114 lines
2.1 KiB
Perl
114 lines
2.1 KiB
Perl
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% Binomial Heap imlementation based on
|
||
|
%
|
||
|
% Functional Binomial Queues
|
||
|
% James F. King
|
||
|
% University of Glasgow
|
||
|
%
|
||
|
% Author: Tom Schrijvers
|
||
|
% Email: Tom.Schrijvers@cs.kuleuven.ac.be
|
||
|
% Copyright: K.U.Leuven 2004
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
|
||
|
:- module(binomialheap,
|
||
|
[
|
||
|
empty_q/1,
|
||
|
insert_q/3,
|
||
|
insert_list_q/3,
|
||
|
delete_min_q/3,
|
||
|
find_min_q/2
|
||
|
]).
|
||
|
|
||
|
:- use_module(library(lists)).
|
||
|
|
||
|
% data Tree a = Node a [Tree a]
|
||
|
% type BinQueue a = [Maybe (Tree a)]
|
||
|
% data Maybe a = Zero | One a
|
||
|
% type Item = (Entry,Key)
|
||
|
|
||
|
entry(Entry-_,Entry).
|
||
|
key(_-Key,Key).
|
||
|
|
||
|
empty_q([]).
|
||
|
|
||
|
meld_q(P,Q,R) :-
|
||
|
meld_qc(P,Q,zero,R).
|
||
|
|
||
|
meld_qc([],Q,zero,Q) :- !.
|
||
|
meld_qc([],Q,C,R) :- !,
|
||
|
meld_q(Q,[C],R).
|
||
|
meld_qc(P,[],C,R) :- !,
|
||
|
meld_qc([],P,C,R).
|
||
|
meld_qc([zero|Ps],[zero|Qs],C,R) :- !,
|
||
|
R = [C | Rs],
|
||
|
meld_q(Ps,Qs,Rs).
|
||
|
meld_qc([one(node(X,Xs))|Ps],[one(node(Y,Ys))|Qs],C,R) :- !,
|
||
|
key(X,KX),
|
||
|
key(Y,KY),
|
||
|
( KX < KY ->
|
||
|
T = node(X,[node(Y,Ys)|Xs])
|
||
|
;
|
||
|
T = node(Y,[node(X,Xs)|Ys])
|
||
|
),
|
||
|
R = [C|Rs],
|
||
|
meld_qc(Ps,Qs,one(T),Rs).
|
||
|
meld_qc([P|Ps],[Q|Qs],C,Rs) :-
|
||
|
meld_qc([Q|Ps],[C|Qs],P,Rs).
|
||
|
|
||
|
insert_q(Q,I,NQ) :-
|
||
|
meld_q([one(node(I,[]))],Q,NQ).
|
||
|
|
||
|
insert_list_q([],Q,Q).
|
||
|
insert_list_q([I|Is],Q,NQ) :-
|
||
|
insert_q(Q,I,Q1),
|
||
|
insert_list_q(Is,Q1,NQ).
|
||
|
|
||
|
min_tree([T|Ts],MT) :-
|
||
|
min_tree_acc(Ts,T,MT).
|
||
|
|
||
|
min_tree_acc([],MT,MT).
|
||
|
min_tree_acc([T|Ts],Acc,MT) :-
|
||
|
least(T,Acc,NAcc),
|
||
|
min_tree_acc(Ts,NAcc,MT).
|
||
|
|
||
|
least(zero,T,T) :- !.
|
||
|
least(T,zero,T) :- !.
|
||
|
least(one(node(X,Xs)),one(node(Y,Ys)),T) :-
|
||
|
key(X,KX),
|
||
|
key(Y,KY),
|
||
|
( KX < KY ->
|
||
|
T = one(node(X,Xs))
|
||
|
;
|
||
|
T = one(node(Y,Ys))
|
||
|
).
|
||
|
|
||
|
remove_tree([],_,[]).
|
||
|
remove_tree([T|Ts],I,[NT|NTs]) :-
|
||
|
( T == zero ->
|
||
|
NT = T
|
||
|
;
|
||
|
T = one(node(X,_)),
|
||
|
( X == I ->
|
||
|
NT = zero
|
||
|
;
|
||
|
NT = T
|
||
|
)
|
||
|
),
|
||
|
remove_tree(Ts,I,NTs).
|
||
|
|
||
|
delete_min_q(Q,NQ,Min) :-
|
||
|
min_tree(Q,one(node(Min,Ts))),
|
||
|
remove_tree(Q,Min,Q1),
|
||
|
reverse(Ts,RTs),
|
||
|
make_ones(RTs,Q2),
|
||
|
meld_q(Q2,Q1,NQ).
|
||
|
|
||
|
make_ones([],[]).
|
||
|
make_ones([N|Ns],[one(N)|RQ]) :-
|
||
|
make_ones(Ns,RQ).
|
||
|
|
||
|
find_min_q(Q,I) :-
|
||
|
min_tree(Q,one(node(I,_))).
|
||
|
|
||
|
|