259 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			259 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  --------------------------------------------------------------------------- | ||
|  |  Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved. | ||
|  | 
 | ||
|  |  LICENSE TERMS | ||
|  | 
 | ||
|  |  The free distribution and use of this software in both source and binary | ||
|  |  form is allowed (with or without changes) provided that: | ||
|  | 
 | ||
|  |    1. distributions of this source code include the above copyright | ||
|  |       notice, this list of conditions and the following disclaimer; | ||
|  | 
 | ||
|  |    2. distributions in binary form include the above copyright | ||
|  |       notice, this list of conditions and the following disclaimer | ||
|  |       in the documentation and/or other associated materials; | ||
|  | 
 | ||
|  |    3. the copyright holder's name is not used to endorse products | ||
|  |       built using this software without specific written permission. | ||
|  | 
 | ||
|  |  ALTERNATIVELY, provided that this notice is retained in full, this product | ||
|  |  may be distributed under the terms of the GNU General Public License (GPL), | ||
|  |  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
|  | 
 | ||
|  |  DISCLAIMER | ||
|  | 
 | ||
|  |  This software is provided 'as is' with no explicit or implied warranties | ||
|  |  in respect of its properties, including, but not limited to, correctness | ||
|  |  and/or fitness for purpose. | ||
|  |  --------------------------------------------------------------------------- | ||
|  |  Issue Date: 01/08/2005 | ||
|  | 
 | ||
|  |  This is a byte oriented version of SHA1 that operates on arrays of bytes | ||
|  |  stored in memory. | ||
|  | */ | ||
|  | 
 | ||
|  | #include <string.h>     /* for memcpy() etc.        */
 | ||
|  | 
 | ||
|  | #include "sha1.h"
 | ||
|  | #include "brg_endian.h"
 | ||
|  | 
 | ||
|  | #if defined(__cplusplus)
 | ||
|  | extern "C" | ||
|  | { | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined( _MSC_VER ) && ( _MSC_VER > 800 )
 | ||
|  | #pragma intrinsic(memcpy)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if 0 && defined(_MSC_VER)
 | ||
|  | #define rotl32  _lrotl
 | ||
|  | #define rotr32  _lrotr
 | ||
|  | #else
 | ||
|  | #define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
 | ||
|  | #define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if !defined(bswap_32)
 | ||
|  | #define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
 | ||
|  | #define SWAP_BYTES
 | ||
|  | #else
 | ||
|  | #undef  SWAP_BYTES
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(SWAP_BYTES)
 | ||
|  | #define bsw_32(p,n) \
 | ||
|  |     { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } | ||
|  | #else
 | ||
|  | #define bsw_32(p,n)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define SHA1_MASK   (SHA1_BLOCK_SIZE - 1)
 | ||
|  | 
 | ||
|  | #if 0
 | ||
|  | 
 | ||
|  | #define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
 | ||
|  | #define parity(x,y,z)   ((x) ^ (y) ^ (z))
 | ||
|  | #define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 | ||
|  | 
 | ||
|  | #else   /* Discovered by Rich Schroeppel and Colin Plumb   */
 | ||
|  | 
 | ||
|  | #define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
 | ||
|  | #define parity(x,y,z)   ((x) ^ (y) ^ (z))
 | ||
|  | #define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* Compile 64 bytes of hash data into SHA1 context. Note    */ | ||
|  | /* that this routine assumes that the byte order in the     */ | ||
|  | /* ctx->wbuf[] at this point is in such an order that low   */ | ||
