This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/clpfd.pl

3296 lines
112 KiB
Perl
Raw Normal View History

/* clpfd.pl -- Finite domain constraint solver.
Copyright (C): 2007, 2008 Markus Triska (triska@gmx.at)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thanks to Tom Schrijvers for his "bounds.pl", the first finite
domain constraint solver included with SWI-Prolog. I've learned a
lot from it and could even use some of the code for this solver.
The propagation queue idea is taken from "prop.pl", a prototype
solver also written by Tom. Highlights of the present solver:
Symbolic constants for infinities
---------------------------------
?- X in 0..5 \/ 10..sup, Y #= -X, Z #= X + Y.
%@ X = _G109{0..5 \/ 10..sup},
%@ Y = _G114{inf..-10 \/ -5..0},
%@ Z = _G120{inf..sup}
No artificial limits (using GMP)
---------------------------------
?- N is integer(2**66), X #\= N.
%@ X = _G1676{inf..73786976294838206463 \/ 73786976294838206465..sup}
Often stronger propagation
---------------------------------
?- Y #= abs(X), Y #\= 3, Z * Z #= 4.
%@ Y = _G1012{0..2\/4..sup},
%@ X = _G1010{inf.. -4\/ -2..2\/4..sup},
%@ Z = _G1018{-2\/2}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Many things can be improved; if you want to help, feel free to
e-mail me. A good starting point is taking a propagation algorithm
from the literature and adding it.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- module(clpfd, [
(#>)/2,
(#<)/2,
(#>=)/2,
(#=<)/2,
(#=)/2,
(#\=)/2,
(#\)/1,
(#<==>)/2,
(#==>)/2,
(#<==)/2,
(#\/)/2,
(#/\)/2,
in/2,
ins/2,
all_different/1,
all_distinct/1,
sum/3,
tuples_in/2,
labeling/2,
label/1,
indomain/1,
lex_chain/1,
serialized/2
]).
:- use_module(library(swi)).
:- use_module(library(gensym)).
:- use_module(library(lists)).
:- op(760, yfx, (#<==>)).
:- op(750, xfy, (#==>)).
:- op(750, yfx, (#<==)).
:- op(740, yfx, (#\/)).
:- op(730, yfx, (#\)).
:- op(720, yfx, (#/\)).
:- op(710, fy, (#\)).
:- op(700, xfx, (#>)).
:- op(700, xfx, (#<)).
:- op(700, xfx, (#>=)).
:- op(700, xfx, (#=<)).
:- op(700, xfx, (#=)).
:- op(700, xfx, (#\=)).
:- op(700, xfx, in).
:- op(700, xfx, ins).
:- op(450, xfx, (..)).
:- op(700, xfx, cis).
:- op(700, xfx, cis1).
:- op(700, xfx, cis_geq).
:- op(700, xfx, cis_gt).
:- op(700, xfx, cis_leq).
:- op(700, xfx, cis_lt).
/** <module> Constraint Logic Programming over Finite Domains
Constraint programming is a declarative formalism that lets you
describe conditions a solution should satisfy. This library provides
CLP(FD), Constraint Logic Programming over Finite Domains. It can be
used to model and solve various combinatorial problems such as
planning, scheduling and allocation tasks.
Most predicates of this library are finite domain _constraints_, which
are relations over integers. They generalise arithmetic evaluation of
integer expressions in that propagation can proceed in all directions.
This library also provides _enumeration_ _predicates_, which let you
systematically search for solutions on variables whose domains have
become finite. A finite domain _expression_ is one of:
| an integer | Given value |
| a variable | Unknown value |
| -Expr | Unary minus |
| Expr + Expr | Addition |
| Expr * Expr | Multiplication |
| Expr - Expr | Subtraction |
| min(Expr,Expr) | Minimum of two expressions |
| max(Expr,Expr) | Maximum of two expressions |
| Expr mod Expr | Remainder of integer division |
| abs(Expr) | Absolute value |
| Expr / Expr | Integer division |
The most important finite domain constraints are:
| Expr1 #>= Expr2 | Expr1 is larger than or equal to Expr2 |
| Expr1 #=< Expr2 | Expr1 is smaller than or equal to Expr2 |
| Expr1 #= Expr2 | Expr1 equals Expr2 |
| Expr1 #\= Expr2 | Expr1 is not equal to Expr2 |
| Expr1 #> Expr2 | Expr1 is strictly larger than Expr2 |
| Expr1 #< Expr2 | Expr1 is strictly smaller than Expr2 |
The constraints #=/2, #\=/2, #</2, #>/2, #=</2, and #>=/2 can be
_reified_, which means reflecting their truth values into Boolean
values represented by the integers 0 and 1. Let P and Q denote
reifiable constraints or Boolean variables, then:
| #\ Q | True iff Q is false |
| P #\/ Q | True iff either P or Q |
| P #/\ Q | True iff both P and Q |
| P #<==> Q | True iff P and Q are equivalent |
| P #==> Q | True iff P implies Q |
| P #<== Q | True iff Q implies P |
As an example, consider the cryptoarithmetic puzzle SEND + MORE =
MONEY, where different letters denote distinct integers between 0 and
9. It can be modeled in CLP(FD) as follows:
==
:- use_module(library(clpfd)).
puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),
S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=
M*10000 + O*1000 + N*100 + E*10 + Y,
M #> 0, S #> 0.
==
Sample query and its result:
==
?- puzzle(As+Bs=Cs).
As = [_G58{8..9}, _G61{2..9}, _G64{2..9}, _G67{2..9}],
Bs = [1, 0, _G76{2..9}, _G61{2..9}],
Cs = [1, 0, _G64{2..9}, _G61{2..9}, _G94{2..9}]
==
Here, the constraint solver could deduce more stringent bounds for
many variables. Labeling can be used to search for solutions:
==
?- puzzle(As+Bs=Cs), label(As), label(Bs).
As = [9, 5, 6, 7],
Bs = [1, 0, 8, 5],
Cs = [1, 0, 6, 5, 2]
==
@author Markus Triska
*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
A bound is either:
n(N): integer N
inf: infimum of Z (= negative infinity)
sup: supremum of Z (= positive infinity)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
is_bound(n(N)) :- integer(N).
is_bound(inf).
is_bound(sup).
defaulty_to_bound(D, P) :- ( integer(D) -> P = n(D) ; P = D ).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Compactified is/2 and predicates for several arithmetic expressions
with infinities, tailored for the modes needed by this solver.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
% cis_gt only works for terms of depth 0 on both sides
cis_gt(n(N), B) :- cis_gt_numeric(B, N).
cis_gt(sup, B0) :-B0 \== sup.
cis_gt_numeric(n(B), A) :- A > B.
cis_gt_numeric(inf, _).
cis_geq(A, B) :-
( cis_gt(A, B) -> true
; A == B -> true
).
cis_geq_zero(sup).
cis_geq_zero(n(N)) :- N >= 0.
cis_lt(A, B) :- cis_gt(B, A).
cis_leq(A, B) :- cis_geq(B, A).
cis_min(inf, _, inf).
cis_min(sup, B, B).
cis_min(n(N), B, Min) :- cis_min_(B, N, Min).
cis_min_(inf, _, inf).
cis_min_(sup, N, n(N)).
cis_min_(n(B), A, n(M)) :- M is min(A,B).
cis_max(sup, _, sup).
cis_max(inf, B, B).
cis_max(n(N), B, Max) :- cis_max_(B, N, Max).
cis_max_(inf, N, n(N)).
cis_max_(sup, _, sup).
cis_max_(n(B), A, n(M)) :- M is max(A,B).
cis_plus(inf, _, inf).
cis_plus(sup, _, sup).
cis_plus(n(A), B, Plus) :- cis_plus_(B, A, Plus).
cis_plus_(sup, _, sup).
cis_plus_(inf, _, inf).
cis_plus_(n(B), A, n(S)) :- S is A + B.
cis_minus(inf, _, inf).
cis_minus(sup, _, sup).
cis_minus(n(A), B, M) :- cis_minus_(B, A, M).
cis_minus_(inf, _, sup).
cis_minus_(sup, _, inf).
cis_minus_(n(B), A, n(M)) :- M is A - B.
cis_uminus(inf, sup).
cis_uminus(sup, inf).
cis_uminus(n(A), n(B)) :- B is -A.
cis_abs(inf, sup).
cis_abs(sup, sup).
cis_abs(n(A), n(B)) :- B is abs(A).
cis_times(inf, B, P) :-
( B cis_lt n(0) -> P = sup
; B cis_gt n(0) -> P = inf
; P = n(0)
).
cis_times(sup, B, P) :-
( B cis_gt n(0) -> P = sup
; B cis_lt n(0) -> P = inf
; B == n(0) -> P = n(0)
).
cis_times(n(N), B, P) :- cis_times_(B, N, P).
cis_times_(inf, A, P) :- cis_times(inf, n(A), P).
cis_times_(sup, A, P) :- cis_times(sup, n(A), P).
cis_times_(n(B), A, n(P)) :- P is A * B.
% compactified is/2 for expressions of interest
A cis B :- cis_(B, A).
cis_(n(N), n(N)).
cis_(inf, inf).
cis_(sup, sup).
cis_(sign(A0), S) :- cis_(A0, A), cis_sign(A, S).
cis_(A0+B0, E) :- cis_(A0, A), cis_(B0, B), cis_plus(A, B, E).
cis_(abs(A0), E) :- cis_(A0, A), cis_abs(A, E).
cis_(min(A0,B0), E) :- cis_(A0, A), cis_(B0, B), cis_min(A, B, E).
cis_(max(A0,B0), E) :- cis_(A0, A), cis_(B0, B), cis_max(A, B, E).
cis_(A0-B0, E) :- cis_(A0, A), cis_(B0, B), cis_minus(A, B, E).
cis_(-A0, E) :- cis_(A0, A), cis_uminus(A, E).
cis_(A0*B0, E) :- cis_(A0, A), cis_(B0, B), cis_times(A, B, E).
cis_(floor(A0), E) :- cis_(A0, A), cis_floor(A, E).
cis_(ceiling(A0), E) :- cis_(A0, A), cis_ceiling(A, E).
cis_(div(A0,B0), E) :- cis_(A0, A), cis_(B0, B), cis_div(A, B, E).
cis_(A0//B0, E) :- cis_(A0, A), cis_(B0, B), cis_slash(A, B, E).
% special case for the frequent case of depth 1 expressions
A cis1 B :- cis1_(B, A).
cis1_(n(N), n(N)).
cis1_(inf, inf).
cis1_(sup, sup).
cis1_(sign(A), S) :- cis_sign(A, S).
cis1_(A+B, E) :- cis_plus(A, B, E).
cis1_(abs(A), E) :- cis_abs(A, E).
cis1_(min(A,B), E) :- cis_min(A, B, E).
cis1_(max(A,B), E) :- cis_max(A, B, E).
cis1_(A-B, E) :- cis_minus(A, B, E).
cis1_(-A, E) :- cis_uminus(A, E).
cis1_(A*B, E) :- cis_times(A, B, E).
cis1_(floor(A), E) :- cis_floor(A, E).
cis1_(ceiling(A), E) :- cis_ceiling(A, E).
cis1_(div(A,B), E) :- cis_div(A, B, E).
cis1_(A//B, E) :- cis_slash(A, B, E).
cis_sign(sup, n(1)).
cis_sign(inf, n(0)).
cis_sign(n(N), n(S)) :-
( N < 0 -> S = -1
; N > 0 -> S = 1
; S = 0
).
cis_floor(sup, sup).
cis_floor(inf, inf).
cis_floor(n(A), n(B)) :- B is integer(floor(A)).
cis_ceiling(sup, sup).
cis_ceiling(inf, inf).
cis_ceiling(n(A), n(B)) :- B is integer(ceiling(A)).
cis_div(sup, Y, Z) :- ( cis_geq_zero(Y) -> Z = sup ; Z = inf ).
cis_div(inf, Y, Z) :- ( cis_geq_zero(Y) -> Z = inf ; Z = sup ).
cis_div(n(X), Y, Z) :- cis_div_(Y, X, Z).
cis_div_(sup, _, n(0)).
cis_div_(inf, _, n(0)).
cis_div_(n(Y), X, Z) :-
( Y =:= 0 -> ( X >= 0 -> Z = sup ; Z = inf )
; Z0 is X // Y, Z = n(Z0)
).
cis_slash(sup, _, sup).
cis_slash(inf, _, inf).
cis_slash(n(N), B, S) :- cis_slash_(B, N, S).
cis_slash_(sup, _, n(0)).
cis_slash_(inf, _, n(0)).
cis_slash_(n(B), A, n(S)) :- S is A // B.
