),dir,0,3),((3,1),esq,0,2),((1,1),dir,2,2),((2,2),esq,1,1),((0,2),dir,3,1),((0,3),esq,3,0),((0,1),dir,3,2),((0,2),esq,3,1),((0,0),dir,3,3)],
|
||
|
Initial = ((3,3),esq,0,0)
|
||
|
yes
|
||
|
|
||
|
|
||
|
% same problem as above with the addition of a monitor to measure hill-climbing performance
|
||
|
|
||
|
| ?- performance::init, miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path), performance::report.
|
||
|
|
||
|
MMMCCC.<__>..........
|
||
|
MMCC..........<__>.MC
|
||
|
MMMCC.<__>..........C
|
||
|
MMM..........<__>.CCC
|
||
|
MMMC.<__>..........CC
|
||
|
MC..........<__>.MMCC
|
||
|
MMCC.<__>..........MC
|
||
|
CC..........<__>.MMMC
|
||
|
CCC.<__>..........MMM
|
||
|
C..........<__>.MMMCC
|
||
|
CC.<__>..........MMMC
|
||
|
..........<__>.MMMCCC
|
||
|
solution length: 12
|
||
|
number of state transitions: 27
|
||
|
ratio solution length / state transitions: 0.4444444444444444
|
||
|
minimum branching degree: 2
|
||
|
average branching degree: 2.5555555555555554
|
||
|
maximum branching degree: 3
|
||
|
time: 0.067999999999756255
|
||
|
|
||
|
Cost = 15,
|
||
|
Path = [((3,3),esq,0,0),((2,2),dir,1,1),((3,2),esq,0,1),((3,0),dir,0,3),((3,1),esq,0,2),((1,1),dir,2,2),((2,2),esq,1,1),((0,2),dir,3,1),((0,3),esq,3,0),((0,1),dir,3,2),((0,2),esq,3,1),((0,0),dir,3,3)],
|
||
|
Initial = ((3,3),esq,0,0) ?
|
||
|
|
||
|
yes
|
||
|
|
||
|
|
||
|
% water jugs problem solved using a breadth and a depth first strategy, with performance monitors
|
||
|
% it's interesting to compare the results
|
||
|
|
||
|
| ?- performance::init, water_jug::initial_state(Initial), breadth_first(6)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report.
|
||
|
|
||
|
4-gallon jug: 0
|
||
|
3-gallon jug: 0
|
||
|
|
||
|
4-gallon jug: 0
|
||
|
3-gallon jug: 3
|
||
|
|
||
|
4-gallon jug: 3
|
||
|
3-gallon jug: 0
|
||
|
|
||
|
4-gallon jug: 3
|
||
|
3-gallon jug: 3
|
||
|
|
||
|
4-gallon jug: 4
|
||
|
3-gallon jug: 2
|
||
|
|
||
|
4-gallon jug: 0
|
||
|
3-gallon jug: 2
|
||
|
|
||
|
solution length: 6
|
||
|
number of state transitions: 105
|
||
|
ratio solution length / state transitions: 0.05714285714285714
|
||
|
minimum branching degree: 2
|
||
|
average branching degree: 3.6315789473684212
|
||
|
maximum branching degree: 4
|
||
|
time: 0.20000000000027285
|
||
|
|
||
|
Path = [(0,0),(0,3),(3,0),(3,3),(4,2),(0,2)],
|
||
|
Initial = (0,0) ?
|
||
|
|
||
|
yes
|
||
|
|
||
|
|
||
|
| ?- performance::init, water_jug::initial_state(Initial), depth_first(10)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report.
|
||
|
|
||
|
4-gallon jug: 0
|
||
|
3-gallon jug: 0
|
||
|
|
||
|
4-gallon jug: 4
|
||
|
3-gallon jug: 0
|
||
|
|
||
|
4-gallon jug: 4
|
||
|
3-gallon jug: 3
|
||
|
|
||
|
4-gallon jug: 0
|
||
|
3-gallon jug: 3
|
||
|
|
||
|
4-gallon jug: 3
|
||
|
3-gallon jug: 0
|
||
|
|
||
|
4-gallon jug: 3
|
||
|
3-gallon jug: 3
|
||
|
|
||
|
4-gallon jug: 4
|
||
|
3-gallon jug: 2
|
||
|
|
||
|
4-gallon jug: 0
|
||
|
3-gallon jug: 2
|
||
|
|
||
|
solution length: 8
|
||
|
number of state transitions: 12
|
||
|
ratio solution length / state transitions: 0.6666666666666666
|
||
|
|
||
|
|
||
|
|
||
|
minimum branching degree: 1
|
||
|
average branching degree: 2.0
|
||
|
maximum branching degree: 3
|
||
|
time: 0.021999999999934516
|
||
|
|
||
|
Path = [(0,0),(4,0),(4,3),(0,3),(3,0),(3,3),(4,2),(0,2)],
|
||
|
Initial = (0,0) ?
|
||
|
|
||
|
yes
|
||
|
|
||
|
|
||
|
% eight puzzle solved using a hill-climbing strategy
|
||
|
|
||
|
| ?- performance::init, eight_puzzle::initial_state(five_steps, Initial), hill_climbing(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report.
|
||
|
|
||
|
283
|
||
|
164
|
||
|
7 5
|
||
|
|
||
|
283
|
||
|
1 4
|
||
|
765
|
||
|
|
||
|
2 3
|
||
|
184
|
||
|
765
|
||
|
|
||
|
23
|
||
|
184
|
||
|
765
|
||
|
|
||
|
123
|
||
|
84
|
||
|
765
|
||
|
|
||
|
123
|
||
|
8 4
|
||
|
765
|
||
|
solution length: 6
|
||
|
number of state transitions: 15
|
||
|
ratio solution length / state transitions: 0.4
|
||
|
minimum branching degree: 2
|
||
|
average branching degree: 3.1333333333333333
|
||
|
maximum branching degree: 4
|
||
|
time: 0.050000000000181899
|
||
|
|
||
|
Cost = 5,
|
||
|
Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]],
|
||
|
Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ?
|
||
|
|
||
|
yes
|
||
|
|
||
|
|
||
|
% eight puzzle solved using a best-first strategy
|
||
|
|
||
|
| ?- performance::init, eight_puzzle::initial_state(five_steps, Initial), best_first(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report.
|
||
|
|
||
|
283
|
||
|
164
|
||
|
7 5
|
||
|
|
||
|
283
|
||
|
1 4
|
||
|
765
|
||
|
|
||
|
2 3
|
||
|
184
|
||
|
765
|
||
|
|
||
|
23
|
||
|
184
|
||
|
765
|
||
|
|
||
|
123
|
||
|
84
|
||
|
765
|
||
|
|
||
|
123
|
||
|
8 4
|
||
|
765
|
||
|
solution length: 6
|
||
|
number of state transitions: 15
|
||
|
ratio solution length / state transitions: 0.4
|
||
|
minimum branching degree: 2
|
||
|
average branching degree: 3.1333333333333333
|
||
|
maximum branching degree: 4
|
||
|
time: 0.046000000000276486
|
||
|
|
||
|
Cost = 5,
|
||
|
Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]],
|
||
|
Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ?
|
||
|
|
||
|
yes
|
||
|
|
||
|
|
||
|
% turn off performance monitor
|
||
|
|
||
|
| ?- performance::stop.
|