195 lines
4.3 KiB
Perl
195 lines
4.3 KiB
Perl
|
:- module(hprolog,
|
||
|
[ prolog_flag/3, % +Flag, -Old, +New
|
||
|
append_lists/2, % +ListOfLists, -List
|
||
|
nth/3, % ?Index, ?List, ?Element
|
||
|
substitute/4, % +OldVal, +OldList, +NewVal, -NewList
|
||
|
memberchk_eq/2, % +Val, +List
|
||
|
intersect_eq/3, % +List1, +List2, -Intersection
|
||
|
list_difference_eq/3, % +List, -Subtract, -Rest
|
||
|
take/3, % +N, +List, -FirstElements
|
||
|
max_go_list/2, % +List, -Max
|
||
|
or_list/2, % +ListOfInts, -BitwiseOr
|
||
|
sublist/2,
|
||
|
min_list/2,
|
||
|
chr_delete/3,
|
||
|
strip_attributes/2,
|
||
|
restore_attributes/2
|
||
|
]).
|
||
|
:- use_module(library(lists)).
|
||
|
|
||
|
% prolog_flag(+Flag, -Old, +New)
|
||
|
%
|
||
|
% Combine ISO prolog flag reading and writing
|
||
|
|
||
|
prolog_flag(Flag, Old, New) :-
|
||
|
current_prolog_flag(Flag, Old),
|
||
|
( Old == New
|
||
|
-> true
|
||
|
; set_prolog_flag(Flag, New)
|
||
|
).
|
||
|
|
||
|
/*******************************
|
||
|
* MORE LIST OPERATIONS *
|
||
|
*******************************/
|
||
|
|
||
|
% append_lists(+ListOfLists, -List)
|
||
|
%
|
||
|
% Convert a one-level nested list into a flat one. E.g.
|
||
|
% append_lists([[a,b], [c]], X) --> X = [a,b,c]. See also
|
||
|
% flatten/3.
|
||
|
|
||
|
append_lists([],[]).
|
||
|
append_lists([X|Xs],L) :-
|
||
|
append(X,T,L),
|
||
|
append_lists(Xs,T).
|
||
|
|
||
|
|
||
|
% nth(?Index, ?List, ?Element)
|
||
|
%
|
||
|
% Same as nth1/3
|
||
|
|
||
|
nth(Index, List, Element) :-
|
||
|
nth1(Index, List, Element).
|
||
|
|
||
|
|
||
|
% substitute(+OldVal, +OldList, +NewVal, -NewList)
|
||
|
%
|
||
|
% Substitute OldVal by NewVal in OldList and unify the result
|
||
|
% with NewList. JW: Shouldn't this be called substitute_eq/4?
|
||
|
|
||
|
substitute(_, [], _, []) :- ! .
|
||
|
substitute(X, [U|Us], Y, [V|Vs]) :-
|
||
|
( X == U
|
||
|
-> V = Y,
|
||
|
substitute(X, Us, Y, Vs)
|
||
|
; V = U,
|
||
|
substitute(X, Us, Y, Vs)
|
||
|
).
|
||
|
|
||
|
% memberchk_eq(+Val, +List)
|
||
|
%
|
||
|
% Deterministic check of membership using == rather than
|
||
|
% unification.
|
||
|
|
||
|
memberchk_eq(X, [Y|Ys]) :-
|
||
|
( X == Y
|
||
|
-> true
|
||
|
; memberchk_eq(X, Ys)
|
||
|
).
|
||
|
|
||
|
|
||
|
% list_difference_eq(+List, -Subtract, -Rest)
|
||
|
%
|
||
|
% Delete all elements of Subtract from List and unify the result
|
||
|
% with Rest. Element comparision is done using ==/2.
|
||
|
|
||
|
list_difference_eq([],_,[]).
|
||
|
list_difference_eq([X|Xs],Ys,L) :-
|
||
|
( memberchk_eq(X,Ys)
|
||
|
-> list_difference_eq(Xs,Ys,L)
|
||
|
; L = [X|T],
|
||
|
list_difference_eq(Xs,Ys,T)
|
||
|
).
|
||
|
|
||
|
% intersect_eq(+List1, +List2, -Intersection)
|
||
|
%
|
||
|
% Determine the intersection of two lists without unifying values.
|
||
|
|
||
|
intersect_eq([], _, []).