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
A domain is a finite set of disjoint intervals. Internally, domains
are represented as trees. Each node is one of:
empty: empty domain.
split(N, Left, Right)
- split on integer N, with Left and Right domains whose elements are
all less than and greater than N, respectively. The domain is the
union of Left and Right, i.e., N is a hole.
from_to(From, To)
- interval (From-1, To+1); From and To are bounds
Desiderata: rebalance domains; singleton intervals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Type definition and inspection of domains.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
check_domain(D) :-
( var(D) -> instantiation_error(D)
; is_domain(D) -> true
; domain_error(clpfd_domain, D)
).
is_domain(empty).
is_domain(from_to(From,To)) :-
is_bound(From), is_bound(To),
From cis_leq To.
is_domain(split(S, Left, Right)) :-
integer(S),
is_domain(Left), is_domain(Right),
all_less_than(Left, S),
all_greater_than(Right, S).
all_less_than(empty, _).
all_less_than(from_to(From,To), S) :-
From cis_lt n(S), To cis_lt n(S).
all_less_than(split(S0,Left,Right), S) :-
S0 < S,
all_less_than(Left, S),
all_less_than(Right, S).
all_greater_than(empty, _).
all_greater_than(from_to(From,To), S) :-
From cis_gt n(S), To cis_gt n(S).
all_greater_than(split(S0,Left,Right), S) :-
S0 > S,
all_greater_than(Left, S),
all_greater_than(Right, S).
default_domain(from_to(inf,sup)).
domain_infimum(from_to(I, _), I).
domain_infimum(split(_, Left, _), I) :- domain_infimum(Left, I).
domain_supremum(from_to(_, S), S).
domain_supremum(split(_, _, Right), S) :- domain_supremum(Right, S).
domain_num_elements(empty, n(0)).
domain_num_elements(from_to(From,To), Num) :- Num cis To - From + n(1).
domain_num_elements(split(_, Left, Right), Num) :-
domain_num_elements(Left, NL),
domain_num_elements(Right, NR),
Num cis1 NL + NR.
domain_direction_element(from_to(n(From), n(To)), Dir, E) :-
( Dir == up -> between(From, To, E)
; between(From, To, E0),
E is To - (E0 - From)
).
domain_direction_element(split(_, D1, D2), Dir, E) :-
( Dir == up ->
( domain_direction_element(D1, Dir, E)
; domain_direction_element(D2, Dir, E)
)
; ( domain_direction_element(D2, Dir, E)
; domain_direction_element(D1, Dir, E)
)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Test whether domain contains a given integer.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_contains(from_to(From,To), I) :- From cis_leq n(I), n(I) cis_leq To.
domain_contains(split(S, Left, Right), I) :-
( I < S -> domain_contains(Left, I)
; I > S -> domain_contains(Right, I)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Test whether a domain contains another domain.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_subdomain(Dom, Sub) :- domain_subdomain(Dom, Dom, Sub).
domain_subdomain(from_to(_,_), Dom, Sub) :-
domain_subdomain_fromto(Sub, Dom).
domain_subdomain(split(_, _, _), Dom, Sub) :-
domain_subdomain_split(Sub, Dom, Sub).
domain_subdomain_split(empty, _, _).
domain_subdomain_split(from_to(From,To), split(S,Left0,Right0), Sub) :-
( To cis_lt n(S) -> domain_subdomain(Left0, Left0, Sub)
; From cis_gt n(S) -> domain_subdomain(Right0, Right0, Sub)
).
domain_subdomain_split(split(_,Left,Right), Dom, _) :-
domain_subdomain(Dom, Dom, Left),
domain_subdomain(Dom, Dom, Right).
domain_subdomain_fromto(empty, _).
domain_subdomain_fromto(from_to(From,To), from_to(From0,To0)) :-
From0 cis_leq From, To0 cis_geq To.
domain_subdomain_fromto(split(_,Left,Right), Dom) :-
domain_subdomain_fromto(Left, Dom),
domain_subdomain_fromto(Right, Dom).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remove an integer from a domain. The domain is traversed until an
interval is reached from which the element can be removed, or until
it is clear that no such interval exists.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_remove(empty, _, empty).
domain_remove(from_to(L0, U0), X, D) :- domain_remove_(L0, U0, X, D).
domain_remove(split(S, Left0, Right0), X, D) :-
( X =:= S -> D = split(S, Left0, Right0)
; X < S ->
domain_remove(Left0, X, Left1),
( Left1 == empty -> D = Right0
; D = split(S, Left1, Right0)
)
; domain_remove(Right0, X, Right1),
( Right1 == empty -> D = Left0
; D = split(S, Left0, Right1)
)
).
%?- domain_remove(from_to(n(0),n(5)), 3, D).
domain_remove_(inf, U0, X, D) :-
( U0 == n(X) -> U1 is X - 1, D = from_to(inf, n(U1))
; U0 cis_lt n(X) -> D = from_to(inf,U0)
; L1 is X + 1, U1 is X - 1,
D = split(X, from_to(inf, n(U1)), from_to(n(L1),U0))
).
domain_remove_(n(N), U0, X, D) :- domain_remove_upper(U0, n(N), X, D).
domain_remove_upper(sup, L0, X, D) :-
( L0 == n(X) -> L1 is X + 1, D = from_to(n(L1),sup)
; L0 cis_gt n(X) -> D = from_to(L0,sup)
; L1 is X + 1, U1 is X - 1,
D = split(X, from_to(L0,n(U1)), from_to(n(L1),sup))
).
domain_remove_upper(n(U00), L0, X, D) :-
U0 = n(U00),
( L0 == U0, n(X) == L0 -> D = empty
; L0 == n(X) -> L1 is X + 1, D = from_to(n(L1), U0)
; U0 == n(X) -> U1 cis1 U0 - n(1), D = from_to(L0, U1)
; L0 cis_leq n(X), n(X) cis_leq U0 ->
U1 is X - 1, L1 is X + 1,
D = split(X, from_to(L0, n(U1)), from_to(n(L1), U0))
; D = from_to(L0,U0)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remove all elements greater than / less than some constant.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_remove_greater_than(empty, _, empty).
domain_remove_greater_than(from_to(From0,To0), G, D) :-
( From0 cis_gt n(G) -> D = empty
; To cis1 min(To0,n(G)), D = from_to(From0,To)
).
domain_remove_greater_than(split(S,Left0,Right0), G, D) :-
( S =< G ->
domain_remove_greater_than(Right0, G, Right),
( Right == empty -> D = Left0
; D = split(S, Left0, Right)
)
; domain_remove_greater_than(Left0, G, D)
).
domain_remove_smaller_than(empty, _, empty).
domain_remove_smaller_than(from_to(From0,To0), V, D) :-
( To0 cis_lt n(V) -> D = empty
; From cis1 max(From0,n(V)), D = from_to(From,To0)
).
domain_remove_smaller_than(split(S,Left0,Right0), V, D) :-
( S >= V ->
domain_remove_smaller_than(Left0, V, Left),
( Left == empty -> D = Right0
; D = split(S, Left, Right0)
)
; domain_remove_smaller_than(Right0, V, D)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remove a whole domain from another domain. (Set difference.)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_subtract(Dom0, Sub, Dom) :- domain_subtract(Dom0, Dom0, Sub, Dom).
domain_subtract(empty, _, _, empty).
domain_subtract(from_to(From0,To0), Dom, Sub, D) :-
( Sub == empty -> D = Dom
; Sub = from_to(From,To) ->
( From == To -> From = n(X), domain_remove(Dom, X, D)
; From cis_gt To0 -> D = Dom
; To cis_lt From0 -> D = Dom
; From cis_leq From0 ->
( To cis_geq To0 -> D = empty
; From1 cis1 To + n(1),
D = from_to(From1, To0)
)
; To1 cis1 From - n(1),
( To cis_lt To0 ->
From = n(S),
From2 cis1 To + n(1),
D = split(S,from_to(From0,To1),from_to(From2,To0))
; D = from_to(From0,To1)
)
)
; Sub = split(S, Left, Right) ->
( n(S) cis_gt To0 -> domain_subtract(Dom, Dom, Left, D)
; n(S) cis_lt From0 -> domain_subtract(Dom, Dom, Right, D)
; domain_subtract(Dom, Dom, Left, D1),
domain_subtract(D1, D1, Right, D)
)
).
domain_subtract(split(S, Left0, Right0), _, Sub, D) :-
domain_subtract(Left0, Left0, Sub, Left),
domain_subtract(Right0, Right0, Sub, Right),
( Left == empty -> D = Right
; Right == empty -> D = Left
; D = split(S, Left, Right)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Convert domain to a list of disjoint intervals From-To.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_intervals(D, Is) :- phrase(domain_intervals(D), Is).
domain_intervals(split(_, Left, Right)) -->
domain_intervals(Left), domain_intervals(Right).
domain_intervals(empty) --> [].
domain_intervals(from_to(From,To)) --> [From-To].
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
To compute the intersection of two domains D1 and D2, we
(arbitrarily) choose D1 as the reference domain. For each interval
of D1, we compute how far and to which values D2 lets us extend it.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domains_intersection(D1, D2, Intersection) :-
domains_intersection_(D1, D2, Intersection),
Intersection \== empty.
domains_intersection_(empty, _, empty).
domains_intersection_(from_to(L0,U0), D2, Dom) :-
narrow(D2, L0, U0, Dom).
domains_intersection_(split(S,Left0,Right0), D2, Dom) :-
domains_intersection_(Left0, D2, Left1),
domains_intersection_(Right0, D2, Right1),
( Left1 == empty, Right1 == empty -> Dom = empty
; Left1 == empty -> Dom = Right1
; Right1 == empty -> Dom = Left1
; Dom = split(S, Left1, Right1)
).
narrow(empty, _, _, empty).
narrow(from_to(L0,U0), From0, To0, Dom) :-
From1 cis1 max(From0,L0), To1 cis1 min(To0,U0),
( From1 cis_gt To1 -> Dom = empty
; Dom = from_to(From1,To1)
).
narrow(split(S, Left0, Right0), From0, To0, Dom) :-
( To0 cis_lt n(S) -> narrow(Left0, From0, To0, Dom)
; From0 cis_gt n(S) -> narrow(Right0, From0, To0, Dom)
; narrow(Left0, From0, To0, Left1),
narrow(Right0, From0, To0, Right1),
( Left1 == empty -> Dom = Right1
; Right1 == empty -> Dom = Left1
; Dom = split(S, Left1, Right1)
)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Union of 2 domains.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domains_union(D1, D2, Union) :-
domain_intervals(D1, Is1),
domain_intervals(D2, Is2),
append(Is1, Is2, IsU0),
merge_intervals(IsU0, IsU1),
intervals_to_domain(IsU1, Union).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Shift a domain by some offset.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_shift(empty, _, empty).
domain_shift(from_to(From0,To0), O, from_to(From,To)) :-
From cis1 From0 + n(O), To cis1 To0 + n(O).
domain_shift(split(S0, Left0, Right0), O, split(S, Left, Right)) :-
S is S0 + O,
domain_shift(Left0, O, Left),
domain_shift(Right0, O, Right).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The new domain contains all values of the old domain,
multiplied by a constant multiplier.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_expand(D0, M, D) :-
( M < 0 -> domain_negate(D0, D1), M1 is abs(M)
; D1 = D0, M1 = M
),
domain_expand_(D1, M1, D).
domain_expand_(empty, _, empty).
domain_expand_(from_to(From0, To0), M, D) :-
( M =:= 1 -> D = from_to(From0, To0)
; From0 == inf -> To cis1 To0*n(M), D = from_to(inf, To)
; To0 == sup -> From cis1 From0*n(M), D = from_to(From, sup)
; % domain is bounded
From1 cis1 From0*n(M),
To1 cis1 To0*n(M),
D = from_to(From1,To1)
%all_multiples(From0, To0, M, D)
).
domain_expand_(split(S0, Left0, Right0), M, split(S, Left, Right)) :-
S is M*S0,
domain_expand_(Left0, M, Left),
domain_expand_(Right0, M, Right).
all_multiples(From, To, M, D) :-
Mid cis (From + To) // n(2),
Mult cis1 Mid * n(M),
( From == To -> D = from_to(Mult,Mult)
; Left cis1 Mid - n(1),
Right cis1 Mid + n(1),
n(S1) cis1 Mult + n(1),
n(S2) cis1 Mult - n(1),
( Mid == From ->
D = split(S1, from_to(Mult,Mult), RightD),
all_multiples(Right, To, M, RightD)
; Mid == To ->
D = split(S2, LeftD, from_to(Mult,Mult)),
all_multiples(From, Left, M, LeftD)
; D = split(S2, LeftD, split(S1, from_to(Mult,Mult), RightD)),
all_multiples(From, Left, M, LeftD),
all_multiples(Right, To, M, RightD)
)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
similar to domain_expand/3, tailored for division: an interval
[From,To] is extended to [From*M, ((To+1)*M - 1)], i.e., to all
values that integer-divided by M yield a value from interval.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_expand_more(D0, M, D) :-
%format("expanding ~w by ~w\n", [D0,M]),
( M < 0 -> domain_negate(D0, D1), M1 is abs(M)
; D1 = D0, M1 = M
),
domain_expand_more_(D1, M1, D).
%format("yield: ~w\n", [D]).
domain_expand_more_(empty, _, empty).
domain_expand_more_(from_to(From0, To0), M, from_to(From,To)) :-
( From0 cis_lt n(0) ->
From cis (From0-n(1))*n(M) + n(1)
; From cis From0*n(M)
),
( To0 cis_lt n(0) ->
To cis To0*n(M)
; To cis (To0+n(1))*n(M) - n(1)
).
domain_expand_more_(split(S0, Left0, Right0), M, D) :-
S is M*S0,
domain_expand_more_(Left0, M, Left),
domain_expand_more_(Right0, M, Right),
domain_supremum(Left, LeftSup),
domain_infimum(Right, RightInf),
( LeftSup cis_lt n(S), n(S) cis_lt RightInf ->
D = split(S, Left, Right)
; domain_infimum(Left, Inf),
domain_supremum(Right, Sup),
D = from_to(Inf, Sup)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Scale a domain down by a constant multiplier. Assuming (//)/2.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_contract(D0, M, D) :-
%format("contracting ~w by ~w\n", [D0,M]),
( M < 0 -> domain_negate(D0, D1), M1 is abs(M)
; D1 = D0, M1 = M
),
domain_contract_(D1, M1, D).
domain_contract_(empty, _, empty).
domain_contract_(from_to(From0, To0), M, from_to(From,To)) :-
From cis1 From0 // n(M), To cis1 To0 // n(M).
domain_contract_(split(S0,Left0,Right0), M, D) :-
S is S0 // M,
% Scaled down domains do not necessarily retain any holes of
% the original domain.
domain_contract_(Left0, M, Left),
domain_contract_(Right0, M, Right),
domain_supremum(Left, LeftSup),
domain_infimum(Right, RightInf),
( LeftSup cis_lt n(S), n(S) cis_lt RightInf ->
D = split(S, Left, Right)
; domain_infimum(Left0, Inf),
% TODO: this is not necessarily an interval
domain_supremum(Right0, Sup),
min_divide(Inf, Sup, n(M), n(M), From0),
max_divide(Inf, Sup, n(M), n(M), To0),
domain_infimum(Left, LeftInf),
domain_supremum(Right, RightSup),
From cis max(LeftInf, ceiling(From0)),
To cis min(RightSup, floor(To0)),
D = from_to(From, To)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Similar to domain_contract, tailored for division, i.e.,
{21,23} contracted by 4 is 5. It contracts "less".
