227 lines
6.3 KiB
Perl
227 lines
6.3 KiB
Perl
|
/*
|
||
|
|
||
|
Part of CLP(R) (Constraint Logic Programming over Reals)
|
||
|
|
||
|
Author: Leslie De Koninck
|
||
|
E-mail: Leslie.DeKoninck@cs.kuleuven.be
|
||
|
WWW: http://www.swi-prolog.org
|
||
|
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
|
||
|
Copyright (C): 2004, K.U. Leuven and
|
||
|
1992-1995, Austrian Research Institute for
|
||
|
Artificial Intelligence (OFAI),
|
||
|
Vienna, Austria
|
||
|
|
||
|
This software is part of Leslie De Koninck's master thesis, supervised
|
||
|
by Bart Demoen and daily advisor Tom Schrijvers. It is based on CLP(Q,R)
|
||
|
by Christian Holzbaur for SICStus Prolog and distributed under the
|
||
|
license details below with permission from all mentioned authors.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public License
|
||
|
as published by the Free Software Foundation; either version 2
|
||
|
of the License, or (at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with this library; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
As a special exception, if you link this library with other files,
|
||
|
compiled with a Free Software compiler, to produce an executable, this
|
||
|
library does not by itself cause the resulting executable to be covered
|
||
|
by the GNU General Public License. This exception does not however
|
||
|
invalidate any other reasons why the executable file might be covered by
|
||
|
the GNU General Public License.
|
||
|
*/
|
||
|
|
||
|
:- module(itf_r,
|
||
|
[
|
||
|
do_checks/8
|
||
|
]).
|
||
|
:- use_module(bv_r,
|
||
|
[
|
||
|
deref/2,
|
||
|
detach_bounds_vlv/5,
|
||
|
solve/1,
|
||
|
solve_ord_x/3
|
||
|
]).
|
||
|
:- use_module(nf_r,
|
||
|
[
|
||
|
nf/2
|
||
|
]).
|
||
|
:- use_module(store_r,
|
||
|
[
|
||
|
add_linear_11/3,
|
||
|
indep/2,
|
||
|
nf_coeff_of/3
|
||
|
]).
|
||
|
:- use_module('../clpqr/class',
|
||
|
[
|
||
|
class_drop/2
|
||
|
]).
|
||
|
|
||
|
do_checks(Y,Ty,St,Li,Or,Cl,No,Later) :-
|
||
|
numbers_only(Y),
|
||
|
verify_nonzero(No,Y),
|
||
|
verify_type(Ty,St,Y,Later,[]),
|
||
|
verify_lin(Or,Cl,Li,Y),
|
||
|
maplist(call,Later).
|
||
|
|
||
|
numbers_only(Y) :-
|
||
|
( var(Y)
|
||
|
; integer(Y)
|
||
|
; float(Y)
|
||
|
; throw(type_error(_X = Y,2,'a real number',Y))
|
||
|
),
|
||
|
!.
|
||
|
|
||
|
% verify_nonzero(Nonzero,Y)
|
||
|
%
|
||
|
% if Nonzero = nonzero, then verify that Y is not zero
|
||
|
% (if possible, otherwise set Y to be nonzero)
|
||
|
|
||
|
verify_nonzero(nonzero,Y) :-
|
||
|
( var(Y)
|
||
|
-> ( get_attr(Y,itf,Att)
|
||
|
-> setarg(8,Att,nonzero)
|
||
|
; put_attr(Y,itf,t(clpr,n,n,n,n,n,n,nonzero,n,n,n))
|
||
|
)
|
||
|
; ( Y < -1.0e-10
|
||
|
-> true
|
||
|
; Y > 1.0e-10
|
||
|
)
|
||
|
).
|
||
|
verify_nonzero(n,_). % X is not nonzero
|
||
|
|
||
|
% verify_type(type(Type),strictness(Strict),Y,[OL|OLT],OLT)
|
||
|
%
|
||
|
% if possible verifies whether Y satisfies the type and strictness of X
|
||
|
% if not possible to verify, then returns the constraints that follow from
|
||
|
% the type and strictness
|
||
|
|
||
|
verify_type(type(Type),strictness(Strict),Y) -->
|
||
|
verify_type2(Y,Type,Strict).
|
||
|
verify_type(n,n,_) --> [].
|
||
|
|
||
|
verify_type2(Y,TypeX,StrictX) -->
|
||
|
{var(Y)},
|
||
|
!,
|
||
|
verify_type_var(TypeX,Y,StrictX).
|
||
|
verify_type2(Y,TypeX,StrictX) -->
|
||
|
{verify_type_nonvar(TypeX,Y,StrictX)}.
|
||
|
|
||
|
% verify_type_nonvar(Type,Nonvar,Strictness)
|
||
|
%
|
||
|
% verifies whether the type and strictness are satisfied with the Nonvar
|
||
|
|
||
|
verify_type_nonvar(t_none,_,_).
|
||
|
verify_type_nonvar(t_l(L),Value,S) :- ilb(S,L,Value).
|
||
|
verify_type_nonvar(t_u(U),Value,S) :- iub(S,U,Value).
|
||
|
verify_type_nonvar(t_lu(L,U),Value,S) :-
|
||
|
ilb(S,L,Value),
|
||
|
iub(S,U,Value).