|  | /* address bytes in the ORIGINAL byte stream will go in     */ | ||
|  | /* this buffer to the high end of 32-bit words on BOTH big  */ | ||
|  | /* and little endian systems                                */ | ||
|  | 
 | ||
|  | #ifdef ARRAY
 | ||
|  | #define q(v,n)  v[n]
 | ||
|  | #else
 | ||
|  | #define q(v,n)  v##n
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define one_cycle(v,a,b,c,d,e,f,k,h)            \
 | ||
|  |     q(v,e) += rotr32(q(v,a),27) +               \ | ||
|  |               f(q(v,b),q(v,c),q(v,d)) + k + h;  \ | ||
|  |     q(v,b)  = rotr32(q(v,b), 2) | ||
|  | 
 | ||
|  | #define five_cycle(v,f,k,i)                 \
 | ||
|  |     one_cycle(v, 0,1,2,3,4, f,k,hf(i  ));   \ | ||
|  |     one_cycle(v, 4,0,1,2,3, f,k,hf(i+1));   \ | ||
|  |     one_cycle(v, 3,4,0,1,2, f,k,hf(i+2));   \ | ||
|  |     one_cycle(v, 2,3,4,0,1, f,k,hf(i+3));   \ | ||
|  |     one_cycle(v, 1,2,3,4,0, f,k,hf(i+4)) | ||
|  | 
 | ||
|  | VOID_RETURN sha1_compile(sha1_ctx ctx[1]) | ||
|  | {   uint_32t    *w = ctx->wbuf; | ||
|  | 
 | ||
|  | #ifdef ARRAY
 | ||
|  |     uint_32t    v[5]; | ||
|  |     memcpy(v, ctx->hash, 5 * sizeof(uint_32t)); | ||
|  | #else
 | ||
|  |     uint_32t    v0, v1, v2, v3, v4; | ||
|  |     v0 = ctx->hash[0]; v1 = ctx->hash[1]; | ||
|  |     v2 = ctx->hash[2]; v3 = ctx->hash[3]; | ||
|  |     v4 = ctx->hash[4]; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define hf(i)   w[i]
 | ||
|  | 
 | ||
|  |     five_cycle(v, ch, 0x5a827999,  0); | ||
|  |     five_cycle(v, ch, 0x5a827999,  5); | ||
|  |     five_cycle(v, ch, 0x5a827999, 10); | ||
|  |     one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \ | ||
|  | 
 | ||
|  | #undef  hf
 | ||
|  | #define hf(i) (w[(i) & 15] = rotl32(                    \
 | ||
|  |                  w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \ | ||
|  |                ^ w[((i) +  2) & 15] ^ w[(i) & 15], 1)) | ||
|  | 
 | ||
|  |     one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16)); | ||
|  |     one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17)); | ||
|  |     one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18)); | ||
|  |     one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19)); | ||
|  | 
 | ||
|  |     five_cycle(v, parity, 0x6ed9eba1,  20); | ||
|  |     five_cycle(v, parity, 0x6ed9eba1,  25); | ||
|  |     five_cycle(v, parity, 0x6ed9eba1,  30); | ||
|  |     five_cycle(v, parity, 0x6ed9eba1,  35); | ||
|  | 
 | ||
|  |     five_cycle(v, maj, 0x8f1bbcdc,  40); | ||
|  |     five_cycle(v, maj, 0x8f1bbcdc,  45); | ||
|  |     five_cycle(v, maj, 0x8f1bbcdc,  50); | ||
|  |     five_cycle(v, maj, 0x8f1bbcdc,  55); | ||
|  | 
 | ||
|  |     five_cycle(v, parity, 0xca62c1d6,  60); | ||
|  |     five_cycle(v, parity, 0xca62c1d6,  65); | ||
|  |     five_cycle(v, parity, 0xca62c1d6,  70); | ||
|  |     five_cycle(v, parity, 0xca62c1d6,  75); | ||
|  | 
 | ||
|  | #ifdef ARRAY
 | ||
|  |     ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; | ||
|  |     ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; | ||
|  |     ctx->hash[4] += v[4]; | ||
|  | #else
 | ||
|  |     ctx->hash[0] += v0; ctx->hash[1] += v1; | ||
|  |     ctx->hash[2] += v2; ctx->hash[3] += v3; | ||
|  |     ctx->hash[4] += v4; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha1_begin(sha1_ctx ctx[1]) | ||
|  | { | ||
|  |     ctx->count[0] = ctx->count[1] = 0; | ||
|  |     ctx->hash[0] = 0x67452301; | ||
|  |     ctx->hash[1] = 0xefcdab89; | ||
|  |     ctx->hash[2] = 0x98badcfe; | ||
|  |     ctx->hash[3] = 0x10325476; | ||
|  |     ctx->hash[4] = 0xc3d2e1f0; | ||
|  | } | ||
|  | 
 | ||
|  | /* SHA1 hash data in an array of bytes into hash buffer and */ | ||