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_contract_less(D0, M, D) :-
( M < 0 -> domain_negate(D0, D1), M1 is abs(M)
; D1 = D0, M1 = M
),
( fail, domain_infimum(D1, n(_)), domain_supremum(D1, n(_)) ->
% bounded domain - currently disabled
domain_intervals(D1, Is),
phrase(intervals_contract_less(Is, M1), Cs),
list_to_domain(Cs, D)
; domain_contract_less_(D1, M1, D)
).
intervals_contract_less([], _) --> [].
intervals_contract_less([n(A0)-n(B0)|Is], M) -->
{ A is A0 // M, B is B0 // M, numlist(A, B, Ns) },
dlist(Ns),
intervals_contract_less(Is, M).
domain_contract_less_(empty, _, empty).
domain_contract_less_(from_to(From0, To0), M, from_to(From,To)) :-
From cis1 From0 // n(M), To cis1 To0 // n(M).
domain_contract_less_(split(S0,Left0,Right0), M, D) :-
S is S0 // M,
% Scaled down domains do not necessarily retain any holes of
% the original domain.
domain_contract_less_(Left0, M, Left),
domain_contract_less_(Right0, M, Right),
domain_supremum(Left, LeftSup),
domain_infimum(Right, RightInf),
( LeftSup cis_lt n(S), n(S) cis_lt RightInf ->
D = split(S, Left, Right)
; domain_infimum(Left0, Inf),
% TODO: this is not necessarily an interval
domain_supremum(Right0, Sup),
min_divide(Inf, Sup, n(M), n(M), From0),
max_divide(Inf, Sup, n(M), n(M), To0),
domain_infimum(Left, LeftInf),
domain_supremum(Right, RightSup),
From cis max(LeftInf, floor(From0)),
To cis min(RightSup, ceiling(To0)),
D = from_to(From, To)
%format("got: ~w\n", [D])
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Negate the domain. Left and Right sub-domains and bounds switch sides.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_negate(empty, empty).
domain_negate(from_to(From0, To0), from_to(To,From)) :-
From cis1 -From0, To cis1 -To0.
domain_negate(split(S0, Left0, Right0), split(S, Left, Right)) :-
S is -S0,
domain_negate(Left0, Right),
domain_negate(Right0, Left).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Construct a domain from a list of integers. Try to balance it.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
list_to_disjoint_intervals([], []).
list_to_disjoint_intervals([N|Ns], Is) :-
list_to_disjoint_intervals(Ns, N, N, Is).
list_to_disjoint_intervals([], M, N, [n(M)-n(N)]).
list_to_disjoint_intervals([B|Bs], M, N, Is) :-
( B =:= N + 1 ->
list_to_disjoint_intervals(Bs, M, B, Is)
; Is = [n(M)-n(N)|Rest],
list_to_disjoint_intervals(Bs, B, B, Rest)
).
list_to_domain(List0, D) :-
( List0 == [] -> D = empty
; sort(List0, List),
list_to_disjoint_intervals(List, Is),
intervals_to_domain(Is, D)
).
intervals_to_domain([], empty) :- !.
intervals_to_domain([M-N], from_to(M,N)) :- !.
intervals_to_domain(Is, D) :-
length(Is, L),
FL is L // 2,
length(Front, FL),
append(Front, Tail, Is),
Tail = [n(Start)-_|_],
Hole is Start - 1,
intervals_to_domain(Front, Left),
intervals_to_domain(Tail, Right),
D = split(Hole, Left, Right).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ?Var in +Domain
%
% Constrain Var to elements of Domain. Domain is one of:
%
% * Lower..Upper
% All integers _I_ such that _Lower_ =< _I_ =< _Upper_. The atoms
% *inf* and *sup* denote negative and positive infinity,
% respectively.
% * Domain1 \/ Domain2
% The union of Domain1 and Domain2.
type_error(Type, Term) :- throw(error(type_error(Type, Term), _)).
domain_error(Type, Term) :- throw(error(domain_error(Type, Term), _)).
instantiation_error(_Term) :- throw(error(instantiation_error, _)).
must_be(_, _).
V in D :-
fd_variable(V),
( is_drep(D) -> true
; domain_error(clpfd_domain, D)
),
drep_to_domain(D, Dom),
domain(V, Dom).
fd_variable(V) :-
( var(V) -> true
; integer(V) -> true
; type_error(integer, V)
).
%% +Vars ins +Domain
%
% Constrain the variables in the list Vars to elements of Domain.
Vs ins D :-
must_be(list, Vs),
maplist(fd_variable, Vs),
( is_drep(D) -> true
; domain_error(clpfd_domain, D)
),
drep_to_domain(D, Dom),
domains(Vs, Dom).
%% indomain(?Var)
%
% Bind Var to all feasible values of its domain on backtracking. The
% domain of Var must be finite.
indomain(Var) :- label([Var]).
order_dom_next(up, Dom, Next) :- domain_infimum(Dom, n(Next)).
order_dom_next(down, Dom, Next) :- domain_supremum(Dom, n(Next)).
%% label(+Vars)
%
% Equivalent to labeling([], Vars).
label(Vs) :- labeling([], Vs).
%% labeling(+Options, +Vars)
%
% Labeling means systematically trying out values for the finite
% domain variables Vars until all of them are ground. The domain of
% each variable in Vars must be finite. Options is a list of options
% that let you exhibit some control over the search process. Several
% categories of options exist:
%
% The variable selection strategy lets you specify which variable of
% Vars should be labeled next and is one of:
%
% * leftmost
% Label the variables in the order they occur in Vars. This is the
% default.
%
% * ff
% _|First fail|_. Label the leftmost variable with smallest domain next,
% in order to detect infeasibility early. This is often a good
% strategy.
%
% * min
% Label the leftmost variable whose lower bound is the lowest next.
%
% * max
% Label the leftmost variable whose upper bound is the highest next.
%
% The value order is one of:
%
% * up
% Try the elements of the chosen variable's domain in ascending order.
% This is the default.
%
% * down
% Try the domain elements in descending order.
%
% The branching strategy is one of:
%
% * step
% For each variable X, a choice is made between X = V and X #\= V,
% where V is determined by the value ordering options. This is the
% default.
%
% * enum
% For each variable X, a choice is made between X = V_1, X = V_2
% etc., for all values V_i of the domain of X. The order is
% determined by the value ordering options.
%
% * bisect
% For each variable X, a choice is made between X #=< M and X #> M,
% where M is the midpoint of the domain of X.
%
% The order of solutions can be influenced with:
%
% * min(Expr)
% * max(Expr)
%
% This generates solutions in ascending/descending order with respect
% to the evaluation of the arithmetic expression Expr. Labeling Vars
% must make Expr ground.
%
% If more than one option of a category is specified, the one
% occurring rightmost in the option list takes precedence over all
% others of that category. Labeling is always complete and always
% terminates.
%
labeling(Options, Vars) :-
must_be(list, Options),
must_be(list, Vars),
maplist(finite_domain, Vars),
label(Options, leftmost, up, step, none, Vars).
finite_domain(Var) :-
( var(Var) ->
get(Var, Dom, _),
( domain_infimum(Dom, n(_)), domain_supremum(Dom, n(_)) -> true
; instantiation_error(Var)
)
; integer(Var) -> true
; must_be(integer, Var)
).
label([Option|Options], Selection, Order, Choice, Optimisation, Vars) :-
( var(Option)-> instantiation_error(Option)
; selection(Option) ->
label(Options, Option, Order, Choice, Optimisation, Vars)
; order(Option) ->
label(Options, Selection, Option, Choice, Optimisation, Vars)
; choice(Option) ->
label(Options, Selection, Order, Option, Optimisation, Vars)
; optimization(Option) ->
label(Options, Selection, Order, Choice, Option, Vars)
; domain_error(labeling_option, Option)
).
label([], Selection, Order, Choice, Optimisation, Vars) :-
( Optimisation == none ->
label(Vars, Selection, Order, Choice)
; optimize(Vars, Selection, Order, Choice, Optimisation)
).
label([], _, _, _) :- !.
label(Vars, Selection, Order, Choice) :-
select_var(Selection, Vars, Var, RVars),
( var(Var) ->
choice_order_variable(Choice, Order, Var, RVars, Selection)
; must_be(integer, Var),
label(RVars, Selection, Order, Choice)
).
choice_order_variable(step, Order, Var, Vars, Selection) :-
get(Var, Dom, _),
order_dom_next(Order, Dom, Next),
( Var = Next,
label(Vars, Selection, Order, step)
; Var #\= Next,
label([Var|Vars], Selection, Order, step)
).
choice_order_variable(enum, Order, Var, Vars, Selection) :-
get(Var, Dom0, _),
domain_direction_element(Dom0, Order, Var),
label(Vars, Selection, Order, enum).
choice_order_variable(bisect, Order, Var, Vars, Selection) :-
get(Var, Dom, _),
domain_infimum(Dom, n(I)),
domain_supremum(Dom, n(S)),
Mid0 is (I + S) // 2,
( Mid0 =:= S -> Mid is Mid0 - 1 ; Mid = Mid0 ),
( Var #=< Mid,
label([Var|Vars], Selection, Order, bisect)
; Var #> Mid,
label([Var|Vars], Selection, Order, bisect)
).
selection(ff).
selection(ffc).
selection(min).
selection(max).
selection(leftmost).
choice(step).
choice(enum).
choice(bisect).
order(up).
order(down).
optimization(min(_)).
optimization(max(_)).
select_var(leftmost, [Var|Vars], Var, Vars).
select_var(min, [V|Vs], Var, RVars) :-
find_min(Vs, V, Var),
delete_eq([V|Vs], Var, RVars).
select_var(max, [V|Vs], Var, RVars) :-
find_max(Vs, V, Var),
delete_eq([V|Vs], Var, RVars).
select_var(ff, [V|Vs], Var, RVars) :-
find_ff(Vs, V, Var),
delete_eq([V|Vs], Var, RVars).
select_var(ffc, Vars0, Var, Vars) :-
find_ffc(Vars0, Var),
delete_eq(Vars0, Var, Vars).
find_min([], Var, Var).
find_min([V|Vs], CM, Min) :-
( min_lt(V, CM) ->
find_min(Vs, V, Min)
; find_min(Vs, CM, Min)
).
find_max([], Var, Var).
find_max([V|Vs], CM, Max) :-
( max_gt(V, CM) ->
find_max(Vs, V, Max)
; find_max(Vs, CM, Max)
).
find_ff([], Var, Var).
find_ff([V|Vs], CM, FF) :-
( ff_lt(V, CM) ->
find_ff(Vs, V, FF)
; find_ff(Vs, CM, FF)
).
find_ffc(Vars0, Var) :-
find_ff(Vars0, _, SD),
( var(SD) ->
find_ffc(Vars0, SD, Var)
; Var = SD
).
find_ffc([], Var, Var).
find_ffc([V|Vs], Prev, FF) :-
( ffc_lt(V, Prev) ->
find_ffc(Vs, V, FF)
; find_ffc(Vs, Prev, FF)
).
ff_lt(X, Y) :-
( var(X) ->
get(X, DX, _),
domain_num_elements(DX, NX)
; NX = n(1)
),
( var(Y) ->
get(Y, DY, _),
domain_num_elements(DY, NY)
; NY = n(1)
),
NX cis_lt NY.
ffc_lt(X, Y) :-
( var(X) ->
get(X, XD, XPs),
domain_num_elements(XD, NXD),
length(XPs, NXPs)
; NXD = n(0), NXPs = n(0)
),
( var(Y) ->
get(Y, YD, YPs),
domain_num_elements(YD, NYD),
length(YPs, NYPs)
; NYD = n(0), NYPs = n(0)
),
NXD == NYD,
NXPs > NYPs.
min_lt(X,Y) :- bounds(X,LX,_), bounds(Y,LY,_), LX cis_lt LY.
max_gt(X,Y) :- bounds(X,_,UX), bounds(Y,_,UY), UX cis_gt UY.
bounds(X, L, U) :-
( var(X) ->
get(X, Dom, _),
domain_infimum(Dom, L),
domain_supremum(Dom, U)
; L = n(X), U = L
).
delete_eq([],_,[]).
delete_eq([X|Xs],Y,List) :-
( X == Y -> List = Xs
; List = [X|Tail],
delete_eq(Xs,Y,Tail)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Optimization uses a global variable to save the computed extremum
over backtracking. Failure is used to get rid of copies of
attributed variables that are created in intermediate steps.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
optimize(Vars, Selection, Order, Choice, Opt) :-
nb_setval('$clpfd_extremum', none),
( store_extremum(Vars, Selection, Order, Choice, Opt)
; nb_getval('$clpfd_extremum', n(Val)),
arg(1, Opt, Expr),
( Expr #= Val, label(Vars, Selection, Order, Choice)
; Expr #\= Val,
optimize(Vars, Selection, Order, Choice, Opt)
)
).
store_extremum(Vars, Selection, Order, Choice, Opt) :-
duplicate_term(Vars-Opt, Vars1-Opt1),
once(label(Vars1, Selection, Order, Choice)),
functor(Opt1, Direction, _),
maplist(arg(1), [Opt,Opt1], [Expr,Expr1]),
optimize(Direction, Selection, Order, Choice, Vars, Expr1, Expr).
optimize(Direction, Selection, Order, Choice, Vars, Expr0, Expr) :-
Val0 is Expr0,
nb_setval('$clpfd_extremum', n(Val0)),
duplicate_term(Vars-Expr, Vars1-Expr1),
( Direction == min ->
Expr1 #< Val0
; Expr1 #> Val0
),
once(label(Vars1, Selection, Order, Choice)),
optimize(Direction, Selection, Order, Choice, Vars, Expr1, Expr).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% all_different(+Vars)
%
% Constrain Vars to be pairwise distinct.
all_different(Ls) :-
must_be(list, Ls),
all_different(Ls, []),
do_queue.
all_different([], _).
all_different([X|Right], Left) :-
( var(X) ->
make_propagator(pdifferent(Left,Right,X), Prop),
init_propagator(X, Prop),
trigger_prop(Prop)
; exclude_fire(Left, Right, X)
),
all_different(Right, [X|Left]).
