208 lines
4.4 KiB
Plaintext
208 lines
4.4 KiB
Plaintext
|
|
||
|
|
||
|
|
||
|
:- ensure_loaded(library(clpbn)).
|
||
|
|
||
|
:- ensure_loaded(library('clpbn/hmm')).
|
||
|
|
||
|
:- hmm_state((m/3, i/3, d/3, t/2, b/2, n/2, j/2, e/2, s/2, c/2)).
|
||
|
|
||
|
/*
|
||
|
|
||
|
We represent a plan7 HMMer as a recursive program. There are two parameters:
|
||
|
i represents position on a string
|
||
|
j slice in the HMMer: probability distributions are different for each slice.
|
||
|
|
||
|
An HMM has 10 states (M, I, D are the core states):
|
||
|
S -> begin
|
||
|
N -> before match
|
||
|
B -> begin a match
|
||
|
M -> match state
|
||
|
I -> insertion
|
||
|
D -> deletion
|
||
|
E -> end of match
|
||
|
C -> continuation after matches done
|
||
|
T -> end of sequence
|
||
|
J -> go back to match start.
|
||
|
|
||
|
S, B, E, and T do not emit.
|
||
|
|
||
|
Each state will be represented as a binary random variable.
|
||
|
|
||
|
Also, you'll see terms of the form
|
||
|
|
||
|
{ S = m(I) with p([t,f], trans([MMCPT,IMCPT,DMCPT]), [M0,I0,D0]) }.
|
||
|
|
||
|
the sum function is as examplified:
|
||
|
|
||
|
P(S=t) = P(MMCPT|M0)P(M0=t)+P(IMCPT|M0)P(I0=t)+P(IDCPT|M0)P(D0=t)
|
||
|
P(S=f) = 1-P(S=t)
|
||
|
|
||
|
With sum a single element may be true so if
|
||
|
k1\=k2, P(A_k1=t,A_k2=t) = 0.
|
||
|
|
||
|
*/
|
||
|
|
||
|
% now this is our nice DBN: notice that CPTs depend on slide,
|
||
|
% so this is really an "irregular" DBN.
|
||
|
% first, the emission probabilities (they are easier ;-).
|
||
|
|
||
|
% we look at the core first: m, and i emissions
|
||
|
|
||
|
% next, go to inner states (state transitions).
|
||
|
|
||
|
% the first m-state
|
||
|
|
||
|
m(I,J,M) :-
|
||
|
slices(J), !,
|
||
|
I1 is I+1,
|
||
|
e(I1,E),
|
||
|
{ M = m(I,J) with p(bool, trans([0]),[E]) },
|
||
|
emitting(M).
|
||
|
% standard m-state
|
||
|
m(I,J,M) :-
|
||
|
I1 is I+1,
|
||
|
J1 is J+1,
|
||
|
i(I1,J,NI),
|
||
|
m(I1,J1,NM),
|
||
|
d(I1,J1,ND),
|
||
|
e(I1,NE),
|
||
|
m_i_cpt(J,MICPT),
|
||
|
m_m_cpt(J,MMCPT),
|
||
|
m_d_cpt(J,MDCPT),
|
||
|
m_e_cpt(J,MECPT),
|
||
|
{ M = m(I,J) with p(bool, trans([MICPT,MMCPT,MDCPT,MECPT]),[NI,NM,ND,NE]) },
|
||
|
emitting(M).
|
||
|
|
||
|
i(I,J,S) :-
|
||
|
I1 is I+1,
|
||
|
J1 is J+1,
|
||
|
m(I1,J1,M),
|
||
|
i(I1,J,IS),
|
||
|
i_i_cpt(J,IICPT),
|
||
|
i_m_cpt(J,IMCPT),
|
||
|
{ S = i(I,J) with p(bool, trans([IMCPT,IICPT]), [M,IS]) },
|
||
|
emitting(S).
|
||
|
|
||
|
d(I,J,D) :-
|
||
|
slices(J), !,
|
||
|
e(I,E),
|
||
|
{ D = d(I,J) with p(bool, trans([0]), [E]) }.
|
||
|
d(I,J,S) :-
|
||
|
J1 is J+1,
|
||
|
m(I,J1,M),
|
||
|
d(I,J1,ND),
|
||
|
m_d_cpt(J,MDCPT),
|
||
|
d_d_cpt(J,DDCPT),
|
||
|
{ S = d(I,J) with p(bool, trans([MDCPT,DDCPT]), [M,ND]) }.
|
||
|
|
||
|
e_evidence([],_).
|
||
|
e_evidence([Emission|Es],Emission) :-
|
||
|
e_evidence(Es,Emission).
|
||
|
|
||
|
%
|
||
|
% N, C, and J states can also emit.
|
||
|
%
|
||
|
% and they have transitions.
|
||
|
|
||
|
% initial state
|
||
|
s(0,S) :-
|
||
|
n(0,N),
|
||
|
{ S = s(0) with p(bool, trans([0]),[N]) }.
|
||
|
|
||
|
n(I,S) :-
|
||
|
I1 is I+1,
|
||
|
b(I1, B0),
|
||
|
n(I1, N0),
|
||
|
n_n_cpt(NNCPT),
|
||
|
n_b_cpt(NBCPT),
|
||
|
{ S = n(I) with p(bool, trans([NBCPT,NNCPT]), [B0,N0]) },
|
||
|
emitting(S).