|  | /* call the hash_compile function as required.              */ | ||
|  | 
 | ||
|  | VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]) | ||
|  | {   uint_32t pos = (uint_32t)(ctx->count[0] & SHA1_MASK), | ||
|  |             space = SHA1_BLOCK_SIZE - pos; | ||
|  |     const unsigned char *sp = data; | ||
|  | 
 | ||
|  |     if((ctx->count[0] += len) < len) | ||
|  |         ++(ctx->count[1]); | ||
|  | 
 | ||
|  |     while(len >= space)     /* tranfer whole blocks if possible  */ | ||
|  |     { | ||
|  |         memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); | ||
|  |         sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0; | ||
|  |         bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2); | ||
|  |         sha1_compile(ctx); | ||
|  |     } | ||
|  | 
 | ||
|  |     memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); | ||
|  | } | ||
|  | 
 | ||
|  | /* SHA1 final padding and digest calculation  */ | ||
|  | 
 | ||
|  | VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]) | ||
|  | {   uint_32t    i = (uint_32t)(ctx->count[0] & SHA1_MASK); | ||
|  | 
 | ||
|  |     /* put bytes in the buffer in an order in which references to   */ | ||
|  |     /* 32-bit words will put bytes with lower addresses into the    */ | ||
|  |     /* top of 32 bit words on BOTH big and little endian machines   */ | ||
|  |     bsw_32(ctx->wbuf, (i + 3) >> 2); | ||
|  | 
 | ||
|  |     /* we now need to mask valid bytes and add the padding which is */ | ||
|  |     /* a single 1 bit and as many zero bits as necessary. Note that */ | ||
|  |     /* we can always add the first padding byte here because the    */ | ||
|  |     /* buffer always has at least one empty slot                    */ | ||
|  |     ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3); | ||
|  |     ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3); | ||
|  | 
 | ||
|  |     /* we need 9 or more empty positions, one for the padding byte  */ | ||
|  |     /* (above) and eight for the length count. If there is not      */ | ||
|  |     /* enough space, pad and empty the buffer                       */ | ||
|  |     if(i > SHA1_BLOCK_SIZE - 9) | ||
|  |     { | ||
|  |         if(i < 60) ctx->wbuf[15] = 0; | ||
|  |         sha1_compile(ctx); | ||
|  |         i = 0; | ||
|  |     } | ||
|  |     else    /* compute a word index for the empty buffer positions  */ | ||
|  |         i = (i >> 2) + 1; | ||
|  | 
 | ||
|  |     while(i < 14) /* and zero pad all but last two positions        */ | ||
|  |         ctx->wbuf[i++] = 0; | ||
|  | 
 | ||
|  |     /* the following 32-bit length fields are assembled in the      */ | ||
|  |     /* wrong byte order on little endian machines but this is       */ | ||
|  |     /* corrected later since they are only ever used as 32-bit      */ | ||
|  |     /* word values.                                                 */ | ||
|  |     ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29); | ||
|  |     ctx->wbuf[15] = ctx->count[0] << 3; | ||
|  |     sha1_compile(ctx); | ||
|  | 
 | ||
|  |     /* extract the hash value as bytes in case the hash buffer is   */ | ||
|  |     /* misaligned for 32-bit words                                  */ | ||
|  |     for(i = 0; i < SHA1_DIGEST_SIZE; ++i) | ||
|  |         hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); | ||
|  | } | ||
|  | 
 | ||
|  | VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len) | ||
|  | {   sha1_ctx    cx[1]; | ||
|  | 
 | ||
|  |     sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx); | ||
|  | } | ||
|  | 
 | ||
|  | #if defined(__cplusplus)
 | ||
|  | } | ||
|  | #endif
 |