%% sum(+Vars, +Op, +Expr)
%
% Constrain the sum of a list. The sum/3 constraint demands that
% "sumlist(Vars) Op Expr" hold, e.g.:
%
% ==
% sum(List, #=<, 100)
% ==
sum(Ls, Op, Value) :-
must_be(list, Ls),
maplist(fd_variable, Ls),
( Op == (#=), integer(Value) ->
make_propagator(sum_eq(Ls,Value), Prop),
sum_eq(Ls, Prop),
trigger_prop(Prop),
do_queue
; must_be(callable, Op),
sum(Ls, 0, Op, Value)
).
sum_eq([], _).
sum_eq([V|Vs], Prop) :- init_propagator(V, Prop), sum_eq(Vs, Prop).
sum([], Sum, Op, Value) :- call(Op, Sum, Value).
sum([X|Xs], Acc, Op, Value) :-
NAcc #= Acc + X,
sum(Xs, NAcc, Op, Value).
list_variables_integers([], [], []).
list_variables_integers([L|Ls], Vs0, Is0) :-
( var(L) -> Vs0 = [L|Vs1], Is1 = Is0
; Is0 = [L|Is1], Vs1 = Vs0
),
list_variables_integers(Ls, Vs1, Is1).
sum_domains([], Inf, Sup, Inf, Sup).
sum_domains([V|Vs], Inf0, Sup0, Inf, Sup) :-
get(V, _, Inf1, Sup1, _),
Inf2 cis1 Inf0 + Inf1,
Sup2 cis1 Sup0 + Sup1,
sum_domains(Vs, Inf2, Sup2, Inf, Sup).
remove_dist_upper([], _).
remove_dist_upper([V|Vs], D) :-
( get(V, VD, VPs) ->
( domain_infimum(VD, n(Inf)) ->
G is Inf + D,
domain_remove_greater_than(VD, G, VD1),
put(V, VD1, VPs)
; true
)
; true
),
remove_dist_upper(Vs, D).
remove_dist_lower([], _).
remove_dist_lower([V|Vs], D) :-
( get(V, VD, VPs) ->
( domain_supremum(VD, n(Sup)) ->
L is Sup - D,
domain_remove_smaller_than(VD, L, VD1),
put(V, VD1, VPs)
; true
)
; true
),
remove_dist_lower(Vs, D).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Constraint propagation proceeds as follows: Each CLP(FD) variable
has an attribute that stores its associated domain and contains a
list of all associated constraints. Whenever the domain of a
variable is changed, all constraints it participates in are
triggered: They are stored in a global structure that contains a
list of triggered constraints. do_queue/0 works off all triggered
constraints, possible triggering new ones, until fixpoint.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
% % LIFO queue
% make_queue :- nb_setval('$propagator_queue',[]).
% push_queue(E) :-
% b_getval('$propagator_queue',Q),
% b_setval('$propagator_queue',[E|Q]).
% pop_queue(E) :-
% b_getval('$propagator_queue',[E|Q]),
% b_setval('$propagator_queue',Q).
% FIFO queue
make_queue :- nb_setval('$clpfd_queue', Q-Q).
push_queue(E) :-
b_getval('$clpfd_queue', H-[E|T]), b_setval('$clpfd_queue', H-T).
pop_queue(E) :-
b_getval('$clpfd_queue', H-T),
nonvar(H), H = [E|NH], b_setval('$clpfd_queue', NH-T).
fetch_constraint_(C) :-
pop_queue(ps(C0,State)),
( State == dead -> fetch_constraint_(C)
; C = C0
).
:- initialization((make_queue,
nb_setval('$clpfd_queue_status', enabled))).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Parsing a CLP(FD) expression has two important side-effects: First,
it constrains the variables occurring in the expression to
integers. Second, it constrains some of them even more: For
example, in X/Y and X mod Y, Y is constrained to be #\= 0.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
parse_clpfd(Expr, Result) :-
( var(Expr) ->
get(Expr, ED, EPs),
put(Expr, ED, EPs), % constrain to integers
Result = Expr
; integer(Expr) -> Result = Expr
; Expr = (L + R) ->
parse_clpfd(L, RL), parse_clpfd(R, RR),
myplus(RL, RR, Result)
; Expr = (L * R) ->
parse_clpfd(L, RL), parse_clpfd(R, RR),
mytimes(RL, RR, Result)
; Expr = (L - R) ->
parse_clpfd(L, RL), parse_clpfd(R, RR),
mytimes(-1, RR, RRR),
myplus(RL, RRR, Result)
; Expr = (- E) ->
parse_clpfd(E, RE),
mytimes(-1, RE, Result)
; Expr = max(L, R) ->
parse_clpfd(L, RL), parse_clpfd(R, RR),
mymax(RL, RR, Result)
; Expr = min(L,R) ->
parse_clpfd(L, RL), parse_clpfd(R, RR),
mymin(RL, RR, Result)
; Expr = L mod R ->
parse_clpfd(L, RL), parse_clpfd(R, RR),
RR #\= 0,
mymod(RL, RR, Result)
; Expr = abs(E) ->
parse_clpfd(E, RE),
myabs(RE, Result),
Result #>= 0
; Expr = (L / R) ->
parse_clpfd(L, RL), parse_clpfd(R, RR), RR #\= 0,
mydiv(RL, RR, Result)
; Expr = (L ^ R) ->
parse_clpfd(L, RL), parse_clpfd(R, RR),
myexp(RL, RR, Result)
; domain_error(clpfd_expression, Expr)
).
trigger_once(Prop) :- trigger_prop(Prop), do_queue.
neq(A, B) :-
make_propagator(pneq(A, B), Prop),
init_propagator(A, Prop), init_propagator(B, Prop),
trigger_once(Prop).
geq(A, B) :-
( get(A, AD, APs) ->
domain_infimum(AD, AI),
( get(B, BD, _) ->
domain_supremum(BD, BS),
( AI cis_geq BS -> true
; make_propagator(pgeq(A,B), Prop),
init_propagator(A, Prop),
init_propagator(B, Prop),
trigger_once(Prop)
)
; domain_remove_smaller_than(AD, B, AD1),
put(A, AD1, APs),
do_queue
)
; get(B, BD, BPs) ->
domain_remove_greater_than(BD, A, BD1),
put(B, BD1, BPs),
do_queue
; A >= B
).
myplus(X, Y, Z) :-
make_propagator(pplus(X,Y,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), trigger_once(Prop).
mytimes(X, Y, Z) :-
make_propagator(ptimes(X,Y,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), trigger_once(Prop).
mydiv(X, Y, Z) :-
make_propagator(pdiv(X,Y,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), trigger_once(Prop).
myexp(X, Y, Z) :-
make_propagator(pexp(X,Y,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), trigger_once(Prop).
myabs(X, Y) :-
make_propagator(pabs(X,Y), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
trigger_prop(Prop), trigger_once(Prop).
mymod(X, M, K) :-
make_propagator(pmod(X,M,K), Prop),
init_propagator(X, Prop), init_propagator(M, Prop),
init_propagator(K, Prop), trigger_once(Prop).
mymax(X, Y, Z) :-
X #=< Z, Y #=< Z,
make_propagator(pmax(X,Y,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), trigger_once(Prop).
mymin(X, Y, Z) :-
X #>= Z, Y #>= Z,
make_propagator(pmin(X,Y,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), trigger_once(Prop).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Naive parsing of inequalities and disequalities can result in a lot
of unnecessary work if expressions of non-trivial depth are
involved: Auxiliary variables are introduced for sub-expressions,
and propagation proceeds on them as if they were involved in a
tighter constraint (like equality), whereas eventually only very
little of the propagated information is actually used. For example,
only extremal values are of interest in inequalities. Introducing
auxiliary variables should be avoided when possible, and
specialised propagators should be used instead. See below for a few
examples, such as constraints of the form X #\= Y + C.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%% ?X #>= ?Y
%
% X is greater than or equal to Y.
X #>= Y :-
( var(X), nonvar(Y), Y = Y1 - C, var(Y1), integer(C) ->
var_leq_var_plus_const(Y1, X, C),
reinforce(X)
; var(X), nonvar(Y), Y = Y1 + C, var(Y1), integer(C) ->
C1 is -C,
var_leq_var_plus_const(Y1, X, C1),
reinforce(X)
; nonvar(X), var(Y), X = X1 + C, var(X1), integer(C) ->
var_leq_var_plus_const(Y, X1, C),
reinforce(Y)
; nonvar(X), var(Y), X = X1 - C, var(X1), integer(C) ->
C1 is - C,
var_leq_var_plus_const(Y, X1, C1),
reinforce(Y)
; parse_clpfd(X,RX), parse_clpfd(Y,RY), geq(RX,RY), reinforce(RX)
).
var_leq_var_plus_const(X, Y, C) :-
make_propagator(x_leq_y_plus_c(X,Y,C), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
trigger_once(Prop).
%% ?X #=< ?Y
%
% X is less than or equal to Y.
X #=< Y :- Y #>= X.
%% ?X #= ?Y
%
% X equals Y.
X #= Y :- parse_clpfd(X,RX), parse_clpfd(Y,RX), reinforce(RX).
%% ?X #\= ?Y
%
% X is not Y.
X #\= Y :-
( var(X), integer(Y) ->
neq_num(X, Y),
do_queue,
reinforce(X)
; var(X), nonvar(Y), Y = V - C, var(V), integer(C) ->
var_neq_var_plus_const(V, X, C)
; var(X), nonvar(Y), Y = V + C, var(V), integer(C) ->
var_neq_var_plus_const(X, V, C)
; nonvar(X), var(Y), X = V + C, var(V), integer(C) ->
var_neq_var_plus_const(Y, V, C)
; nonvar(X), var(Y), X = V - C, var(V), integer(C) ->
var_neq_var_plus_const(V, Y, C)
; nonvar(X), X = abs(A), nonvar(A), A = X1 - Y1, var(X1), var(Y1), integer(Y) ->
absdiff_neq_const(X1, Y1, Y)
; integer(X), nonvar(Y), Y = abs(A), nonvar(A), A = X1 - Y1, var(X1), var(Y1) ->
absdiff_neq_const(X1, Y1, X)
; parse_clpfd(X, RX), parse_clpfd(Y, RY), neq(RX, RY)
).
% abs(X-Y) #\= C
absdiff_neq_const(X, Y, C) :-
make_propagator(absdiff_neq(X,Y,C), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
trigger_once(Prop).
% X #\= Y + C
var_neq_var_plus_const(X, Y, C) :-
make_propagator(x_neq_y_plus_c(X,Y,C), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
trigger_once(Prop).
% X is distinct from the number N. This is used internally in some
% propagators, and does not reinforce other constraints.
neq_num(X, N) :-
( get(X, XD, XPs) ->
domain_remove(XD, N, XD1),
put(X, XD1, XPs)
; true
).
%% ?X #> ?Y
%
% X is greater than Y.
X #> Y :- X #>= Y + 1.
%% #<(?X, ?Y)
%
% X is less than Y.
X #< Y :- Y #> X.
%% #\ +Q
%
% The reifiable constraint Q does _not_ hold.
#\ Q :- reify(Q, 0), do_queue.
%% ?P #<==> ?Q
%
% P and Q are equivalent.
L #<==> R :- reify(L, B), reify(R, B), do_queue.
%% ?P #==> ?Q
%
% P implies Q.
L #==> R :- reify(L, BL), reify(R, BR), myimpl(BL, BR), do_queue.
%% ?P #<== ?Q
%
% Q implies P.
L #<== R :- reify(L, BL), reify(R, BR), myimpl(BR, BL), do_queue.
%% ?P #/\ ?Q
%
% P and Q hold.
L #/\ R :- reify(L, 1), reify(R, 1), do_queue.
%% ?P #\/ ?Q
%
% P or Q holds.
L #\/ R :- reify(L, BL), reify(R, BR), myor(BL, BR, 1), do_queue.
myor(X, Y, Z) :-
make_propagator(por(X,Y,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop),
trigger_prop(Prop).
myimpl(X, Y) :-
make_propagator(pimpl(X,Y), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
trigger_prop(Prop).
my_reified_div(X, Y, D, Z) :-
make_propagator(reified_div(X,Y,D,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), init_propagator(D, Prop),
trigger_once(Prop).
my_reified_mod(X, Y, D, Z) :-
make_propagator(reified_mod(X,Y,D,Z), Prop),
init_propagator(X, Prop), init_propagator(Y, Prop),
init_propagator(Z, Prop), init_propagator(D, Prop),
trigger_once(Prop).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
A constraint that is being reified need not hold. Therefore, in
X/Y, Y can as well be 0, for example. Note that it is OK to
constrain the *result* of an expression (which does not appear
explicitly in the expression and is not visible to the outside),
but not the operands, except for requiring that they be integers.