|
||
|
|
||
|
b(I,S) :-
|
||
|
slices(Ss),
|
||
|
b_m_transitions(0,Ss,I,Ms,MCPTs),
|
||
|
d(I,1, D),
|
||
|
b_d_cpt(BMCPT),
|
||
|
{ S = b(I) with p(bool, trans([BMCPT|MCPTs]), [D|Ms]) }.
|
||
|
|
||
|
b_m_transitions(Ss,Ss,_,[],[]) :- !.
|
||
|
b_m_transitions(J0,Ss,I,[M|Ms],[CPT|MCPTs]) :-
|
||
|
J is J0+1,
|
||
|
m(I,J,M),
|
||
|
b_m_cpt(J,CPT),
|
||
|
b_m_transitions(J,Ss,I,Ms,MCPTs).
|
||
|
|
||
|
j(I,S) :-
|
||
|
I1 is I+1,
|
||
|
b(I1, NB),
|
||
|
j(I1, NJ),
|
||
|
j_b_cpt(JBCPT),
|
||
|
j_j_cpt(JJCPT),
|
||
|
{ S = j(I) with p(bool, trans([JBCPT,JJCPT]), [NB,NJ]) },
|
||
|
emitting(S).
|
||
|
|
||
|
e(I,S) :-
|
||
|
c(I, NC),
|
||
|
j(I, NJ),
|
||
|
e_c_cpt(ECCPT),
|
||
|
e_j_cpt(EJCPT),
|
||
|
{ S = e(I) with p(bool, trans([ECCPT,EJCPT]), [NC,NJ]) }.
|
||
|
|
||
|
c(I,S) :-
|
||
|
I1 is I+1,
|
||
|
t(I1, T),
|
||
|
c(I1, NC),
|
||
|
c_t_cpt(CTCPT),
|
||
|
c_c_cpt(CCCPT),
|
||
|
{ S = c(I) with p(bool, trans([CCCPT,CTCPT]),[NC,T]) },
|
||
|
emitting(S).
|
||
|
|
||
|
|
||
|
t(I,S) :-
|
||
|
% I < IMax
|
||
|
{ S = t(I) with p(bool, trans([]), []) }.
|
||
|
|
||
|
|
||
|
% the item I at slice J is a random variable P.
|
||
|
emitting(M) :-
|
||
|
emission(M).
|
||
|
|
||
|
emission_cpt(Key, CPT) :-
|
||
|
Key=..[A,_,Slice], !,
|
||
|
emission_cpt(A, Slice, CPT).
|
||
|
emission_cpt(_, CPT) :-
|
||
|
nule_cpt(CPT).
|
||
|
|
||
|
emission_cpt(m,J,CPT) :- !, me_cpt(J,CPT).
|
||
|
emission_cpt(i,J,CPT) :- !, ie_cpt(J,CPT).
|
||
|
emission_cpt(_,_,CPT) :- nule_cpt(CPT).
|
||
|
|
||
|
|
||
|
ie_cpt(I,Logs) :- ie_cpt(I,Logs,_,_).
|
||
|
me_cpt(I,Logs) :- me_cpt(I,Logs,_,_).
|
||
|
nule_cpt(Logs) :- nule_cpt(Logs,_,_).
|
||
|
b_m_cpt(I,Log) :- b_m_cpt(I,Log,_,_).
|
||
|
b_d_cpt(Log) :- b_d_cpt(Log,_,_).
|
||
|
c_c_cpt(Log) :- c_c_cpt(Log,_,_).
|
||
|
c_t_cpt(Log) :- c_t_cpt(Log,_,_).
|
||
|
d_d_cpt(I,Log) :- d_d_cpt(I,Log,_,_).
|
||
|
d_m_cpt(I,Log) :- d_m_cpt(I,Log,_,_).
|
||
|
e_c_cpt(Log) :- e_c_cpt(Log,_,_).
|
||
|
e_j_cpt(Log) :- e_j_cpt(Log,_,_).
|
||
|
i_i_cpt(I,Log) :- i_i_cpt(I,Log,_,_).
|
||
|
i_m_cpt(I,Log) :- i_m_cpt(I,Log,_,_).
|
||
|
j_b_cpt(Log) :- j_b_cpt(Log,_,_).
|
||
|
j_j_cpt(Log) :- j_j_cpt(Log,_,_).
|
||
|
m_d_cpt(I,Log) :- m_d_cpt(I,Log,_,_).
|
||
|
m_e_cpt(I,Log) :- m_e_cpt(I,Log,_,_).
|
||
|
m_i_cpt(I,Log) :- m_i_cpt(I,Log,_,_).
|
||
|
m_m_cpt(I,Log) :- m_m_cpt(I,Log,_,_).
|
||
|
n_b_cpt(Log) :- n_b_cpt(Log,_,_).
|
||
|
n_n_cpt(Log) :- n_n_cpt(Log,_,_).
|
||
|
|
||
|
%hmm_domain([a, c, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, v, w, y]).
|
||
|
|
||
|
hmm_domain(aminoacids).
|
||
|
|