|
||
|
verify_type_nonvar(t_L(L),Value,S) :- ilb(S,L,Value).
|
||
|
verify_type_nonvar(t_U(U),Value,S) :- iub(S,U,Value).
|
||
|
verify_type_nonvar(t_Lu(L,U),Value,S) :-
|
||
|
ilb(S,L,Value),
|
||
|
iub(S,U,Value).
|
||
|
verify_type_nonvar(t_lU(L,U),Value,S) :-
|
||
|
ilb(S,L,Value),
|
||
|
iub(S,U,Value).
|
||
|
|
||
|
% ilb(Strict,Lower,Value) & iub(Strict,Upper,Value)
|
||
|
%
|
||
|
% check whether Value is satisfiable with the given lower/upper bound and
|
||
|
% strictness.
|
||
|
% strictness is encoded as follows:
|
||
|
% 2 = strict lower bound
|
||
|
% 1 = strict upper bound
|
||
|
% 3 = strict lower and upper bound
|
||
|
% 0 = no strict bounds
|
||
|
|
||
|
ilb(S,L,V) :-
|
||
|
S /\ 2 =:= 0,
|
||
|
!,
|
||
|
L - V < 1.0e-10. % non-strict
|
||
|
ilb(_,L,V) :- L - V < -1.0e-10. % strict
|
||
|
|
||
|
iub(S,U,V) :-
|
||
|
S /\ 1 =:= 0,
|
||
|
!,
|
||
|
V - U < 1.0e-10. % non-strict
|
||
|
iub(_,U,V) :- V - U < -1.0e-10. % strict
|
||
|
|
||
|
%
|
||
|
% Running some goals after X=Y simplifies the coding. It should be possible
|
||
|
% to run the goals here and taking care not to put_atts/2 on X ...
|
||
|
%
|
||
|
|
||
|
% verify_type_var(Type,Var,Strictness,[OutList|OutListTail],OutListTail)
|
||
|
%
|
||
|
% returns the inequalities following from a type and strictness satisfaction
|
||
|
% test with Var
|
||
|
|
||
|
verify_type_var(t_none,_,_) --> [].
|
||
|
verify_type_var(t_l(L),Y,S) --> llb(S,L,Y).
|
||
|
verify_type_var(t_u(U),Y,S) --> lub(S,U,Y).
|
||
|
verify_type_var(t_lu(L,U),Y,S) -->
|
||
|
llb(S,L,Y),
|
||
|
lub(S,U,Y).
|
||
|
verify_type_var(t_L(L),Y,S) --> llb(S,L,Y).
|
||
|
verify_type_var(t_U(U),Y,S) --> lub(S,U,Y).
|
||
|
verify_type_var(t_Lu(L,U),Y,S) -->
|
||
|
llb(S,L,Y),
|
||
|
lub(S,U,Y).
|
||
|
verify_type_var(t_lU(L,U),Y,S) -->
|
||
|
llb(S,L,Y),
|
||
|
lub(S,U,Y).
|
||
|
|
||
|
% llb(Strict,Lower,Value,[OL|OLT],OLT) and lub(Strict,Upper,Value,[OL|OLT],OLT)
|
||
|
%
|
||
|
% returns the inequalities following from the lower and upper bounds and the
|
||
|
% strictness see also lb and ub
|
||
|
llb(S,L,V) -->
|
||
|
{S /\ 2 =:= 0},
|
||
|
!,
|
||
|
[clpr:{L =< V}].
|
||
|
llb(_,L,V) --> [clpr:{L < V}].
|
||
|
|
||
|
lub(S,U,V) -->
|
||
|
{S /\ 1 =:= 0},
|
||
|
!,
|
||
|
[clpr:{V =< U}].
|
||
|
lub(_,U,V) --> [clpr:{V < U}].
|
||
|
|
||
|
%
|
||
|
% We used to drop X from the class/basis to avoid trouble with subsequent
|
||
|
% put_atts/2 on X. Now we could let these dead but harmless updates happen.
|
||
|
% In R however, exported bindings might conflict, e.g. 0 \== 0.0
|
||
|
%
|
||
|
% If X is indep and we do _not_ solve for it, we are in deep shit
|
||
|
% because the ordering is violated.
|
||
|
%
|
||
|
verify_lin(order(OrdX),class(Class),lin(LinX),Y) :-
|
||
|
!,
|
||
|
( indep(LinX,OrdX)
|
||
|
-> detach_bounds_vlv(OrdX,LinX,Class,Y,NewLinX),
|
||
|
% if there were bounds, they are requeued already
|
||
|
class_drop(Class,Y),
|
||
|
nf(-Y,NfY),
|
||
|
deref(NfY,LinY),
|
||
|
add_linear_11(NewLinX,LinY,Lind),
|
||
|
( nf_coeff_of(Lind,OrdX,_)
|
||
|
-> % X is element of Lind
|
||
|
solve_ord_x(Lind,OrdX,Class)
|
||
|
; solve(Lind) % X is gone, can safely solve Lind
|
||
|
)
|
||
|
; class_drop(Class,Y),
|
||
|
nf(-Y,NfY),
|
||
|
deref(NfY,LinY),
|
||
|
add_linear_11(LinX,LinY,Lind),
|
||
|
solve(Lind)
|
||
|
).
|
||
|
verify_lin(_,_,_,_).
|