In contrast to parse_clpfd/2, the result of an expression can now
also be undefined, in which case the constraint cannot hold.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
parse_reified_clpfd(Expr, Result, Defined) :-
( var(Expr) ->
get(Expr, ED, EPs),
put(Expr, ED, EPs), % constrain to integers
Result = Expr, Defined = 1
; integer(Expr) -> Result = Expr, Defined = 1
; Expr = (L + R) ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
myplus(RL, RR, Result), DL #/\ DR #<==> Defined
; Expr = (L * R) ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
mytimes(RL, RR, Result), DL #/\ DR #<==> Defined
; Expr = (L - R) ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
mytimes(-1, RR, RRR),
myplus(RL, RRR, Result), DL #/\ DR #<==> Defined
; Expr = (- E) ->
parse_reified_clpfd(E, RE, Defined),
mytimes(-1, RE, Result)
; Expr = max(L, R) ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
mymax(RL, RR, Result), DL #/\ DR #<==> Defined
; Expr = min(L,R) ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
mymin(RL, RR, Result), DL #/\ DR #<==> Defined
; Expr = L mod R ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
DL #/\ DR #<==> Defined1,
my_reified_mod(RL, RR, Defined2, Result),
Defined1 #/\ Defined2 #<==> Defined
; Expr = abs(E) ->
parse_reified_clpfd(E, RE, Defined),
myabs(RE, Result),
Result #>= 0
; Expr = (L / R) ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
DL #/\ DR #<==> Defined1,
my_reified_div(RL, RR, Defined2, Result),
Defined1 #/\ Defined2 #<==> Defined
; Expr = (L ^ R) ->
parse_reified_clpfd(L, RL, DL), parse_reified_clpfd(R, RR, DR),
DL #/\ DR #<==> Defined,
myexp(RL, RR, Result)
; domain_error(clpfd_expression, Expr)
).
reify(Expr, B) :-
B in 0..1,
( var(Expr) -> B = Expr
; integer(Expr) -> B = Expr
; Expr = (L #>= R) ->
parse_reified_clpfd(L, LR, LD), parse_reified_clpfd(R, RR, RD),
make_propagator(reified_geq(LD,LR,RD,RR,B), Prop),
init_propagator(LR, Prop), init_propagator(RR, Prop),
init_propagator(B, Prop), init_propagator(LD, Prop),
init_propagator(RD, Prop), trigger_prop(Prop)
; Expr = (L #> R) -> reify(L #>= (R+1), B)
; Expr = (L #=< R) -> reify(R #>= L, B)
; Expr = (L #< R) -> reify(R #>= (L+1), B)
; Expr = (L #= R) ->
parse_reified_clpfd(L, LR, LD), parse_reified_clpfd(R, RR, RD),
make_propagator(reified_eq(LD,LR,RD,RR,B), Prop),
init_propagator(LR, Prop), init_propagator(RR, Prop),
init_propagator(B, Prop), init_propagator(LD, Prop),
init_propagator(RD, Prop), trigger_prop(Prop)
; Expr = (L #\= R) ->
parse_reified_clpfd(L, LR, LD), parse_reified_clpfd(R, RR, RD),
make_propagator(reified_neq(LD,LR,RD,RR,B), Prop),
init_propagator(LR, Prop), init_propagator(RR, Prop),
init_propagator(B, Prop), init_propagator(LD, Prop),
init_propagator(RD, Prop), trigger_prop(Prop)
; Expr = (L #==> R) -> reify((#\ L) #\/ R, B)
; Expr = (L #<== R) -> reify(R #==> L, B)
; Expr = (L #<==> R) -> reify((L #==> R) #/\ (R #==> L), B)
; Expr = (L #/\ R) ->
reify(L, LR), reify(R, RR),
make_propagator(reified_and(LR,RR,B), Prop),
init_propagator(LR, Prop), init_propagator(RR, Prop),
init_propagator(B, Prop),
trigger_prop(Prop)
; Expr = (L #\/ R) ->
reify(L, LR), reify(R, RR),
make_propagator(reified_or(LR,RR,B), Prop),
init_propagator(LR, Prop), init_propagator(RR, Prop),
init_propagator(B, Prop),
trigger_prop(Prop)
; Expr = (#\ Q) ->
reify(Q, QR),
make_propagator(reified_not(QR,B), Prop),
init_propagator(QR, Prop), init_propagator(B, Prop),
trigger_prop(Prop)
; domain_error(clpfd_reifiable_expression, Expr)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
A drep is a user-accessible and visible domain representation. N,
N..M, and D1 \/ D2 are dreps, if D1 and D2 are dreps.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
is_drep(V) :- var(V), !, instantiation_error(V).
is_drep(N) :- integer(N), !.
is_drep(N..M) :- !, drep_bound(N), drep_bound(M).
is_drep(D1\/D2) :- !, is_drep(D1), is_drep(D2).
drep_bound(V) :- var(V), !, instantiation_error(V).
drep_bound(sup) :- !. % should infinities be accessible?
drep_bound(inf) :- !.
drep_bound(I) :- integer(I), !.
drep_to_intervals(I) --> { integer(I) }, !, [n(I)-n(I)].
drep_to_intervals(N..M) -->
( { defaulty_to_bound(N, N1), defaulty_to_bound(M, M1),
N1 cis_leq M1} -> [N1-M1]
; []
).
drep_to_intervals(D1 \/ D2) -->
drep_to_intervals(D1), drep_to_intervals(D2).
drep_to_domain(DR, D) :-
phrase(drep_to_intervals(DR), Is0),
merge_intervals(Is0, Is1),
intervals_to_domain(Is1, D).
merge_intervals(Is0, Is) :-
keysort(Is0, Is1),
merge_overlapping(Is1, Is).
merge_overlapping([], []).
merge_overlapping([A-B0|ABs0], [A-B|ABs]) :-
merge_remaining(ABs0, B0, B, Rest),
merge_overlapping(Rest, ABs).
merge_remaining([], B, B, []).
merge_remaining([N-M|NMs], B0, B, Rest) :-
Next cis1 B0 + n(1),
( N cis_gt Next -> B = B0, Rest = [N-M|NMs]
; B1 cis1 max(B0,M),
merge_remaining(NMs, B1, B, Rest)
).
domain(V, Dom) :-
( var(V) ->
get(V, Dom0, VPs),
domains_intersection(Dom, Dom0, Dom1),
%format("intersected\n: ~w\n ~w\n==> ~w\n\n", [Dom,Dom0,Dom1]),
put(V, Dom1, VPs),
do_queue,
reinforce(V)
; domain_contains(Dom, V)
).
domains([], _).
domains([V|Vs], D) :- domain(V, D), domains(Vs, D).
get(X, Dom, Ps) :-
( get_attr(X, clpfd, Attr) -> Attr = clpfd(_,_,_,Dom,Ps)
; var(X) -> default_domain(Dom), Ps = []
).
get(X, Dom, Inf, Sup, Ps) :-
get(X, Dom, Ps),
domain_infimum(Dom, Inf),
domain_supremum(Dom, Sup).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
By default, propagation always terminates. Currently, this is
ensured by allowing the left and right boundaries, as well as the
distance between the smallest and largest number occurring in a
domain to be changed at most once after a constraint is posted,
unless the domain is bounded. Set the experimental Prolog flag
'clpfd_propagation' to 'full' to make the solver propagate as much
as possible. This can make some queries non-terminating, for
example: X #> abs(X), or: X #> Y, Y #> X, X #> 0.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
put(X, Dom, Pos) :-
( current_prolog_flag(clpfd_propagation, full) ->
put_full(X, Dom, Pos)
; put_terminating(X, Dom, Pos)
).
put_terminating(X, Dom, Ps) :-
Dom \== empty,
( Dom = from_to(F, F) -> F = n(X)
; ( get_attr(X, clpfd, Attr) ->
Attr = clpfd(Left,Right,Spread,OldDom, _OldPs),
put_attr(X, clpfd, clpfd(Left,Right,Spread,Dom,Ps)),
( OldDom == Dom -> true
; domain_intervals(Dom, Is),
domain_intervals(OldDom, Is) -> true
; domain_infimum(Dom, Inf), domain_supremum(Dom, Sup),
( Inf = n(_), Sup = n(_) ->
put_attr(X, clpfd, clpfd(.,.,.,Dom,Ps)),
trigger_props(Ps)
; % infinite domain; consider border and spread changes
domain_infimum(OldDom, OldInf),
( Inf == OldInf -> LeftP = Left
; LeftP = yes
),
domain_supremum(OldDom, OldSup),
( Sup == OldSup -> RightP = Right
; RightP = yes
),
domain_spread(OldDom, OldSpread),
domain_spread(Dom, NewSpread),
( NewSpread == OldSpread -> SpreadP = Spread
; SpreadP = yes
),
put_attr(X, clpfd, clpfd(LeftP,RightP,SpreadP,Dom,Ps)),
( RightP == yes, Right = yes -> true
; LeftP == yes, Left = yes -> true
; SpreadP == yes, Spread = yes -> true
; trigger_props(Ps)
)
)
)
; var(X) ->
put_attr(X, clpfd, clpfd(no,no,no,Dom, Ps))
; true
)
).
domain_spread(Dom, Spread) :-
domain_smallest_finite(Dom, S),
domain_largest_finite(Dom, L),
Spread cis1 L - S.
smallest_finite(inf, Y, Y).
smallest_finite(n(N), _, n(N)).
domain_smallest_finite(from_to(F,T), S) :- smallest_finite(F, T, S).
domain_smallest_finite(split(_, L, _), S) :- domain_smallest_finite(L, S).
largest_finite(sup, Y, Y).
largest_finite(n(N), _, n(N)).
domain_largest_finite(from_to(F,T), L) :- largest_finite(T, F, L).
domain_largest_finite(split(_, _, R), L) :- domain_largest_finite(R, L).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
With terminating propagation, all relevant constraints get a
propagation opportunity whenever a new constraint is posted.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
reinforce(X) :-
( current_prolog_flag(clpfd_propagation, full) ->
% full propagation propagates everything in any case
true
; collect_variables(X, [], Vs),
maplist(reinforce_, Vs),
do_queue
).
collect_variables(X, Vs0, Vs) :-
( get(X, _, Ps) ->
term_variables(Ps, Vs1),
%all_collect(Vs1, [X|Vs0], Vs)
Vs = [X|Vs1]
; Vs = Vs0
).
all_collect([], Vs, Vs).
all_collect([X|Xs], Vs0, Vs) :-
( member(V, Vs0), X == V -> all_collect(Xs, Vs0, Vs)
; collect_variables(X, Vs0, Vs1),
all_collect(Xs, Vs1, Vs)
).
reinforce_(X) :-
( get_attr(X, clpfd, _), get(X, Dom, Ps) ->
put_full(X, Dom, Ps)
; true
).
put_full(X, Dom, Ps) :-
Dom \== empty,
( Dom = from_to(F, F) -> F = n(X)
; ( get_attr(X, clpfd, Attr) ->
Attr = clpfd(_,_,_,OldDom, _OldPs),
put_attr(X, clpfd, clpfd(no,no,no,Dom, Ps)),
%format("putting dom: ~w\n", [Dom]),
( OldDom == Dom -> true
; domain_intervals(Dom, Is),
domain_intervals(OldDom, Is) -> true
; trigger_props(Ps)
)
; var(X) -> %format('\t~w in ~w .. ~w\n',[X,L,U]),
put_attr(X, clpfd, clpfd(no,no,no,Dom, Ps))
; true
)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
A propagator is a term of the form propagator(C, State), where C
represents a constraint, and State is a term of the form
mutable(S,X). S can be used to destructively change the state of
the propagator. This can be used to avoid redundant invocation of
the same propagator, or to disable the propagator. X is a free
variable that prevents a factorizing garbage collector from folding
unrelated states.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
make_propagator(C, propagator(C, mutable(passive, _))).
trigger_props([]).
trigger_props([P|Ps]) :- trigger_prop(P), trigger_props(Ps).
trigger_prop(Propagator) :-
arg(2, Propagator, MState),
arg(1, MState, State),
( State == dead -> true
; State == queued -> true
; % passive
% format("triggering: ~w\n", [Propagator]),
setarg(1, MState, queued),
push_queue(ps(Propagator,MState))
).
kill(MState) :- setarg(1, MState, dead).
activate_propagator(propagator(P,MState)) :-
arg(1, MState, State),
( State == dead -> true
; %format("running: ~w\n", [P]),
setarg(1, MState, passive),
run_propagator(P, MState)
).
disable_queue :- b_setval('$clpfd_queue_status', disabled).
enable_queue :- b_setval('$clpfd_queue_status', enabled), do_queue.
do_queue :-
( b_getval('$clpfd_queue_status', enabled) ->
( fetch_constraint_(C) ->
activate_propagator(C),
%C = propagator(Prop,_),
%functor(Prop, FP, _),
%format("\n\ngot: ~w\n\n", [FP]),
do_queue
; true
)
; true
).
init_propagator(Var, Prop) :-
( var(Var) -> get(Var, Dom, Ps), put(Var, Dom, [Prop|Ps])
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% lex_chain(+Lists)
%
% Constrains Lists to be lexicographically non-decreasing.
lex_chain(Lss) :-
must_be(list, Lss),
maplist(must_be(list), Lss),
lex_chain_(Lss).
lex_chain_([]).
lex_chain_([Ls|Lss]) :-
lex_chain_lag(Lss, Ls),
lex_chain_(Lss).
lex_chain_lag([], _).
lex_chain_lag([Ls|Lss], Ls0) :-
lex_le(Ls0, Ls),
lex_chain_lag(Lss, Ls).
lex_le([], []).
lex_le([V1|V1s], [V2|V2s]) :-
V1 #=< V2,
( integer(V1) ->
( integer(V2) ->
( V1 =:= V2 -> lex_le(V1s, V2s) ; true )
; freeze(V2, lex_le([V1|V1s], [V2|V2s]))
)
; freeze(V1, lex_le([V1|V1s], [V2|V2s]))
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% tuples_in(+Tuples, +Relation).