|
||
|
intersect_eq([X|Xs], Ys, L) :-
|
||
|
( memberchk_eq(X, Ys)
|
||
|
-> L = [X|T],
|
||
|
intersect_eq(Xs, Ys, T)
|
||
|
; intersect_eq(Xs, Ys, L)
|
||
|
).
|
||
|
|
||
|
|
||
|
% take(+N, +List, -FirstElements)
|
||
|
%
|
||
|
% Take the first N elements from List and unify this with
|
||
|
% FirstElements. The definition is based on the GNU-Prolog lists
|
||
|
% library. Implementation by Jan Wielemaker.
|
||
|
|
||
|
take(0, _, []) :- !.
|
||
|
take(N, [H|TA], [H|TB]) :-
|
||
|
N > 0,
|
||
|
N2 is N - 1,
|
||
|
take(N2, TA, TB).
|
||
|
|
||
|
|
||
|
% max_go_list(+List, -Max)
|
||
|
%
|
||
|
% Return the maximum of List in the standard order of terms.
|
||
|
|
||
|
max_go_list([H|T], Max) :-
|
||
|
max_go_list(T, H, Max).
|
||
|
|
||
|
max_go_list([], Max, Max).
|
||
|
max_go_list([H|T], X, Max) :-
|
||
|
( H @=< X
|
||
|
-> max_go_list(T, X, Max)
|
||
|
; max_go_list(T, H, Max)
|
||
|
).
|
||
|
|
||
|
% or_list(+ListOfInts, -BitwiseOr)
|
||
|
%
|
||
|
% Do a bitwise disjuction over all integer members of ListOfInts.
|
||
|
|
||
|
or_list(L, Or) :-
|
||
|
or_list(L, 0, Or).
|
||
|
|
||
|
or_list([], Or, Or).
|
||
|
or_list([H|T], Or0, Or) :-
|
||
|
Or1 is H \/ Or0,
|
||
|
or_list(T, Or1, Or).
|
||
|
|
||
|
|
||
|
sublist(L, L).
|
||
|
sublist(Sub, [H|T]) :-
|
||
|
'$sublist1'(T, H, Sub).
|
||
|
|
||
|
'$sublist1'(Sub, _, Sub).
|
||
|
'$sublist1'([H|T], _, Sub) :-
|
||
|
'$sublist1'(T, H, Sub).
|
||
|
'$sublist1'([H|T], X, [X|Sub]) :-
|
||
|
'$sublist1'(T, H, Sub).
|
||
|
|
||
|
min_list([H|T], Min) :-
|
||
|
'$min_list1'(T, H, Min).
|
||
|
|
||
|
'$min_list1'([], Min, Min).
|
||
|
'$min_list1'([H|T], X, Min) :-
|
||
|
( H>=X ->
|
||
|
'$min_list1'(T, X, Min)
|
||
|
; '$min_list1'(T, H, Min)
|
||
|
).
|
||
|
|
||
|
chr_delete([], _, []).
|
||
|
chr_delete([H|T], X, L) :-
|
||
|
( H==X ->
|
||
|
chr_delete(T, X, L)
|
||
|
; L=[H|RT],
|
||
|
chr_delete(T, X, RT)
|
||
|
).
|
||
|
|
||
|
strip_attributes([],[]).
|
||
|
strip_attributes([V|R],[V2|R2]) :-
|
||
|
( attvar(V) ->
|
||
|
get_attrs(V,VAttrs),
|
||
|
remove_attrs(V,VAttrs,V2)
|
||
|
; V2 = []
|
||
|
),
|
||
|
strip_attributes(R,R2).
|
||
|
|
||
|
remove_attrs(_V,[],[]).
|
||
|
remove_attrs(V,att(X,Y,OtherAttrs),[(X,Y)|R]) :-
|
||
|
del_attr(V,X),
|
||
|
remove_attrs(V,OtherAttrs,R).
|
||
|
|
||
|
restore_attributes([],[]).
|
||
|
restore_attributes([_V|R],[[]|R2]) :-
|
||
|
restore_attributes(R,R2).
|
||
|
restore_attributes([V|R],[[(X,Y)|RVAttr]|R2]) :-
|
||
|
put_attr(V,X,Y),
|
||
|
restore_attributes([V|R],[RVAttr|R2]).
|