%
% Relation is a ground list of lists of integers. The elements of the
% list Tuples are constrained to be elements of Relation.
tuples_in(Tuples, Relation) :-
must_be(list, Tuples),
must_be(list, Relation),
must_be(ground, Relation),
maplist(must_be(list), Relation),
maplist(maplist(must_be(integer)), Relation),
tuples_domain(Tuples, Relation),
do_queue.
tuples_domain([], _).
tuples_domain([Tuple|Tuples], Relation) :-
relation_unifiable(Relation, Tuple, Us, 0, _),
( ground(Tuple) -> memberchk(Tuple, Relation)
; tuple_domain(Tuple, Us),
tuple_freeze(Tuple, Us)
),
tuples_domain(Tuples, Relation).
tuple_domain([], _).
tuple_domain([T|Ts], Relation0) :-
take_firsts(Relation0, Firsts, Relation1),
( var(T) ->
( Firsts = [Unique] -> T = Unique
; list_to_domain(Firsts, FDom),
get(T, TDom, TPs),
domains_intersection(FDom, TDom, TDom1),
put(T, TDom1, TPs)
)
; true
),
tuple_domain(Ts, Relation1).
take_firsts([], [], []).
take_firsts([[F|Os]|Rest], [F|Fs], [Os|Oss]) :-
take_firsts(Rest, Fs, Oss).
tuple_freeze(Tuple, Relation) :-
make_propagator(rel_tuple(mutable(Relation,_),Tuple), Prop),
tuple_freeze(Tuple, Tuple, Prop).
tuple_freeze([], _, _).
tuple_freeze([T|Ts], Tuple, Prop) :-
( var(T) ->
init_propagator(T, Prop),
trigger_prop(Prop)
; true
),
tuple_freeze(Ts, Tuple, Prop).
relation_unifiable([], _, [], Changed, Changed).
relation_unifiable([R|Rs], Tuple, Us, Changed0, Changed) :-
( all_in_domain(R, Tuple) ->
Us = [R|Rest],
relation_unifiable(Rs, Tuple, Rest, Changed0, Changed)
; relation_unifiable(Rs, Tuple, Us, 1, Changed)
).
all_in_domain([], []).
all_in_domain([A|As], [T|Ts]) :-
( var(T) ->
get(T, Dom, _),
domain_contains(Dom, A)
; must_be(integer, T),
T =:= A
),
all_in_domain(As, Ts).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(pdifferent(Left,Right,X), _MState) :-
( ground(X) ->
disable_queue,
exclude_fire(Left, Right, X),
enable_queue
; true
).
run_propagator(pdistinct(Left,Right,X), _MState) :-
( ground(X) ->
disable_queue,
exclude_fire(Left, Right, X),
enable_queue
; %outof_reducer(Left, Right, X)
%( var(X) -> kill_if_isolated(Left, Right, X, MState)
%; true
%),
true
).
run_propagator(check_distinct(Left,Right,X), _) :-
\+ list_contains(Left, X),
\+ list_contains(Right, X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(pneq(A, B), MState) :-
( nonvar(A) ->
( nonvar(B) -> A =\= B, kill(MState)
; get(B, BD0, BExp0),
domain_remove(BD0, A, BD1),
kill(MState),
put(B, BD1, BExp0)
)
; nonvar(B) -> run_propagator(pneq(B, A), MState)
; A \== B,
get(A, _, AI, AS, _), get(B, _, BI, BS, _),
( AS cis_lt BI -> kill(MState)
; AI cis_gt BS -> kill(MState)
; true
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(pgeq(A,B), MState) :-
( A == B -> true
; nonvar(A) ->
( nonvar(B) -> kill(MState), A >= B
; get(B, BD, BPs),
domain_remove_greater_than(BD, A, BD1),
kill(MState),
put(B, BD1, BPs)
)
; nonvar(B) ->
get(A, AD, APs),
domain_remove_smaller_than(AD, B, AD1),
kill(MState),
put(A, AD1, APs)
; get(A, AD, AL, AU, APs),
get(B, _, BL, BU, _),
AU cis_geq BL,
( AL cis_gt BU -> kill(MState)
; AU == BL -> A = B
; NAL cis1 max(AL,BL),
domains_intersection(from_to(NAL,AU), AD, NAD),
put(A, NAD, APs),
( get(B, BD2, BL2, BU2, BPs2) ->
NBU cis1 min(BU2, AU),
domains_intersection(from_to(BL2,NBU), BD2, NBD),
put(B, NBD, BPs2)
; true
)
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(rel_tuple(Rel, Tuple), MState) :-
arg(1, Rel, Relation),
( ground(Tuple) -> kill(MState), memberchk(Tuple, Relation)
; relation_unifiable(Relation, Tuple, Us, 0, Changed),
Us = [_|_],
( Us = [Single] -> kill(MState), Single = Tuple
; Changed =:= 0 -> true
; setarg(1, Rel, Us),
disable_queue,
tuple_domain(Tuple, Us),
enable_queue
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(pserialized(Var,Duration,Left,SDs), _MState) :-
myserialized(Duration, Left, SDs, Var).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% abs(X-Y) #\= C
run_propagator(absdiff_neq(X,Y,C), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), abs(X - Y) =\= C
; kill(MState),
V1 is X - C, neq_num(Y, V1),
V2 is C + X, neq_num(Y, V2)
)
; nonvar(Y) -> kill(MState),
V1 is C + Y, neq_num(X, V1),
V2 is Y - C, neq_num(X, V2)
; true
).
% X #\= Y + C
run_propagator(x_neq_y_plus_c(X,Y,C), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), X =\= Y + C
; kill(MState), R is X - C, neq_num(Y, R)
)
; nonvar(Y) -> kill(MState), R is Y + C, neq_num(X, R)
; true
).
% X #=< Y + C
run_propagator(x_leq_y_plus_c(X,Y,C), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), X =< Y + C
; kill(MState), R is X - C, R #=< Y
)
; nonvar(Y) -> kill(MState), R is Y + C, X #=< R
; get(Y, YD, _),
( domain_supremum(YD, n(YSup)) ->
YS1 is YSup + C,
get(X, XD, XPs),
domain_remove_greater_than(XD, YS1, XD1),
put(X, XD1, XPs)
; true
),
( get(X, XD2, _), domain_infimum(XD2, n(XInf)) ->
XI1 is XInf - C,
( get(Y, YD1, YPs1) ->
domain_remove_smaller_than(YD1, XI1, YD2),
put(Y, YD2, YPs1)
; true
)
; true
)
).
run_propagator(sum_eq(Ls,C), MState) :-
list_variables_integers(Ls, Vs, Is),
sumlist(Is, SumC),
( Vs = [] -> kill(MState), SumC =:= C
; Vs = [Single] -> kill(MState), Single is C - SumC
; sum_domains(Vs, n(0), n(0), Inf, Sup),
MinSum cis1 Inf + n(SumC),
MaxSum cis1 Sup + n(SumC),
n(C) cis_geq MinSum,
MaxSum cis_geq n(C),
( Inf = n(I) ->
Dist1 is C - (I + SumC),
disable_queue, remove_dist_upper(Vs, Dist1), enable_queue
; true
),
( Sup = n(S) ->
Dist2 is S + SumC - C,
disable_queue, remove_dist_lower(Vs, Dist2), enable_queue
; true
)
).
% X + Y = Z
run_propagator(pplus(X,Y,Z), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), Z is X + Y
; nonvar(Z) -> kill(MState), Y is Z - X
; get(Z, ZD, ZPs),
get(Y, YD, YPs),
domain_shift(YD, X, Shifted_YD),
domains_intersection(Shifted_YD, ZD, ZD1),
put(Z, ZD1, ZPs),
( var(Y) ->
O is -X,
domain_shift(ZD1, O, YD1),
put(Y, YD1, YPs)
; true
)
)
; nonvar(Y) -> run_propagator(pplus(Y,X,Z), MState)
; nonvar(Z) ->
get(X, XD, XPs),
get(Y, YD, YPs),
domain_negate(XD, XDN),
domain_shift(XDN, Z, YD1),
domains_intersection(YD, YD1, YD2),
domain_negate(YD2, YD2N),
domain_shift(YD2N, Z, XD1),
domains_intersection(XD, XD1, XD2),
put(X, XD2, XPs),
put(Y, YD2, YPs)
; ( X == Y, get(Z, ZD, _), \+ domain_contains(ZD, 0) ->
neq_num(X, 0)
; true
),
( get(X, XD, XL, XU, XPs), get(Y, YD, YL, YU, YPs),
get(Z, ZD, ZL, ZU, _) ->
NXL cis max(XL, ZL-YU),
NXU cis min(XU, ZU-YL),
( NXL == XL, NXU == XU -> true
; domains_intersection(XD, from_to(NXL, NXU), NXD),
put(X, NXD, XPs)
),
( get(Y, YD2, YL2, YU2, YPs2) ->
NYL cis max(YL2, ZL-NXU),
NYU cis min(YU2, ZU-NXL),
( NYL == YL2, NYU == YU2 -> true
; domains_intersection(YD2, from_to(NYL, NYU), NYD),
put(Y, NYD, YPs2)
)
; NYL = Y, NYU = Y
),
( get(Z, ZD2, ZL2, ZU2, ZPs2) ->
NZL cis max(ZL2,NXL+NYL),
NZU cis min(ZU2,NXU+NYU),
( NZL == ZL2, NZU == ZU2 -> true
; domains_intersection(ZD2, from_to(NZL,NZU), NZD),
put(Z, NZD, ZPs2)
)
; true
)
; true
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(ptimes(X,Y,Z), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), Z is X * Y
; X =:= 0 -> kill(MState), Z = 0
; nonvar(Z) -> kill(MState), 0 =:= Z mod X, Y is Z // X
; get(Y, YD, _),
get(Z, ZD, ZPs),
domain_expand(YD, X, Scaled_YD),
domains_intersection(ZD, Scaled_YD, ZD1),
put(Z, ZD1, ZPs),
( get(Y, YDom2, YPs2) ->
domain_contract(ZD1, X, Contract),
domains_intersection(Contract, YDom2, NYDom),
put(Y, NYDom, YPs2)
; kill(MState), Z is X * Y
)
)
; nonvar(Y) -> mytimes(Y,X,Z)
; nonvar(Z) ->
( X == Y ->
Z >= 0,
catch(PRoot is integer(floor(sqrt(Z))),error(evaluation_error(float_overflow), _), true),
( nonvar(PRoot), PRoot**2 =:= Z ->
kill(MState),
NRoot is -PRoot,
get(X, TXD, TXPs), % temporary variables for this section
( PRoot =:= 0 -> TXD1 = from_to(n(0),n(0))
; TXD1 = split(0, from_to(n(NRoot),n(NRoot)),
from_to(n(PRoot),n(PRoot)))
),
domains_intersection(TXD, TXD1, TXD2),
put(X, TXD2, TXPs)
; % be more tolerant until GMP integer sqrt is available
true
)
; true
),
( get(X, XD, XL, XU, XPs) ->
get(Y, YD, YL, YU, _),
min_divide(n(Z),n(Z),YL,YU,TNXL),
max_divide(n(Z),n(Z),YL,YU,TNXU),
NXL cis max(XL,ceiling(TNXL)),
NXU cis min(XU,floor(TNXU)),
( NXL == XL, NXU == XU -> true
; domains_intersection(from_to(NXL,NXU), XD, XD1),
put(X, XD1, XPs)
),
( get(Y, YD2, YL2,YU2,YExp2) ->
min_divide(n(Z),n(Z),NXL,NXU,NYLT),
max_divide(n(Z),n(Z),NXL,NXU,NYUT),
NYL cis max(YL2,ceiling(NYLT)),
NYU cis min(YU2,floor(NYUT)),
( NYL == YL2, NYU == YU2 -> true
; domains_intersection(from_to(NYL,NYU), YD2, YD3),
put(Y, YD3, YExp2)
)
; ( Y \== 0 -> 0 =:= Z mod Y, kill(MState), X is Z // Y
; kill(MState), Z = 0
)
)
; true
),
( Z =\= 0 -> neq_num(X, 0), neq_num(Y, 0)
; true
)
; ( X == Y -> geq(Z, 0) ; true ),
( get(X,XD,XL,XU,XExp), get(Y,YD,YL,YU,_), get(Z,ZD,ZL,ZU,_) ->
min_divide(ZL,ZU,YL,YU,TXL),
NXL cis max(XL,ceiling(TXL)),
max_divide(ZL,ZU,YL,YU,TXU),
NXU cis min(XU,floor(TXU)),
domains_intersection(from_to(NXL,NXU), XD, XD1),
put(X, XD1, XExp),
( get(Y,YD2,YL2,YU2,YExp2) ->
min_divide(ZL,ZU,XL,XU,TYL),
NYL cis max(YL2,ceiling(TYL)),
max_divide(ZL,ZU,XL,XU,TYU),
NYU cis min(YU2,floor(TYU)),
( NYL == YL2, NYU == YU2 -> true
; domains_intersection(from_to(NYL,NYU), YD2, YD3),
put(Y, YD3, YExp2)
)
; NYL = Y, NYU = Y
),
( get(Z, ZD2, ZL2, ZU2, ZExp2) ->
min_times(NXL,NXU,NYL,NYU,TZL),
NZL cis1 max(ZL2,TZL),
max_times(NXL,NXU,NYL,NYU,TZU),
NZU cis1 min(ZU2,TZU),
( NZL == ZL2, NZU == ZU2 -> true
; domains_intersection(from_to(NZL,NZU), ZD2, ZD3),
put(Z, ZD3, ZExp2)
)
; true
)
; true
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X / Y = Z
run_propagator(pdiv(X,Y,Z), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), Y =\= 0, Z is X // Y
; get(Y, YD, YL, YU, YPs),
( nonvar(Z) ->
( Z =:= 0 ->
NYL is -abs(X) - 1,
NYU is abs(X) + 1,
domains_intersection(split(0, from_to(inf,n(NYL)),
from_to(n(NYU), sup)),
YD, NYD),
put(Y, NYD, YPs)
; ( sign(X) =:= sign(Z) ->
NYL cis max(n(X) // (n(Z)+sign(n(Z))) + n(1), YL),
NYU cis min(n(X) // n(Z), YU)
; NYL cis max(n(X) // n(Z), YL),
NYU cis min(n(X) // (n(Z)+sign(n(Z))) - n(1), YU)
),
( NYL = YL, NYU = YU -> true
; domains_intersection(from_to(NYL,NYU), YD, NYD),
put(Y, NYD, YPs)
)
)
; get(Z, ZD, ZL, ZU, ZPs),
( X >= 0, YL cis_gt n(0) ->
NZL cis max(n(X)//YU, ZL),
NZU cis min(n(X)//YL, ZU)
; % TODO: more stringent bounds, cover Y
NZL cis max(-abs(n(X)), ZL),
NZU cis min(abs(n(X)), ZU)
),
( NZL = ZL, NZU = ZU -> true
; domains_intersection(from_to(NZL,NZU), ZD, NZD),
put(Z, NZD, ZPs)
)
)
)
; nonvar(Y) ->
Y =\= 0,
( Y =:= 1 -> kill(MState), X = Z
; Y =:= -1 -> kill(MState), Z #= -X
; get(X, XD, XL, XU, XPs),
( nonvar(Z) ->
( sign(Z) =:= sign(Y) ->
NXL cis max(n(Z)*n(Y), XL),
NXU cis min((abs(n(Z))+n(1))*abs(n(Y))-n(1), XU)
; Z =:= 0 ->
NXL cis max(-abs(n(Y)) + n(1), XL),
NXU cis min(abs(n(Y)) - n(1), XU)
; NXL cis max((n(Z)+sign(n(Z))*n(1))*n(Y)+n(1), XL),
NXU cis min(n(Z)*n(Y), XU)
),
( NXL == XL, NXU == XU -> true
; domains_intersection(from_to(NXL,NXU), XD, NXD),
put(X, NXD, XPs)
)
; get(Z, ZD, ZPs),
domain_contract_less(XD, Y, Contracted),
domains_intersection(Contracted, ZD, NZD),
put(Z, NZD, ZPs),
( \+ domain_contains(NZD, 0), get(X, XD2, XPs2) ->
domain_expand_more(NZD, Y, Expanded),
domains_intersection(Expanded, XD2, NXD2),
put(X, NXD2, XPs2)
; true
)
)
)
; nonvar(Z) ->
get(X, XD, XL, XU, XPs),
get(Y, YD, YL, YU, YPs),
( YL cis_geq n(0), XL cis_geq n(0) ->
NXL cis max(YL*n(Z), XL),
NXU cis min(YU*(n(Z)+n(1))-n(1), XU)
; %TODO: cover more cases
NXL = XL, NXU = XU
),
( NXL == XL, NXU == XU -> true
; domains_intersection(from_to(NXL,NXU), XD, NXD),
put(X, NXD, XPs)
)
; ( X == Y -> Z = 1
; get(X, _, XL, XU, _),
get(Y, _, YL, YU, _),
get(Z, ZD, ZPs),
NZU cis max(abs(XL), XU),
NZL cis1 -NZU,
domains_intersection(from_to(NZL,NZU), ZD, NZD0),
( cis_geq_zero(XL), cis_geq_zero(YL) ->
domain_remove_smaller_than(NZD0, 0, NZD1)
; % TODO: cover more cases
NZD1 = NZD0
),
put(Z, NZD1, ZPs)
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Y = abs(X)
run_propagator(pabs(X,Y), MState) :-
( nonvar(X) -> kill(MState), Y is abs(X)
; nonvar(Y) ->
Y >= 0,
( Y =:= 0 -> X = 0
; get(X, XD, XPs),
YN is -Y,
domains_intersection(split(0, from_to(n(YN),n(YN)),
from_to(n(Y),n(Y))), XD, XD1),
put(X, XD1, XPs)
)
; get(X, XD, XPs),
get(Y, YD, _),
domain_negate(YD, YDNegative),
domains_union(YD, YDNegative, XD1),
domains_intersection(XD, XD1, XD2),
put(X, XD2, XPs),
( get(Y, YD1, YPs1) ->
domain_negate(XD2, XD2Neg),
domains_union(XD2, XD2Neg, YD2),
domain_remove_smaller_than(YD2, 0, YD3),
domains_intersection(YD1, YD3, YD4),
put(Y, YD4, YPs1)
; true
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% K = X mod M
run_propagator(pmod(X,M,K), MState) :-
( nonvar(X) ->
( nonvar(M) -> kill(MState), M =\= 0, K is X mod M
; true
)
; nonvar(M) ->
M =\= 0,
( M =:= 1 -> K = 0
; get(K, KD, KPs) ->
MP is abs(M) - 1,
MN is -MP,
get(K, KD, KPs),
domains_intersection(from_to(n(MN), n(MP)), KD, KD1),
put(K, KD1, KPs),
( get(X, XD, _), domain_infimum(XD, n(Min)) ->
K1 is Min mod M,
( domain_contains(KD1, K1) -> true
; neq_num(X, Min)
)
; true
)
; get(X, XD, XPs),
( fail, domain_supremum(XD, n(_)), domain_infimum(XD, n(_)) ->
% bounded domain (propagation currently disabled)
kill(MState),
findall(E, (domain_to_list(XD, XLs),
member(E, XLs), E mod M =:= K), Es),
list_to_domain(Es, XD1),
domains_intersection(XD, XD1, XD2),
put(X, XD2, XPs)
; % if possible, propagate at the boundaries
( nonvar(K), domain_infimum(XD, n(Min)) ->
( Min mod M =:= K -> true
; neq_num(X, Min)
)
; true
),
( nonvar(K), domain_supremum(XD, n(Max)) ->
( Max mod M =:= K -> true
; neq_num(X, Max)
)
; true
)
)
)
; true % TODO: propagate more
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Z = max(X,Y)
run_propagator(pmax(X,Y,Z), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), Z is max(X,Y)
; nonvar(Z) ->
( Z =:= X -> kill(MState), X #>= Y
; Z > X -> Z = Y
; fail % Z < X
)
; get(Y, YD, YInf, YSup, _),
( YInf cis_gt n(X) -> Z = Y
; YSup cis_lt n(X) -> Z = X
; YSup = n(M) ->
get(Z, ZD, ZPs),
domain_remove_greater_than(ZD, M, ZD1),
put(Z, ZD1, ZPs)
; true
)
)
; nonvar(Y) -> run_propagator(pmax(Y,X,Z), MState)
; get(Z, ZD, ZPs) ->
get(X, _, XInf, XSup, _),
get(Y, YD, YInf, YSup, _),
( YInf cis_gt YSup -> Z = Y
; YSup cis_lt XInf -> Z = X
; n(M) cis1 max(XSup, YSup) ->
domain_remove_greater_than(ZD, M, ZD1),
put(Z, ZD1, ZPs)
; true
)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Z = min(X,Y)
run_propagator(pmin(X,Y,Z), MState) :-
( nonvar(X) ->
( nonvar(Y) -> kill(MState), Z is min(X,Y)
; nonvar(Z) ->
( Z =:= X -> kill(MState), X #=< Y
; Z < X -> Z = Y
; fail % Z > X
)
; get(Y, YD, YInf, YSup, _),
( YSup cis_lt n(X) -> Z = Y
; YInf cis_gt n(X) -> Z = X
; YInf = n(M) ->
get(Z, ZD, ZPs),
domain_remove_smaller_than(ZD, M, ZD1),
put(Z, ZD1, ZPs)
; true
)
)
; nonvar(Y) -> run_propagator(pmin(Y,X,Z), MState)
; get(Z, ZD, ZPs) ->
get(X, _, XInf, XSup, _),
get(Y, YD, YInf, YSup, _),
( YSup cis_lt YInf -> Z = Y
; YInf cis_gt XSup -> Z = X
; n(M) cis1 min(XInf, YInf) ->
domain_remove_smaller_than(ZD, M, ZD1),
put(Z, ZD1, ZPs)
; true
)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Z = X ^ Y
run_propagator(pexp(X,Y,Z), MState) :-
( X == 1 -> kill(MState), Z = 1
; X == 0 -> kill(MState), Z #<==> Y #= 0
; Y == 1 -> kill(MState), Z = X
; Y == 0 -> kill(MState), Z = 1
; nonvar(X), nonvar(Y) ->
( Y >= 0 -> true ; X =:= -1 ),
kill(MState),
Z is X**Y
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% reified constraints
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The result of X/Y and X mod Y is undefined iff Y is 0.
run_propagator(reified_div(X,Y,D,Z), MState) :-
( Y == 0 -> kill(MState), D = 0
; D == 1 -> kill(MState), Z #= X / Y
; integer(Y), Y =\= 0 -> kill(MState), D = 1, Z #= X / Y
; get(Y, YD, _), \+ domain_contains(YD, 0) ->
kill(MState),
D = 1, Z #= X / Y
; true
).
run_propagator(reified_mod(X,Y,D,Z), MState) :-
( Y == 0 -> kill(MState), D = 0
; D == 1 -> kill(MState), Z #= X mod Y
; integer(Y), Y =\= 0 -> kill(MState), D = 1, Z #= X mod Y
; get(Y, YD, _), \+ domain_contains(YD, 0) ->
kill(MState),
D = 1, Z #= X mod Y
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(reified_geq(DX,X,DY,Y,B), MState) :-
( DX == 0 -> kill(MState), B = 0
; DY == 0 -> kill(MState), B = 0
; B == 1 -> kill(MState), DX = 1, DY = 1, X #>= Y
; DX == 1, DY == 1 ->
( var(B) ->
( nonvar(X) ->
( nonvar(Y) ->
kill(MState),
( X >= Y -> B = 1 ; B = 0 )
; get(Y, _, YL, YU, _),
( n(X) cis_geq YU -> kill(MState), B = 1
; n(X) cis_lt YL -> kill(MState), B = 0
; true
)
)
; nonvar(Y) ->
get(X, _, XL, XU, _),
( XL cis_geq n(Y) -> kill(MState), B = 1
; XU cis_lt n(Y) -> kill(MState), B = 0
; true
)
; get(X, _, XL, XU, _),
get(Y, _, YL, YU, _),
( XL cis_geq YU -> kill(MState), B = 1
; XU cis_lt YL -> kill(MState), B = 0
; true
)
)
; B =:= 0 -> kill(MState), X #< Y
; true
)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(reified_eq(DX,X,DY,Y,B), MState) :-
( DX == 0 -> kill(MState), B = 0
; DY == 0 -> kill(MState), B = 0
; B == 1 -> kill(MState), DX = 1, DY = 1, X = Y
; DX == 1, DY == 1 ->
( var(B) ->
( nonvar(X) ->
( nonvar(Y) ->
kill(MState),
( X =:= Y -> B = 1 ; B = 0)
; get(Y, YD, _),
( domain_contains(YD, X) -> true
; kill(MState), B = 0
)
)
; nonvar(Y) -> run_propagator(reified_eq(DY,Y,DX,X,B), MState)
; X == Y -> kill(MState), B = 1
; get(X, _, XL, XU, _),
get(Y, _, YL, YU, _),
( XL cis_gt YU -> kill(MState), B = 0
; YL cis_gt XU -> kill(MState), B = 0
; true
)
)
; B =:= 0 -> kill(MState), X #\= Y
; true
)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(reified_neq(DX,X,DY,Y,B), MState) :-
( DX == 0 -> kill(MState), B = 0
; DY == 0 -> kill(MState), B = 0
; B == 1 -> kill(MState), DX = 1, DY = 1, X #\= Y
; DX == 1, DY == 1 ->
( var(B) ->
( nonvar(X) ->
( nonvar(Y) ->
kill(MState),
( X =\= Y -> B = 1 ; B = 0)
; get(Y, YD, _),
( domain_contains(YD, X) -> true
; B = 1
)
)
; nonvar(Y) -> run_propagator(reified_neq(DY,Y,DX,X,B), MState)
; X == Y -> B = 0
; get(X, _, XL, XU, _),
get(Y, _, YL, YU, _),
( XL cis_gt YU -> kill(MState), B = 1
; YL cis_gt XU -> kill(MState), B = 1
; true
)
)
; B =:= 0 -> kill(MState), X = Y
; true
)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(reified_and(X,Y,B), MState) :-
( var(B) ->
( nonvar(X) ->
( X =:= 0 -> B = 0
; X =:= 1 -> B = Y
)
; nonvar(Y) -> run_propagator(reified_and(Y,X,B), MState)
; true
)
; B =:= 0 ->
( X == 1 -> kill(MState), Y = 0
; Y == 1 -> kill(MState), X = 0
; true
)
; B =:= 1 -> kill(MState), X = 1, Y = 1
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(reified_or(X,Y,B), MState) :-
( var(B) ->
( nonvar(X) ->
( X =:= 1 -> B = 1
; X =:= 0 -> B = Y
)
; nonvar(Y) -> run_propagator(reified_or(Y,X,B), MState)
; true
)
; B =:= 0 -> kill(MState), X = 0, Y = 0
; B =:= 1 ->
( X == 0 -> Y = 1
; Y == 0 -> X = 1
; true
)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(reified_not(X,Y), MState) :-
( X == 0 -> kill(MState), Y = 1
; X == 1 -> kill(MState), Y = 0
; Y == 0 -> kill(MState), X = 1
; Y == 1 -> kill(MState), X = 0
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(pimpl(X, Y), MState) :-
( nonvar(X) ->
( X =:= 1 -> kill(MState), Y = 1
; true
)
; nonvar(Y) ->
( Y =:= 0 -> kill(MState), X = 0
; true
)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_propagator(por(X, Y, Z), MState) :-
( nonvar(X) ->
( X =:= 0 -> Y = Z
; X =:= 1 -> Z = 1
)
; nonvar(Y) -> run_propagator(por(Y,X,Z), MState)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
max_times(L1,U1,L2,U2,Max) :-
Max cis max(max(L1*L2,L1*U2),max(U1*L2,U1*U2)).
min_times(L1,U1,L2,U2,Min) :-
Min cis min(min(L1*L2,L1*U2),min(U1*L2,U1*U2)).
max_divide(L1,U1,L2,U2,Max) :-
( L2 cis_leq n(0) , U2 cis_geq n(0) -> Max = sup
; Max cis max(max(div(L1,L2),div(L1,U2)),max(div(U1,L2),div(U1,U2)))
).
min_divide(L1,U1,L2,U2,Min) :-
( L2 cis_leq n(0) , U2 cis_geq n(0) -> Min = inf
; Min cis min(min(div(L1,L2),div(L1,U2)),min(div(U1,L2),div(U1,U2)))
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Weak arc consistent all_distinct/1 constraint.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%% all_distinct(+Ls).
%
% Like all_different/1, with stronger propagation.
%all_distinct(Ls) :- all_different(Ls).
all_distinct(Ls) :-
must_be(list, Ls),
length(Ls, _),
MState = mutable(passive,_),
all_distinct(Ls, [], MState),
do_queue.
all_distinct([], _, _).
all_distinct([X|Right], Left, MState) :-
%\+ list_contains(Right, X),
( var(X) ->
make_propagator(pdistinct(Left,Right,X), Prop),
init_propagator(X, Prop),
trigger_prop(Prop)
% make_propagator(check_distinct(Left,Right,X), Prop2),
% init_propagator(X, Prop2),
% trigger_prop(Prop2)
; exclude_fire(Left, Right, X)
),
outof_reducer(Left, Right, X),
all_distinct(Right, [X|Left], MState).
exclude_fire(Left, Right, E) :-
exclude_list(Left, E),
exclude_list(Right, E).
exclude_list([], _).
exclude_list([V|Vs], Val) :-
( var(V) ->
get(V, VD, VPs),
domain_remove(VD, Val, VD1),
put(V, VD1, VPs)
; V =\= Val
),
exclude_list(Vs, Val).
list_contains([X|Xs], Y) :-
( X == Y -> true
; list_contains(Xs, Y)
).
kill_if_isolated(Left, Right, X, MState) :-
append(Left, Right, Others),
get(X, XDom, _),
( all_empty_intersection(Others, XDom) -> kill(MState)
; true
).
all_empty_intersection([], _).
all_empty_intersection([V|Vs], XDom) :-
( var(V) ->
get(V, VDom, _),
domains_intersection_(VDom, XDom, empty),
all_empty_intersection(Vs, XDom)
; all_empty_intersection(Vs, XDom)
).
outof_reducer(Left, Right, Var) :-
( var(Var) ->
append(Left, Right, Others),
get(Var, Dom, _),
domain_num_elements(Dom, N),
num_subsets(Others, Dom, 0, Num, NonSubs),
( n(Num) cis_geq N -> fail
; n(Num) cis1 N - n(1) ->
reduce_from_others(NonSubs, Dom)
; true
)
; %\+ list_contains(Right, Var),
%\+ list_contains(Left, Var)
true
).
reduce_from_others([], _).
reduce_from_others([X|Xs], Dom) :-
( var(X) ->
get(X, XDom, XPs),
domain_subtract(XDom, Dom, NXDom),
put(X, NXDom, XPs)
; true
),
reduce_from_others(Xs, Dom).
num_subsets([], _Dom, Num, Num, []).
num_subsets([S|Ss], Dom, Num0, Num, NonSubs) :-
( var(S) ->
get(S, SDom, _),
( domain_subdomain(Dom, SDom) ->
Num1 is Num0 + 1,
num_subsets(Ss, Dom, Num1, Num, NonSubs)
; NonSubs = [S|Rest],
num_subsets(Ss, Dom, Num0, Num, Rest)
)
; num_subsets(Ss, Dom, Num0, Num, NonSubs)
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% serialized(+Starts, +Durations)
%
% Constrain a set of intervals to a non-overlapping sequence.
% Starts = [S_1,...,S_n], is a list of variables or integers,
% Durations = [D_1,...,D_n] is a list of non-negative integers.
% Constrains Starts and Durations to denote a set of
% non-overlapping tasks, i.e.: S_i + D_i =< S_j or S_j + D_j =<
% S_i for all 1 =< i < j =< n.
%
% @see Dorndorf et al. 2000, "Constraint Propagation Techniques for the
% Disjunctive Scheduling Problem"
serialized(Starts, Durations) :-
must_be(list, Durations),
maplist(must_be(integer), Durations),
pair_up(Starts, Durations, SDs),
serialize(SDs, []),
do_queue.
pair_up([], [], []).
pair_up([A|As], [B|Bs], [A-n(B)|ABs]) :- pair_up(As, Bs, ABs).
% attribute: pserialized(Var, Duration, Left, Right)
% Left and Right are lists of Start-Duration pairs representing
% other tasks occupying the same resource
serialize([], _).
serialize([Start-D|SDs], Left) :-
cis_geq_zero(D),
( var(Start) ->
make_propagator(pserialized(Start,D,Left,SDs), Prop),
init_propagator(Start, Prop),
trigger_prop(Prop)
; true
),
myserialized(D, Left, SDs, Start),
serialize(SDs, [Start-D|Left]).
% consistency check / propagation
% Currently implements 2-b-consistency
myserialized(Duration, Left, Right, Start) :-
myserialized(Left, Start, Duration),
myserialized(Right, Start, Duration).
earliest_start_time(Start, EST) :-
( get(Start, D, _) ->
domain_infimum(D, EST)
; EST = n(Start)
).
latest_start_time(Start, LST) :-
( get(Start, D, _) ->
domain_supremum(D, LST)
; LST = n(Start)
).
myserialized([], _, _).
myserialized([S_I-D_I|SDs], S_J, D_J) :-
( var(S_I) ->
serialize_lower_bound(S_I, D_I, Start, D_J),
( var(S_I) -> serialize_upper_bound(S_I, D_I, Start, D_J)
; true
)
; var(S_J) ->
serialize_lower_bound(S_J, D_J, S, D_I),
( var(S_J) -> serialize_upper_bound(S_J, D_J, S, D_I)
; true
)
; D_I = n(D_II), D_J = n(D_JJ),
( S_I + D_II =< S_J -> true
; S_J + D_JJ =< S_I -> true
; fail
)
),
myserialized(SDs, S_J, D_J).
serialize_lower_bound(I, D_I, J, D_J) :-
get(I, DomI, Ps),
domain_infimum(DomI, EST_I),
latest_start_time(J, LST_J),
( Sum cis EST_I + D_I, Sum cis_gt LST_J ->
earliest_start_time(J, EST_J),
EST cis EST_J+D_J,
domain_remove_smaller_than(DomI, EST, DomI1),
put(I, DomI1, Ps)
; true
).
serialize_upper_bound(I, D_I, J, D_J) :-
get(I, DomI, Ps),
domain_supremum(DomI, LST_I),
earliest_start_time(J, EST_J),
( Sum cis EST_J + D_J, Sum cis_gt LST_I ->
latest_start_time(J, LST_J),
LST cis LST_J-D_I,
domain_remove_greater_than(DomI, LST, DomI1),
put(I, DomI1, Ps)
; true
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hooks
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
attr_unify_hook(clpfd(_,_,_,Dom,Ps), Other) :-
( nonvar(Other) ->
( integer(Other) -> true
; type_error(integer, Other)
),
domain_contains(Dom, Other),
trigger_props(Ps),
do_queue
; get(Other, OD, OPs),
domains_intersection(Dom, OD, Dom1),
append(Ps, OPs, Ps1),
put(Other, Dom1, Ps1),
trigger_props(Ps1),
do_queue
).
bound_portray(inf, inf).
bound_portray(sup, sup).
bound_portray(n(N), N).
domain_to_drep(Dom, Drep) :-
domain_intervals(Dom, [A0-B0|Rest]),
bound_portray(A0, A),
bound_portray(B0, B),
( A == B -> Drep0 = A
; Drep0 = A..B
),
intervals_to_drep(Rest, Drep0, Drep).
intervals_to_drep([], Drep, Drep).
intervals_to_drep([A0-B0|Rest], Drep0, Drep) :-
bound_portray(A0, A),
bound_portray(B0, B),
( A == B -> D1 = A
; D1 = A..B
),
intervals_to_drep(Rest, Drep0 \/ D1, Drep).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numlist(F, T, Ls) :- T1 is T + 1, numlist_(F, T1, Ls).
numlist_(F, F, []) :- !.
numlist_(F0, T, [F0|Rest]) :- F1 is F0 + 1, numlist_(F1, T, Rest).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
attribute_goal(X, Goal) :-
phrase(attribute_goals(X), Goals),
list_dot(Goals, Goal).
attribute_goals(X) -->
{ get_attr(X, clpfd, clpfd(_,_,_,Dom,Ps)), domain_to_drep(Dom, Drep) },
[clpfd:(X in Drep)],
attributes_goals(Ps).
list_dot([A], A) :- !.
list_dot([A|As], (A,G)) :- list_dot(As, G).
attributes_goals([]) --> [].
attributes_goals([propagator(P, State)|As]) -->
( { arg(1, State, dead) } -> []
; { arg(1, State, processed) } -> []
; { attribute_goal_(P, G) } ->
{ setarg(1, State, processed) },
[clpfd:G]
; [] % { format("currently no conversion for ~w\n", [P]) }
),
attributes_goals(As).
attribute_goal_(pgeq(A,B), A #>= B).
attribute_goal_(pplus(X,Y,Z), X + Y #= Z).
attribute_goal_(pneq(A,B), A #\= B).
attribute_goal_(ptimes(X,Y,Z), X*Y #= Z).
attribute_goal_(absdiff_neq(X,Y,C), abs(X-Y) #\= C).
attribute_goal_(x_neq_y_plus_c(X,Y,C), X #\= Y + C).
attribute_goal_(x_leq_y_plus_c(X,Y,C), X #=< Y + C).
attribute_goal_(pdiv(X,Y,Z), X/Y #= Z).
attribute_goal_(pexp(X,Y,Z), X^Y #= Z).
attribute_goal_(pabs(X,Y), Y #= abs(X)).
attribute_goal_(pmod(X,M,K), X mod M #= K).
attribute_goal_(pmax(X,Y,Z), Z #= max(X,Y)).
attribute_goal_(pmin(X,Y,Z), Z #= min(X,Y)).
attribute_goal_(sum_eq(Vs, C), sum(Vs, #=, C)).
attribute_goal_(pdifferent(Left, Right, X), all_different(Vs)) :-
append(Left, [X|Right], Vs).
attribute_goal_(pdistinct(Left, Right, X), all_distinct(Vs)) :-
append(Left, [X|Right], Vs).
attribute_goal_(pserialized(Var,D,Left,Right), serialized(Vs, Ds)) :-
append(Left, [Var-D|Right], VDs),
pair_up(Vs, Ds, VDs).
attribute_goal_(rel_tuple(mutable(Rel,_), Tuple), tuples_in([Tuple], Rel)).
% reified constraints
attribute_goal_(reified_neq(DX, X, DY, Y, B), (DX #/\ DY #/\ X #\= Y) #<==> B).
attribute_goal_(reified_eq(DX, X, DY, Y, B), (DX #/\ DY #/\ X #= Y) #<==> B).
attribute_goal_(reified_geq(DX, X, DY, Y, B), (DX #/\ DY #/\ X #>= Y) #<==> B).
attribute_goal_(reified_div(X, Y, D, Z), (D #= 1 #==> X / Y #= Z, Y #\= 0 #==> D #= 1)).
attribute_goal_(reified_mod(X, Y, D, Z), (D #= 1 #==> X mod Y #= Z, Y #\= 0 #==> D #= 1)).
attribute_goal_(por(X,Y,Z), X #\/ Y #<==> Z).
attribute_goal_(reified_and(X, Y, B), X #/\ Y #<==> B).
attribute_goal_(reified_or(X, Y, B), X #\/ Y #<==> B).
attribute_goal_(reified_not(X, Y), #\ X #<==> Y).
attribute_goal_(pimpl(X, Y), X #==> Y).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
domain_to_list(Domain, List) :- phrase(domain_to_list(Domain), List).
domain_to_list(split(_, Left, Right)) -->
domain_to_list(Left), domain_to_list(Right).
domain_to_list(empty) --> [].
domain_to_list(from_to(n(F),n(T))) --> { numlist(F, T, Ns) }, dlist(Ns).
dlist([]) --> [].
dlist([L|Ls]) --> [L], dlist(Ls).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Testing
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%?- test_intersection([1,2,3,4,5], [1,5], I).
%?- test_intersection([1,2,3,4,5], [], I).
test_intersection(List1, List2, Is) :-
list_to_domain(List1, D1),
list_to_domain(List2, D2),
domains_intersection(D1, D2, I),
domain_to_list(I, Is).
test_subdomain(L1, L2) :-
list_to_domain(L1, D1),
list_to_domain(L2, D2),
domain_subdomain(D1, D2).